Introduction to the practical afternoon courses on DSP/FPGA designs

CAS 2007-DSP

Hermann Schmickler (CERN)

contents

- What do we want to achieve with the courses
- Boundary conditions
- Original options
- The physics case: PLL betatron tune tracking
- Translation into the lab setup

CAS 2007-DSP Hermann Schmickler (CERN – AB-CO)

Familiarization with DSP and FPGA design during 8 hours

- Every student does within 16 hours (7 afternoons)
 8 hours DSP and 8 hours FPGA designs
- No chance to learn the syntax of any detailed design tool
- Very different starting points of individual students

Choice:
25 DSP workstations (PC plus evaluation board) +
25 FPGA workstations (PC plus evaluation board) +
MATLAB/Simulink as high level graphical design environment

CAS 2007-DSP Hermann Schmickler (CERN – AB-CO)

The DSP master:

Maria-Elena Angoletta (CERN)

Room A

The FPGA master Javier Serrano (CERN)

Room B

CAS 2007-DSP Hermann Schmickler (CERN – AB-CO)

What possibilities for the lab?

- Hands on: Real physical input/output
- \rightarrow Codec of DSP/FPGA cards
- Loudspeakers/headphones: no! No synthesizers, audio filters, speech recognition...
- Large synchrotrons (LEP, RHIC, HERA, LHC) have betatron tune within audio-bandwidth
- Decision to take as subject for the labs betatron tune diagnostics

CAS 2007-DSP Hermann Schmickler (CERN – AB-CO)

The virtual accelerator (one plane only)

-

CAS

Measurement of Q (betatron tune)

Characteristic Frequency of the Magnet Lattice Produced by the strength of the Quadrupole magnets

- Q the eigenfrequency of betatron oscillations in a circular machine
 - \rightarrow One of the key parameters of machine operation
- Many measurement methods available:
 - → different beam excitations
 - → different observations of resulting beam oscillation
 - \rightarrow different data treatment

CAS 2007-DSP Hermann Schmickler (CERN – AB-CO)

Principle of any Q-measurement

 $G(\omega)$

BTF:= $H(\omega)/G(\omega)$

Measurement of

betatron tune Q: Excitation Source for BTF Maximum of BTF Transverse beam

Oscillations

- stripline kickers
- pulsed magnets

O H(ω) of Transverse beam Oscillations - E.M. pickup - resonant BPM - others

Simple example: FFT analysis

G(ω) == flat (i.e. excite all frequencies)

Made with random noise kicks

Measure beam position over many consecutives turns apply FFT \rightarrow H(ω) BTF = H(ω)

CAS 2007-DSP Hermann Schmickler (CERN – AB-CO)

Network Analysis

- 1. Excite beams with a sinusoidal carrier
- 2. Measure beam response
- Sweep excitation frequency slowly through beam response

Time Resolved Measurements

To follow betatron tunes during machine transitions we need time resolved measurements. Simplest example:
 → repeated FFT spectra as before (spectrograms)

CAS 2007-DSP Hermann Schmickler (CERN - AB-CO)

CAS 2007-DSP Hermann Schmickler (CERN – AB-CO)

Example of PLL tune measurement

In this case continuous tune tracking was used whilst crossing the horizontal and vertical tunes with a power converter ramp.

Closest tune approach is a measure of coupling

CAS 2007-DSP Hermann Schmickler (CERN – AB-CO)

Sequence of the exercises

- 11 detailed exercises: printed booklet
- Objectives from
 - familiarization with the setup
 - measurement of BTF
 - NCO design
 - phase detection
 - closure of the PLL
 - amplitude regulation
- All exercises (designs) ready and tested
- Minimum expectation: students load ready designs and understand them
 - Maximum expectation: students find the bugs in our designs and correct them

CAS 2007-DSP Hermann Schmickler (CERN – AB-CO)

CAS 2007-DSP Hermann Schmickler (CERN – AB-CO)

Example: Exercise 2 « Measure BTF using the evaluation board »

CAS 2007-DSP Hermann Schmickler (CERN - AB-CO)

ode45

Lab setup

CAS 2007-DSP Hermann Schmickler (CERN – AB-CO)

- No drinks/food/cigarettes in the labs please
- Get together in teams of two: Recommended: similar level of competence
- Labs are open in the evening: Everybody is invited to come back to his working place after dinner in order to play a little with the setup
- Now:

define 48 + 48 students for FPGA/DSP courses

CAS 2007-DSP Hermann Schmickler (CERN – AB-CO)