
High-level modelling tools

J. Evans CERN

J. Evans, CAS DSP, Sigtuna, 2007 2

Contents

Introduction
Modern electronic design methodology
“Traditional” design flows
Electronic System Level advancements
Introduction to MATLAB/Simulink

J. Evans, CAS DSP, Sigtuna, 2007 3

Modern electronic design methodology

Modern tools and
methodologies are needed to:
Manufacture new devices
Implement them in working
circuits

http://www.elecdesign.com/Articles/Print.cfm?AD=1&ArticleID=14442

J. Evans, CAS DSP, Sigtuna, 2007 4

A high-level modelling tool is..?
A high-level modelling tool provides the ability to
build and simulate ideal models. Once proper
validation is complete on these ideal models, lower
levels of abstraction can be added until the final real
world model is designed
This is the top-down design concept. Design first
takes place with the basic functional knowledge of a
system. The scope and use of high-level modelling
tools is continually expanding
High-level modelling tools and validation are almost
mandatory for very large designs

J. Evans, CAS DSP, Sigtuna, 2007 5

History of EDA
First design tools used for IC design (mid 70s) - then
called CAD (layout)/CAE (design capture and
verification) tools
SPICE2 presented in 1975
Beginning of 80s, company spun-out in-house design
tools to form companies
Mid 80s, Hardware Description Languages (HDL)
emerge
Electronics Design Automation (EDA) term now used
expanded to cover all aspects of design from the IC
through to the circuit to the PCB to system level

J. Evans, CAS DSP, Sigtuna, 2007 6

SPICE
SPICE (Simulation Program with Integrated Circuit
Emphasis) is a general purpose analog circuit
simulator. It is used in IC, circuit and PCB
simulations.
An “analog” circuit simulator (solves for voltage
between and current through circuit nodes)
Developed at Berkeley, initially by funding from DOD
Re-written to allow “free” distribution – many
commercial simulators e.g. PSpice, HSPICE based on
SPICE
SPICE2 was big improvement as introduced variable
time-step transient analysis

J. Evans, CAS DSP, Sigtuna, 2007 7

Hardware Description
Languages in EDA

An HDL is a standard text-based description
of an electronic system. In contrast to a
software programming language, it
incorporates syntax and semantics to include
the notions of time and concurrency,
essential to describe hardware.
The two major languages currently used are
VHDL and Verilog. They are typically used to
support the conception, simulation, and
implementation of designs in FPGAs
These are RTL languages

J. Evans, CAS DSP, Sigtuna, 2007 8

Verilog language
Verilog HDL was developed in the 1980s by Gateway Design
Automation as a proprietary hardware description language for
use on its simulator.
Cadence Design Systems acquired Gateway. In the early 90s,
Verilog was put in the public domain.
Verilog HDL became IEEE Std. 1364-1995 in 1995.
Verilog HDL now maintained by Accellera (non-profit
organisation). Accellera has also been developing a new
standard, SystemVerilog.
There also exists Verilog-AMS. The Verilog-AMS standard
supports analogue and mixed signal designs at three levels:
transistor/gate, transistor/gate- rtl /behavioural, and mixed
transistor/gate- rtl /behavioural circuit levels.

J. Evans, CAS DSP, Sigtuna, 2007 9

VHDL language
VHDL development started in 1981 by the United States Department of
Defense
Designs were inadequately documented to be reproduced in new
technologies. The cost of verifying each updated individual component
was prohibitive. VHDL developed as a language that:
could adequately describe (document) the part
could produce similar results on any simulator
independent of technology or design methodology

VHDL is a non-proprietary, comprehensively defined language. The
Language Reference Manual defines the language completely. The
LRM does not define any given simulator – however, it clearly defines
how each language construct should be handled during simulation.
VHDL can be used at any level of abstraction
There also exists VHDL-AMS

J. Evans, CAS DSP, Sigtuna, 2007 10

VHDL Example
library IEEE;
use IEEE.std_logic_1164.all;

entity casdsp_ex is
generic (tpd_hl : TIME := 1 NS;

tpd_lh : TIME := 1 NS);
port (in1, in2 : in std_logic;

casdsp_out : out std_logic);
end casdsp_ex ;

architecture only of casdsp_ex is
begin

p1: process (in1, in2)
begin

if ((in1='1') and (in2='1')) then
casdsp_out <= '1' after tpd_lh;
else
casdsp_out <= '0'after tpd_hl;
end if;

end process;
end only;

ARCHITECTURE defines a
different implementation or
behaviour of a given design unit

The ENTITY declaration defines the
inputs to and outputs from the
model, and any GENERIC parameters
used by the different implementations

Entities and architectures are the only two design
units that must exist in any VHDL design description

The LIBRARY statement
is used to make specified
libraries visible
in a model description.
A USE statement can
precede the declaration of
any entity or architecture
which is to utilize items
from the package.

beware of latches

J. Evans, CAS DSP, Sigtuna, 2007 11

AMS extensions
The VHDL-AMS language is an extension of the IEEE 1076 (VHDL)
standard that supports the description and the simulation of analog,
digital, and mixed-signal circuits and systems.
VHDL-AMS provides a mechanism for analogue behavior specification
and mixed system modeling (conservative/non-conservative)
Continuous models are based on differential algebraic equations (DAEs)
DAEs need to be solved by a simulation kernel: the analogue solver
VHDL-AMS supports the handling of initial conditions, piecewise-
defined behavior, and discontinuities

Need to solve analogue signals => different tools can give different
results

J. Evans, CAS DSP, Sigtuna, 2007 12

AMS extensions

Extended structural semantics
Conservative semantics to describe physical systems (e.g.
respect Kirchhoff’s law for electrical circuits)
Non-conservative semantics for abstract models (signal-flow
descriptions)
Mixed-signal interfaces

Mixed-signal semantics
Mixed-signal initialization and simulation cycle
Mixed-signal descriptions of behavior
Frequency domain support
Small-signal frequency and noise modeling and simulation

J. Evans, CAS DSP, Sigtuna, 2007 13

AMS extensions

-- VHDL-AMS model
-- (c) Southampton University 1997
-- author: Tom Kazmierski
-- Department of Electronics and Computer Science, University of Southampton
-- e-mail: tjk@ecs.soton.ac.uk

-- Last revised: 20 August 2005 (by Shaolin Wang)

library IEEE;
use IEEE.electrical_systems.all;

entity capacitor is
generic (cap := 2007E-6: capacitance); -- Capacitance [F]
port (terminal p1, p2 : electrical);

end entity capacitor;

architecture ideal of capacitor is
quantity v across i through p1 to p2;

begin
if domain=quiescent_domain use

v == 0.0; --initial condition
else

i == cap * v'dot; -- Fundamental equation
end use;

end architecture ideal;

The QUANTITY
declaration defines one
or more identifiers as
quantity objects. A
branch quantity
appears in the
architecture declaration
to specify across and
through terminals

A TERMINAL
declares a terminal and
its nature

J. Evans, CAS DSP, Sigtuna, 2007 14

AMS extensions
library ieee;
use ieee.mechanical_systems.ALL;

entity bouncer is
generic (

initial_position : displacement := 50.0;
gravity_accel : acceleration := 9.81;
air_resistance : real := 0.1

);

end entity bouncer;
architecture first_order of bouncer is
quantity v : velocity;
quantity s : displacement;

begin
break s => initial_position;
break v => -v when not s’above(0.0);
s'dot == v;
if (v > 0.0) use
v'dot == -gravity_accel - v ** 2*air_resistance;

else
v'dot == -gravity_accel + v ** 2*air_resistance;

end use;

end architecture first_order;

Model and simulation result using Ansoft Simplorer
Student Version 7, www.ansoft.com

J. Evans, CAS DSP, Sigtuna, 2007 15

VHDL-AMS execution

Elaboration of a design (generally) gives
Digital part => set of processes (digital
simulation kernel)
Analogue part => set of equations (analogue
solver)

Execution of design simulation
Initialization: find quiescent state of the
model
Simulation: time domain, small-signal
frequency, or noise

J. Evans, CAS DSP, Sigtuna, 2007 16

SPICE Algorithms

J. Evans, CAS DSP, Sigtuna, 2007 17

SPICE Algorithms
Problem:

Knowing a function at some point in time tn, how to approximate the function at a future
time point tn+1?

SPICE calculates an approximation to an analytical solution at discrete time points
using numeric integration
Forward Euler is simplest. From a given point (tn , yn), next point is estimated from
slope of known initial point.

yn+1 ~ yn + h f(tn , yn) - an explicit method - yn+1 is estimated from known yn

Backward Euler is often used:

yn+1 ~ yn + h f(tn+1 , yn+1) - implicit method – needs more computation but can have better results

Can develop further by taking averages of slopes of more points further in the future -
Runge-Kutta method (we’ll see later on in MATLAB, ode45 etc)

s1 = f(tn , yn), s2 = f(tn + (h/2), yn + s1(h/2))
s3 = f(tn + (h/2), yn + s2(h/2)) s4 = f(tn + h, yn + s3h)

tn+1 = tn + h , yn+1 = yn + (s1 + 2s2 + 2s3 + s4)(h/6)

J. Evans, CAS DSP, Sigtuna, 2007 18

SPICE Algorithms
To save computational time, SPICE makes the timestep as large
as possible while still providing an acceptable solution

What is the definition of “acceptable”? This is defined by the
simulator parameters (PSpice):

VNTOL - best accuracy of voltages
ABSTOL - best accuracy of currents
RELTOL - relative accuracy of V and I

Convergence problems arise when solution cannot be found.
This is typically when timestep cannot be made small enough.
Can solve by:

adding Cs (!)
changing simulator parameters e.g. reltol, abstol, vntol etc, but !!!

J. Evans, CAS DSP, Sigtuna, 2007 19

Why is it difficult to do mixed
analogue/digital simulation?

Digital simulation is done using fixed, well-defined time-steps
Analogue simulation uses variable time-steps
Getting both simulators working together is not trivial for efficient mixed-signal
simulations. Techniques that have been used:
”Backplanes” between simulators – lots of interaction => possible inefficiency
Synchronizing the simulators:

Lockstep
This algorithm requires that the two engines are locked together in time throughout
the simulation => the smallest timestep is used. Also, the first simulator to complete
a time step must wait for the other to catch up.

Disadvantage: one simulator is usually waiting for the other => inefficiency
Calaveras
The Calaveras algorithm allows one simulator to run ahead of the other. If the
simulators subsequently determine that evaluations in one domain would have
affected the other, the effected simulator “rewinds" and repeats simulation with the
new data.

Disadvantage: Often need to discard data => inefficiency

J. Evans, CAS DSP, Sigtuna, 2007 20

Mixed analogue/digital simulation

Simplorer® is a multi-domain, system simulator. It is also linked to their other tools.

J. Evans, CAS DSP, Sigtuna, 2007 21

“Traditional” design flow
A typical modern design has both hardware
and software elements.

After system analysis and partitioning, HDL
code is written and simulated for the block(s)
while coding associated software.

This flow has several problems. Some of
them are:

• the specification translation to the
VHDL design must be done manually

• what is being tested is the perceived
design intent, NOT the specification

• There is no obvious link between the
hardware and software

Electronic System Level tools have
been developed to try and overcome
these problems.

Hardware

Specification

Software

J. Evans, CAS DSP, Sigtuna, 2007 22

Electronic System Level design
(One) definition of ESL is:

"The utilization of appropriate abstractions in order to increase
comprehension about a system, and to enhance the probability of a
successful implementation of functionality in a cost-effective manner,
while meeting necessary constraints."

(from “ESL Design and Verification: A Prescription for Electronic System Level Methodology”,
Elsevier Morgan Kaufmann, February 2007)

What ESL seems to mean to most people:
Allows fast exploration of the solution space before detailed simulation
Easily change model level of sophistication
Co-simulate hardware and software
Simulate/Verify system behaviour

Some solutions – SystemC, SystemVerilog

J. Evans, CAS DSP, Sigtuna, 2007 23
http://www.elecdesign.com/Articles/Index.cfm?ArticleID=11083&pg=3

J. Evans, CAS DSP, Sigtuna, 2007 24

ESL Design flow
An executable specification is a model that is a direct translation of a design
specification. Executable specifications model the intended functionality of a
design without taking into account any proposed implementation
The specification can be used as a “golden model”. When verifying the
implemented design, compare its output to that of the “golden model” for same
test scenarios
The executable specification can be timed or untimed – any included time delays
represent timing constraints to be imposed on the (undefined) implementation
Timed functional models are often used for early hardware-software trade-off
analysis to evaluate impact of mapping processes to hardware (one delay
figure) versus mapping to software (another delay figure)
Communication delays of a target implementation modelled using timing delays
on the communication between modules.

Note - executable specifications and both untimed and timed functional models
do not have any direct structural correspondence to a target implementation

Timed / untimed functional and communication models usually done through
Transactional Level Modelling

J. Evans, CAS DSP, Sigtuna, 2007 25

Transaction-level modeling
Transaction level modelling (TLM) uses a higher
abstraction level for modelling than RTL
With TLM, it is possible to accurately model many
aspects of a system at a higher level. Using TLM
simplifies the modelling effort and gains simulation
speed
A TLM distinguishes between function and
communication
Model types trade off performance versus accuracy
-> more accurate model, slower
-> less accurate model, faster

J. Evans, CAS DSP, Sigtuna, 2007 26

Transaction-level modeling
TLM nomenclature can be confusing…

1.1 Programmers View (PV)

Intended to imply a pure function call based
interface with no communication events and little
timing information carried. Usually associated with
Untimed Functional (UTF) behaviour description.

1.2 Programmers View with Timing (PV+T)
(Architect’s View)

A modelling style where a PV and a signal or FIFO
interface co-exist –the simulation can switch
between two interfaces, with and without timing.
The goal of PV+T style is to allow model refinement
without changing the functional description of the
model’s behaviour.

Ref: SystemC: From the Ground UP, Black, Donovan

1.3 Cycle Callable (CC) , Verification View

A cycle accurate modelling style. The cycle-by-cycle behaviour of the interface is explicitly described. The
behaviour of the model coupled with this interface would also include cycle timing – either a “cycle-count-
accurate” Timed Functional (TF) model or fully cycle-accurate. Alternatively, the behaviour may be omitted or
modelled in a very trivial manner to create a cycle-accurate performance model.

J. Evans, CAS DSP, Sigtuna, 2007 27

Transaction-level modeling

Ref: SystemC: From the Ground UP, Black, Donovan

Examples on how to access a bus
device

Highest-level modelling (component
assembly)

Exact bus-timing details
unimportant. All information is
transferred using one interaction

Lower level (more detail – bus
arbitration or cycle-accurate)

Number of bus cycles becomes
important so information for each
bus clock-cycle information is
transferred as one transaction

Lowest level (most detail)
Communication and functional
designs are fully described and
timed

J. Evans, CAS DSP, Sigtuna, 2007 28

Design Verification

Verification is the task of verifying that the
design conforms to specification. It should
answer the question “did I build the right
thing?”, not “did I build the thing right?”.
It should check:

What is the design intent?
What does the design actually do?
Do the two things match?
How good is the testing? – Coverage metrics

J. Evans, CAS DSP, Sigtuna, 2007 29

How good is the testing?
Aim is to know how well that the design intent has
been achieved – not to know how well the
implementation has been tested
For a design of non-trivial complexity, cannot
guarantee all functional bugs have been removed.
Can use different methods to reduce bugs but...
Also have to make decision when it’s “good-enough”
Code-coverage tools will report estimate of coverage
(quality)
How does they do this? Where do metrics come
from?

J. Evans, CAS DSP, Sigtuna, 2007 30

Design verification (HW)
Code Coverage

Code coverage reflects how thorough the HDL code was exercised
Code coverage is a necessity. It is unacceptable to synthesize dead
or unverified code

Functional Coverage
Functional coverage is more concerned with what the design does
rather than how. It is generally done at a higher level of
abstraction
Low-level details are often hidden from the report reviewer

Functional and code coverage are complementary in nature

J. Evans, CAS DSP, Sigtuna, 2007 31

Verification – code coverage
Code coverage – Toggle coverage

Tracks the value of every net and register and checks to see
if it toggles. Some tools need both transitions high-low and
low-high to pass.
Advantages –

very easy to implement and test – any net that hasn’t toggled
hasn’t been exercised – FAIL

Disadvantages –
a lot of false positives. Most clock-based systems will cause a
lot of toggling inside a design. Can indicate a significant
coverage figure simply by resetting/clocking e.g. 4 bit counter
– all outputs toggled after counting to 5 – tests returns OK
even though other states have not been visited.

J. Evans, CAS DSP, Sigtuna, 2007 32

Verification – code coverage
Code coverage – Line Coverage

Measures that each line has been exercised during a
simulation run.
Advantages

again easy to implement and test. Can be more thorough than
toggle coverage as at least registers if line has been executed

Disadvantages
again can return high rate of false positives. Simply
clocking/resetting a design can cause a not insignificant
amount of code to be executed.
dependent on coding style. A line that includes both an “if”
and its corresponding “else” statement will pass if either
branch is executed

elseif ((down==1) or reset==0) count becomes 0;

J. Evans, CAS DSP, Sigtuna, 2007 33

Verification – code coverage

Code coverage – branch coverage
Similar to Line coverage but determines if each
possible branch on each line of code has been
executed.
Advantages

Looks at many more conditions so more
thorough testing

elseif ((down==1) or reset==0) count becomes 0;

J. Evans, CAS DSP, Sigtuna, 2007 34

Constrained-random data generation

Simulation has long been used for verification. It has disadvantages:

Takes a “long” time to set up a testbench for verify each desired
functionality
Practically impossible to write testbenches for huge designs

To overcome these difficulties, testbench automation is used. The tool
is intelligent enough to generate randomly a set of test patterns for
different scenarios
Verification languages (available in SystemC, SystemVerilog) allow the
user to limit the generated tests. This is done using constraints – this
ensures that the randomly produced test is valid.
Re-running the simulation (with a different random seed) causes a
different but still valid stimuli to be generated

J. Evans, CAS DSP, Sigtuna, 2007 35

Constrained-random data
generation

address mode
0 read

00 write write XX
1 write

2 read

address = 0

single read

address = 2

single read

address = 1

single write

master
Testbench automatically
generates random
read/write commands to
an address. Only valid
tests are eventually
performed.

J. Evans, CAS DSP, Sigtuna, 2007 36

Coverage-driven Verification
From previous example, it is impossible to know which
addresses and modes are exercised until the test is run.
Recording the actual tests gives a functional coverage metric.
This can be used to determine if a particular test verified a
given feature, and to what extent. This information is then
used to determine what to do next => coverage-driven
verification.
CDV is used to produce randomly multiple scenarios from a
single test. Coverage data metrics are used to modify the
constraints to try and uncover unexpected situations (corner
cases).
For CDV to work well, the user must specify the coverage points
(or specific behaviours) that must be exercised
How do we do this? - Assertions

J. Evans, CAS DSP, Sigtuna, 2007 37

Coverage-driven Verification
The metric is produced from the analysis of two sets of data:
Data-oriented coverage:

records a set of variable values at a particular point during simulation e.g. sampling
the address and bus mode at the start of each bus cycle. Recording typically done
during stimulus generation to verify that all transfer types to all address spaces have
been created
can be used to record that the device responded with the correct results

Result often shown as a matrix noting how many times each variable achieved a
particular value when other variables had specific values. The number of
occurrences of each unique combination is reported.

Control-oriented coverage records specific temporal behaviour
if a user-defined specific case has been exercised e.g. the data B was received less
than 5 clocks after the read_request (in this last case, it can also record the actual
result)

This type of testing is often done using assertions.

J. Evans, CAS DSP, Sigtuna, 2007 38

Assertion-based verification
Assertions are an important part of both simulation and formal model checking
(see below).
Assertions are concise, mathematically precise descriptions of behaviour that
must hold or that constrain the operation of a design or block. e.g. handshake
must follow request, data_ready must be present 3 to 5 cycles after bus_read
In addition, they can also describe coverage points - cases that must be
exercised by the verification process
White-box and black-box assertions can be used

White-box assertions assume some knowledge of the inner-workings of the design.
Black-box assertions describe “general” behaviour and are independent of the actual
implementation

How many assertions are “enough”?
Enough to ensure that all the desired critical behaviours have been verified
Enough to ensure that all parts of the design are adequately related to one
or more assertions. Rule of thumb: there should be sufficient assertion
density such that every tested value propagates to an assertion within 2-3
clock cycles.

J. Evans, CAS DSP, Sigtuna, 2007 39

Formal Model Checking
Formal Model Checking is an exhaustive examination all of all the
possible states of a design to determine if any of them violate a
specified set of properties. It is done through mathematical analysis
Properties (often assertions) describes a precise description of
sequential (“out happens after in”) or invariant (“out =‘0010’ will never
happen”) behaviours about the design. Each property is considered a
part of the specification
While theoretically possible to use FMC to fully verify the functionality
of an arbitrarily complex design, it is typically used for sub-blocks of a
design
FMC can exhaustively analyse all of the possible states the design can
reach, without requiring the user to write a testbench.
An advantage of using FMC at the block level is that it can be re-used
in a larger system
cf equivalence checking - Equivalence checking refers to comparing
two different implementations of a design to see if they are functionally
equivalent.

J. Evans, CAS DSP, Sigtuna, 2007 40

Formal Model Checking and Simulation

FMC is a complementary technology to simulation.
Properties defined at a block level can be used as monitors in simulation
(assumes consistency between FMC and simulation)
If a block has been proven to behave correctly for a set of inputs, and the block
is only driven by inputs in this range, it is guaranteed to work in the complete
system
=> for full-chip simulation, unnecessary to create scenarios that will stress the
block. Simulation can focus on the end-to-end behaviour, knowing that the
previously verified intermediate block is OK
Theoretically, FMC by itself can be extended to full hierarchical design. Block2
has been formally verified to work correctly for a restricted set of inputs. Block1
drives Block2. Block1 has been shown to provide only inputs to Block2 within its
restricted set of verified values => all OK. This is the assume-guarantee
paradigm of formal verification.
Now must guarantee that Block1’s inputs can only be in the verified range etc.
Theoretically simple, realisation of the assume guarantee relationship quickly
becomes impractically complex.
However, FMC can be extremely valuable in finding bugs due to its exhaustive
analysis. As it is exhaustive, FMC will show up design errors (and incorrect
assertions)

J. Evans, CAS DSP, Sigtuna, 2007 41

Coverage-driven Verification/
Formal Model Checking

CDV generates random stimuli to automatically produce multiple
tests for a given case. The inherent randomness can uncover
corner cases (but might not). FMC is an exhaustive analysis of
a model
The two methods are combined in Dynamic Formal Verification
Particularly useful for known “dangerous” cases e.g. FIFO is full.
Using CDV only, FIFO_full might be tested but some other
condition at the same time could cause a bug (unlikely that both
are present using CDV alone)
=> When FIFO_full is recorded, perform a formal analysis on all
states leading up to and beyond this time
Has advantages that verification time is targeted on potentially
dangerous situations

J. Evans, CAS DSP, Sigtuna, 2007 42

Electronic System Level Tools

There are a number of tools and
methodologies available for ESL design
The two most prevalent “languages” are
SystemC and SystemVerilog (but there
are some others)
Different tool vendors focus on different
products

J. Evans, CAS DSP, Sigtuna, 2007 43

Introduction to SystemC
SystemC is a C++ library used for supporting system level modeling. It is
particularly strong in supporting various abstraction levels and can be used for
fast, efficient designs and verification.
The SystemC library is provided by the Open SystemC Initiative, a non-profit
independent organisation. OSCI is composed of numerous companies,
universities and individuals, all aiming to develop and standardize the language.
SystemC libraries were developed to allow C++ to “understand” time and
concurrent processes. Hardware specific ideas were also added: signals, ports.
They also define data types dedicated to hardware modelling e.g. bit, vector,
fixed point types. Core language elements such as modules, processes, events,
channels, event driven simulation kernel are available.
Elementary channels such as signals or FIFOs are provided to implement
communication mechanisms between concurrent objects
A basic SystemC system is available freely from OSCI. Numerous EDA vendors
provide their implementations of the SystemC language and support for mixed
languages simulations. Other additional libraries are made available from the
OSCI site.

J. Evans, CAS DSP, Sigtuna, 2007 44

SCV library
SystemC verification library available for download from www.systemc.org.

Provided library examples:

“This is a very simple example to show how a user can create a distribution of values
when randomizing an object. In this case, a distribution is created for an enumerated
data type. The distributed values that are generated will fall in the distribution that is
applied.”

“This is a very simple example to show how a user can create a special enumerated
data type. SystemC SCV uses a special C++ methodology called partial template
specialization to support arbitrary data types with randomization, transaction
recording, callbacks, and other features that deconstruct the elements of an object.”

“This is a very simple example to show how a user can create a distribution range to
apply to the randomization of an object. The idea of creating ranges of values is to set
up buckets of values and create probabilities over the buckets. That is, the
distribution within a bucket is uniform, but the particular bucket being selected is set
by the distribution. This technique can be used to create approximations of non-linear
distributions.”

J. Evans, CAS DSP, Sigtuna, 2007 45

SCV library
Example code: addr variable is limited between 10 - 50 and 200 - 250,

while data is limited to be between addr-5 and addr+20.

J. Evans, CAS DSP, Sigtuna, 2007 46

SystemVerilog
SystemVerilog is a hardware description language with extensive verification
capabilities. The language is based on Verilog with donations from several
sources:

SUPERLOG Extended Synthesizable Subset from Co-Design Automation
OpenVERA verification language from Synopsys
OpenVERA Assertions from Synopsys
PSL assertions (began as a donation of Sugar assertions from IBM)
DirectC and coverage Application Programming Interfaces from Synopsys
Compilation and other extensions from Mentor Graphics
High-level language features from BlueSpec

Accellera released a specification for SystemVerilog in 2003. The language has
been eventually adopted as IEEE Standard 1800-2005 (in 2005)
SystemVerilog has few unique capabilities compared to other languages but has
the advantage that all aspects of the design and verification flow: design
description, functional simulation, property specification, and formal verification,
are based on one (very popular) HDL => led to easier user acceptance

J. Evans, CAS DSP, Sigtuna, 2007 47

Accellera “organigramme”
A brief outline...
Accellera formed by merger of OVI and VI in 2001
Vera was an entire verification environment. Synopsys
promoted it as a standalone tool. Synopsys then made
available OpenVera and OpenVera Assertions (OVA)
Due to interest in formal verification, Accellera looked for a
language to standardize – they eventually chose IBM’s Sugar
language (became PSL)
Synopsys then donated OVA to the Accellera committee in
charge of SystemVerilog

btw yet another committee looks after the Open Verification Library
(available for both VHDL and Verilog)

VHDL200X being defined => ~ VHDL + better verification

J. Evans, CAS DSP, Sigtuna, 2007 48

How do languages compare?

N
E
W

Ref: based on figure from “SystemC: From the Ground Up”, Black, Donovan, 2003

J. Evans, CAS DSP, Sigtuna, 2007 49

“ESL” examples
HEP examples
Unified C/VHDL Model Generation of FPGA-based LHCb VELO algorithms / Muecke,
Manfred; Szumlak, Tomasz
http://doc.cern.ch//archive/cernrep/2007/2007-001/p492.pdf

Also, poster presented at 12th Workshop on Electronics for LHC and Future Experiments
(LECC'06), 25-29 September 2006, Valencia SPAIN”
http://engineering-software.web.cern.ch/engineering-software/poster2006/posters/muecke.pdf

“From Behavioral to RTL Design Flow in SystemC”, E. Vaumorin, T. Romanteau
http://www.us.design-reuse.com/articles/article7354.html

“Modeling of the architectural studies for the PANDA DAT system”, K. Korcyl, W. Kuehn, J.
Otwinowski, P. Salabura, L. Schmitt
http://conferences.fnal.gov/cgi-bin/rt2007/download.pl?paper_id=RTA-NEW04.pdf

Industry EDA vendor tools and usage

J. Evans, CAS DSP, Sigtuna, 2007 50

“ESL” examples in HEP

“Unified C/VHDL Model Generation of FPGA-based LHCb VELO
algorithms” / Muecke, Manfred; Szumlak, Tomasz
http://doc.cern.ch//archive/cernrep/2007/2007-001/p492.pdf

“We show an alternative design approach for signal processing
algorithms implemented on FPGAs. Instead of writing VHDL code for
implementation and maintaining a C-model for algorithm simulation,
we derive both models from one common source, allowing generation
of synthesizable VHDL and cycle and bit-accurate C-Code. We have
tested our approach on the LHCb VELO pre-processing algorithms and
report on experiences gained during the course of our work.”

Tools used – Confluence, HDCaml
http://www.confluent.org/wiki/doku.php/hdcaml

J. Evans, CAS DSP, Sigtuna, 2007 51

“ESL” examples in HEP

“From Behavioral to RTL Design Flow in SystemC”, E. Vaumorin, T.
Romanteau
http://www.us.design-reuse.com/articles/article7354.html

“This paper reports the scientific collaboration between LLR and
PROSILOG. The aim of this collaboration was to show the possibility to
quickly implement a system into a FPGA, using SystemC as the unique
description language. Starting from behavioral abstraction level, the
model, before hardware synthesis, is refined down to RTL then
automatically translated to the equivalent model into VHDL or Verilog.

It will be shown that this design flow is less time consuming, more
efficient and more reliable than the traditional C++ to HDL flow. “

J. Evans, CAS DSP, Sigtuna, 2007 52

“ESL” examples in HEP

“Modeling of the architectural studies for the PANDA DAT system”
K. Korcyl, W. Kuehn, J. Otwinowski, P. Salabura, L. Schmitt
https://appora.fnal.gov/pls/rt07/JACoW.view_abstract?abs_id=1073

“Abstract— We present design studies of the DAQ and trigger system (DAT) for
the PANDA detector proposed for the new FAIR facility at GSI. The broad
physics program of PANDA requires a novel DAT system able to cope with high
interaction rates (up to 2*10^7/s) and to trigger on various event topologies
simultaneously. We used SystemC as modeling platform to investigate a
candidate architecture for the PANDA DAT system.
We simulated the behavior of the complete system with simplified models of all
the components. The model covers detector buffers connected via Ethernet to
farms of computing nodes constituting two filtering levels and an event building
level. We present results from modeling illustrating the impact of the key
architectural choices and parameters on the overall performance.”

J. Evans, CAS DSP, Sigtuna, 2007 53

Electronic System Level Tools
“Usual” suspects, Cadence, Synopsys, Mentor
Others:
Celoxica (celoxica.com)

Agility Compiler - SystemC Behavioural Design and Synthesis
Handel-C - superset of ANSI-C
Xilinx ESL Starter Kit - C-based design for Xilinx FPGA

CoWare (coware.com) Platform Architect, Model Designer,
Virtual Platform Designer
SystemCrafter (systemcrafter.com)

SystemCrafter SC “… a high-performance SystemC synthesis tool
for Xilinx FPGAs. It synthesizes the industry standard SystemC
language to RTL VHDL, and so allows you to design, debug and
simulate hardware and systems using the SystemCrafter GUI or
your existing C++ development environment. The breakthrough
price of $2995 brings SystemC synthesis within reach of everyone.”

J. Evans, CAS DSP, Sigtuna, 2007 54

Survey results - HDL
2005 - "Does your project do mixed Verilog/VHDL simulations?"

Verilog only : ############################## 59%
mixed : ################### 38%
VHDL only : # 3%

2007 - "Does your project do mixed Verilog/VHDL simulations?"
Verilog only : ############################ 55.3%
mostly Verilog : ######### 18.0%
both equally : ### 6.5%
mostly VHDL : ######## 16.4%
VHDL only : ## 4.0%

“The VHDL stalwarts were mostly US military contractor companies plus some (not all, but some)
European companies -- with the rest of the world being Verilog oriented. The biggest reason why
there were VHDL stalwarts were due to legacy code reasons.”

results from 818 engineers, www.deepchip.com

J. Evans, CAS DSP, Sigtuna, 2007 55

Survey results – HDL simulators
2005 - "Whose Verilog or VHDL simulator(s) do you currently use?"

Cadence NC-Sim : ########################### 27%
NC-Verilog : ##################### 21%
Verilog-XL : ## 2%
NC-VHDL : # 1%
Synopsys VCS : ### 43%
VCS-MX : #### 4%
Mentor ModelSim : ################################### 35%
Others : ##### 5%

2007 - "Whose Verilog or VHDL simulator(s) do you currently use?“
Cadence NC-Sim : ######################## 24.3%
NC-Verilog : ################## 18.0%
Verilog-XL : # 0.7%
NC-VHDL : # 1.1%
Synopsys VCS : ### 44.7%
VCS-MX : ######### 8.5%
Mentor ModelSim : ################################### 35.3%
Others : #### 4%

results from 818 engineers, www.deepchip.com

J. Evans, CAS DSP, Sigtuna, 2007 56

Survey results- SystemC
2005 - "Do you see your project using SystemC in the next 6 months?"

yes : ##################### 42%
no : ############################# 58%

2007 - "Is your project using SystemC? (Yes/No)"
yes : ########### 23.0%
no : ####################################### 77.0%

2005 - "Are you using SystemC for high level modeling, or verification, or for design?“
high level modeling : ####################### 70%

verification : ##################### 62%
design : ## 7%

2007 - "Are you using SystemC for high level modeling, or for verification, or for design? (Choose all that
apply)"

high level modeling : ######################### 73.7%
verification : ###################### 64.2%
design : ## 5.8%

results from 818 engineers, www.deepchip.com

J. Evans, CAS DSP, Sigtuna, 2007 57

Survey results- SystemC tools
2007 - "Whose specific SystemC tools are you using?"

Cadence NC-SystemC : ################################## 33.6%
Cadence TestBuilder : # 0.9%
CoWare : ####### 6.5%
Free OSCI : ### 43.0%
Mentor ModelSim : ################# 16.8%
Mentor Summit Vista : ########### 11.2%
Synopsys : ################ 16.0%
Mentor Catapult C : 0%
Forte Cynthesizer : #### 3.7%%
Synfora Pico : 0%
all others combined : ##### 4.7%

results from 818 engineers, www.deepchip.com

J. Evans, CAS DSP, Sigtuna, 2007 58

Survey results- SystemVerilog
2005 - Do you see your project using SystemVerilog in the next 6 months?

yes : ########## 19%
no : ## 81%

2007 - Excluding assertions, is your project using SystemVerilog? (Y/N)
yes : ################## 35.1%
no : ################################ 64.9%

2005 - Do you plan on using the SystemVerilog design or the verification extensions, or both?
verification : ################################### 70%
design : ## 5%
both : ############# 26%

2007 - Are you using SystemVerilog for testbench or design or both?
testbench : ## 80.2%
design : ## 4.1%
both : ######## 15.8%

results from 818 engineers, www.deepchip.com

J. Evans, CAS DSP, Sigtuna, 2007 59

Survey results- SV tools
2005 - Whose System Verilog tools are you using?

Synopsys VCS : ####################################### 79%
Mentor ModelSim : ######## 15%

Cadence : ### 6%

2007 - Whose specific System Verilog tool(s) are you using? (Include everything from simulators
to synthesis.)

Synopsys DC : ##### 10.6%
Synopsys VCS : ################################# 65.6%
Synopsys Leda : # 1.8%
Synopsys Formality : # 2.6%
Synopsys VMM : ### 6.2%
Synopsys Magellan : 0.4%
Mentor ModelSim : ###### 12.3%
Mentor Questa : ######## 15.0%
Mentor AVM : # 0.9%
Cadence NC-Sim : ############ 24.7%
Cadence RTL Compiler : # 0.9%
Atrenta Spyglass : # 1.8%
Novas Verdi : # 2.2%
all others : # 1.3%

results from 818 engineers, www.deepchip.com

J. Evans, CAS DSP, Sigtuna, 2007 60

DSP Design Flows
Two main ways of programming DSP functions – DSP or FPGA

A DSP is a specialised microprocessor – typically suited to extremely complex maths-
intensive tasks with conditional processing. Can be limited in performance by clock-
rate and/or number of useful operations per clock
FPGA can be programmed to perform parallel processing (if gates available) => can
be very fast

Rules of thumb
Low sampling rates, complex programs => DSP
High-sampling rates, lower complexity tasks => FPGA

In both cases, use high-level languages to provide:
High productivity
Portability
Maintainability
Code reuse
Optimising system cost / performance
Rapid prototyping and algorithm proving
Integration with real-time kernels and operating systems
Ease of debug
Availability of algorithms

J. Evans, CAS DSP, Sigtuna, 2007 61

DSP design Tools
There exists many tools for DSP design flows:
CoWare Signal Processing Designer (“SPW”),
Ptolemy, VisSim
Why did we chose MATLAB/Simulink for the school?

Tools available to make it easier to go directly
from algorithm to FPGA
Tools readily (and rather cheaply) available
Learning curve - “everybody” knows
MATLAB/Simulink

J. Evans, CAS DSP, Sigtuna, 2007 62

Xilinx and ESL

www.xilinx.com/esl

J. Evans, CAS DSP, Sigtuna, 2007 63

Xilinx and ESL
Electronic System Level (ESL) design
refers to evolving design and
verification methodologies that begin at
a higher level of abstraction than the
current mainstream Register Transfer
Level (RTL). Many of the ESL design
languages are closer in syntax and
semantics to the popular ANSI C than
to hardware languages like Verilog and
VHDL.
A key focus of many of the ESL tools for
FPGAs is to empower designers with
software programming skills to be able
to easily implement their ideas in
programmable hardware without having
to learn traditional hardware design
techniques.
A wide array of FPGA optimized ESL
solutions are available from Xilinx
ecosystem members.

www.xilinx.com/esl

J. Evans, CAS DSP, Sigtuna, 2007 64

Synplify PRO
High-density field
programmable gate arrays
(FPGAs) can contain millions of
gates and operate at speeds in
excess of 100 MHz.
At this level of complexity,
schedules, budgets and FPGA
design tools all begin to feel the
burden.
By using the Synplify Pro
solution, you can push the
performance of challenging and
complex designs while
remaining comfortably on or
ahead of schedule
The Synplify solution is a high-
performance, sophisticated
logic synthesis engine that
delivers fast, highly efficient
FPGA and CPLD designs.
The Synplify product takes
Verilog and VHDL Hardware
Description Languages as input
and outputs an optimized
netlist in most popular FPGA
vendor formats

J. Evans, CAS DSP, Sigtuna, 2007 65

Synplify DSP
DSP designers are targeting
FPGA and ASIC hardware for
implementation of their high-
performance DSP designs.
FPGAs and ASICs can achieve a
performance of hundreds of
millions of operations per
second.
Today’s FPGAs contain large
quantities of DSP blocks and
multipliers facilitating efficient
and parallel implementation of
DSP functions in programmable
logic. High volume DSP
applications frequently use
ASIC devices.
There has been no good way to
get a design specified at the
algorithm level from tools such
as MATLAB®/Simulink® by
The MathWorks, into high-
quality RTL code. A common
implementation path has been
to hand-code the RTL with
numerous iterations between
the DSP algorithm architect and
the RTL hardware designer,
which is error prone and time
consuming.

J. Evans, CAS DSP, Sigtuna, 2007 66

Synplify DSP
Synplify DSP software is a
true DSP synthesis tool and
the only one that performs
high-level DSP
optimizations from a
Simulink specification.
These special DSP
optimizations allow
designers to capture the
behaviour needed for their
DSP algorithm without
worrying about the specific
implementation in hardware
The Synplify DSP solution
automatically produces a
highly optimized,
technology independent
implementation of the
design ready for RTL
synthesis.

J. Evans, CAS DSP, Sigtuna, 2007 67

Xilinx AccelDSP
DSP modelling – Design, architectural exploration, and debug of high-level DSP
algorithms with MATLAB for Xilinx FPGAs to reduce design cycles and costs.
IP-Explorer Technology – Heuristic-driven selection of hardware architecture at the
algorithmic level to produce system-optimized designs.
Automated floating- to fixed-point conversion – Automated word width selection
and propagation for floating- to fixed-point conversion.
Automatic code generation of synthesizable VHDL or Verilog – Bit-accurate code
generated after fixed-point design meets system specifications.
Verification of bit-accuracy – Comparison of RTL and post-place and route model for
automatic verification.
C++ simulation model generation – Improved simulations speeds of 1000x over
standard fixed-point MATLAB.
System Generator integration – Generated blocks can be exported to System
Generator for inclusion in a larger system.
Third party integration – Access to and integration of third party simulation and
synthesis tools to simplify the design flow for algorithm designers unfamiliar with RTL
simulation and synthesis tools.

J. Evans, CAS DSP, Sigtuna, 2007 68

Introduction to MATLAB
MATLAB is a high-level technical computing language and
interactive environment for algorithm development, data
visualization, data analysis, and numeric computation. Using
MATLAB, you can solve technical computing problems faster
than with traditional programming languages, such as C, C++,
and Fortran.
You can use MATLAB in a wide range of applications, including
signal and image processing, communications, control design,
test and measurement, financial modeling and analysis, and
computational biology. Add-on toolboxes (collections of special-
purpose MATLAB functions, available separately) extend the
MATLAB environment to solve particular classes of problems in
these application areas.

www.mathworks.com

J. Evans, CAS DSP, Sigtuna, 2007 69

J. Evans, CAS DSP, Sigtuna, 2007 70

Introduction to Simulink
Introduction
Simulink is a platform for multidomain simulation and Model-Based Design of
dynamic systems. It provides an interactive graphical environment and a
customizable set of block libraries that let you accurately design, simulate,
implement, and test control, signal processing, communications, and other time-
varying systems.

Add-on products extend the Simulink environment with tools for specific
modelling and design tasks and for code generation, algorithm implementation,
test, and verification.

Simulink is integrated with MATLAB, providing immediate access to an extensive
range of tools for algorithm development, data visualization, data analysis and
access, and numerical computation.

www.mathworks.com

J. Evans, CAS DSP, Sigtuna, 2007 71

Systems and Solvers

Continuous-state systems are history-
dependent dynamic systems that update
continuously. Most natural processes and
physical systems are continuous-states
Discrete-state systems are updated in steps
separated by a finite time interval

J. Evans, CAS DSP, Sigtuna, 2007 72

Fixed vs. variable step solvers
Simulink solvers fall into two basic categories: fixed-step and variable-step.

Fixed-step solvers solve the model at regular time intervals from the beginning
to the end of the simulation. The size of the interval is known as the step size.
You can specify the step size or let the solver choose the step size. Generally,
decreasing the step size increases the accuracy of the results while increasing
the time required to simulate the system.

Variable-step solvers vary the step size during the simulation, reducing the step
size to increase accuracy when a model's states are changing rapidly and
increasing the step size to avoid taking unnecessary steps when the model's
states are changing slowly. Computing the step size adds to the computational
overhead at each step but can reduce the total number of steps, and hence
simulation time, required to maintain a specified level of accuracy for models
with rapidly changing or piecewise continuous states.

www.mathworks.com

J. Evans, CAS DSP, Sigtuna, 2007 73

Variable time-step solvers
A variable-step solver adjusts the step-size to keep the error
within acceptable limits. The exact definition of “acceptable” is
dependent on the solver type
ode45

This is based on Dormand-Prince (type of Runge-Kutta).
ode45 evaluates the integral using both a fourth-order and a
fifth-order routine. If the difference between both results is
sufficiently small, simulation continues. Otherwise, the time-
step is reduced and integrals re-calculated.

“Acceptable” is varied by rtol (relative error) and atol (absolute
error).

Calculate rel_error = abs(x) * rtol
Error e between two integration values must be less than
rel_error or atol (whichever is largest)

J. Evans, CAS DSP, Sigtuna, 2007 74

Fixed time-step solvers
A fixed time-step solver can simulate a model to an arbitrary accuracy
by making the time-step small enough. However, an unnecessarily
small time-step can lead to unacceptably long simulation times

Using a fixed time-step solver, when is the result “correct”?
Simulate using a variable-step solver
Simulate with ode1
Are the results similar? If not, try ode2 etc. up to ode5. If ode5,
still not good enough, reduce the time step

Continue until sufficient accuracy is achieved with minimum
computational time

J. Evans, CAS DSP, Sigtuna, 2007 75

Fixed vs. variable step solvers
Fixed time-step solvers

Do not control integration errors
Do not detect discontinuities and events
Allow faster simulations
Are supported for real-time code generation

Variable-step solvers
Control integration errors
Detect discontinuities and events
Provide more accurate results (but can increase simulation
speed)
Are not supported for real-time code generation

J. Evans, CAS DSP, Sigtuna, 2007 76

Stiff solvers

R=0.3 L=1e-6 J=6 kg*m2

K=0.5 N*m/Amp

k=0.5 V*s/rad

J. Evans, CAS DSP, Sigtuna, 2007 77

Stiff solvers

R=0.3 L=1e-6

J=6 kg*m2

K=0.5 N*m/Amp

k=0.5 V*s/rad

casmotor.mdl

J. Evans, CAS DSP, Sigtuna, 2007 78

Solvers - stiffness
There can be problems to find model solutions if the
system shows stiffness
Could be due to system containing time constants
that are very different from each other
In this case, use one of the Simulink stiff solvers,
ODE23s, ODE15s

J. Evans, CAS DSP, Sigtuna, 2007 79

Zero-crossing
Discontinuities are important events while simulating a dynamic system
A fixed-step solver can overcome this problem by having a very small
step size => long simulation times
Even a variable time step can produce long simulation times.
Solution - Simulink checks for discontinuities in the system's state
variables at each time step using zero-crossing detection.
Specific blocks incorporate zero-crossing detection. At the end of each
simulation step, Simulink checks to see if any registered a
discontinuity. If so, the time of crossing is estimated through
interpolation between the two timesteps. Simulink then steps up to
and over each zero crossing in turn. This avoids simulating exactly at
the discontinuity, where the value of the state variable might be
undefined.

=> Zero-crossing detection enables Simulink to simulate discontinuities
accurately without resorting to a large number of excessively small step
sizes.

J. Evans, CAS DSP, Sigtuna, 2007 80

Rate Transition
The Rate Transition block transfers data from the output of a block operating at one rate to
the input of another block operating at a different rate. The Rate Transition block's
parameters allows you to specify options that trade data integrity and deterministic transfer
for faster response and/or lower memory requirements.
In particular, the block supports the following options:

Deterministic transfer of data with data integrity between blocks operating at different
speeds at the cost of maximum latency of data transfer (DEFAULT)
Nondeterministic data transfer with minimum latency and assured data integrity but
increased memory requirements. To specify this option, check the Ensure data
integrity during data transfer parameter and uncheck the Ensure deterministic data
transfer parameter.
Minimum latency and target size at the cost of nondeterministic data transfer and
possible loss of data integrity. To specify this option, uncheck the Ensure data
integrity during data transfer and Ensure deterministic data transfer parameters.

The behaviour of the Rate Transition block depends on the sample times of the ports
between which it is connected, the priorities of the tasks corresponding to the source and
destination sample times (see Sample time properties), and whether the model specifies a
fixed- or variable-step solver.
Updating the diagram causes a label to appear on the block that indicates its behaviour
during simulation

J. Evans, CAS DSP, Sigtuna, 2007 81

Rate Transition

J. Evans, CAS DSP, Sigtuna, 2007 82

THE END

J. Evans, CAS DSP, Sigtuna, 2007 83

