
Digital Signal Processors: Digital Signal Processors:
fundamentals & system design fundamentals & system design

Lecture 3Lecture 3
Maria Elena Angoletta

CERN

Topical CAS/Digital Signal Processing
Sigtuna, June 1-9, 2007

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 2/36

Lectures planLectures plan
Lecture 1

DSP peripherals (cont’d),
s/w dev’pment & debug.

Lecture 2

System optimisation, design & integration.Lecture 3

introduction, evolution,
DSP core + peripherals

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 3/36

Lecture 3 Lecture 3 -- outlineoutline

Chapter 8: RT design flow – analysis & optimisation

Chapter 9: RT design flow – system design

Chapter 10: RT design flow – system integration

Chapter 11: Putting it all together …

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 4/36

Chapter 8 topicsChapter 8 topics

RT design flow: analysis & optimisationRT design flow: analysis & optimisation

8.1 Introduction
8.2 Optimiser ON
8.3 Analysis tools
8.4 Optimisation guidelines

Summary

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 5/36

8.1 Introduction8.1 Introduction
Optimisation: speed, memory usage, I/O BW, power consumption.
Steps: Debug → set optimiser ON → analyse & optimise (if needed).
Debug & optimise: different & conflicting phases!

Tuneable
configurations.

Debug: debug
features enabled.
Release: optimised
(size /speed) version.
Custom

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 6/36

8.2 Optimiser ON8.2 Optimiser ON
Compilers very good @optimising:
efficient code!
Many optimisation phases (levels)
: size vs. speed.
Power consumption often critical
factor, too!
Careful: optimiser rearranges
code!

Assembly looks different
Desired action may be modified:

BAD! OK

Disables locally
memory optimisation!

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 7/36

8.2 Optimiser ON [2]8.2 Optimiser ON [2]
Recommended code development flow:

Phase 1: write C/C++ code.

Phase 2: optimize C/C++ code

Phase 3 (if needed): code time-critical areas in linear assembly.

Phase 4 (if needed): code time-critical areas by hand in assembly.

Comparison of
programming techniques

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 8/36

8.3 Analysis tools8.3 Analysis tools

Know what to optimise! 20% of the code does 80% of the work.

Know when to stop! → diminishing returns.

TI tools:

Compiler consultant: recommendations to optimize performance.

Cache tune: optimizes code size
vs. cycle count.
Code size tune: graphical
visualisation of memory
reference patterns, to identify
conflict areas.

NB: tools limitations with h/w. Use simulator!

Enabling Compiler
Consultant for a project

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 9/36

8.4 Optimisation guidelines8.4 Optimisation guidelines

Make the common case fast.
Allocate memory wisely (→ linker!) & use DMA.
Keep pipeline full.

Small code may fit in internal memory
Software pipelining: memory has edges!

…… i.e. how to write more efficient code from the starti.e. how to write more efficient code from the start

Native vs. emulated data types: faster execution on native data
types (h/w vs. emulated arithmetic). → KNOW YOUR DSP !

Function calls: pass few parameters (if no more registers available,
parameters passed via stack → slow!)

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 10/36

8.4 Optimisation guidelines [2]8.4 Optimisation guidelines [2]
Data aliasing: multiple pointers may point to same data → compiler
doesn’t optimise → compilation switches to state aliasing YES/NO.

Loops:
Avoid function calls & control statement inside loops.

Move operations inner → outer loops (compilers focus on inner loops)
Keep loop code small (local repeat optimisation).
Loop counter: int/unsigned int instead of long .

No pipeline breaks,
but bigger code.

min/max/abs often single-
cycle instructions

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 11/36

8.4 Optimisation guidelines [3]8.4 Optimisation guidelines [3]
Time-consuming operations:

division. Often no h/w support for single-cycle division. Use shift
when possible.
cos, sin, atan: (+ high resolution) often needed by accelerator systems!

→ CERN CERN LEIR LLRFLEIR LLRF: polynomial instead of Taylor-expansion.
Resolution comparable to VisualDSP++ emulated double
floating point but faster!

CERN LEIR LLRF: optimised & high-resolution functions implementations.

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 12/36

8.4 Optimisation guidelines [4]8.4 Optimisation guidelines [4]

Power optimisation: s/w plays big role!

Minimise access to off-chip
memory.
Use power-management API
(not task!).
RTOS can help.

Sometimes data format not fully
IEEE compatible for speed opt.

Use libraries: optimisation done
@algorithmic level (FFT, FIR, IIR…).

ADI Blackfin BF533 : IEEE-compliant vs.
non IEEE-compliant library functions.

Power management (PWRM) added to
DSP/BIOS for ‘C5x DSPs.

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 13/36

Chapter 8 summaryChapter 8 summary

Code optimisation: size, speed, power.

Compiler optimisation rearranges code → turn optimisation
ON after debugging!

If compiler optimisation not enough → linear / hand-coded
assembly.

Development environment provides analysis tools: compiler
consultant, cache/code size tune.

Write efficient code from the start → optimisation
guidelines.

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 14/36

Chapter 9 topicsChapter 9 topics
RT design flow: system designRT design flow: system design

9.1 Introduction: DSP & architecture choice.
9.2 DSP : fixed vs. floating point
9.3 DSP: benchmarking
9.4 Architecture: multi-processing option
9.5 Architecture: radiation effects
9.6 Architecture: interfaces
9.7 Code design: interrupt-driven vs. RTOS
9.8 Code design: good practices
9.9 General recommendations

Summary

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 15/36

9.1 Intro: DSP & architecture9.1 Intro: DSP & architecture

3 main actors: DSP, FPGA, f/end computer.

DSP choice in accelerator sector: “Power consumption” factor negligible.
Standardisation in laboratory.
System evolution / migration to
other machines.

DSP choice in industry: “4P” law (Performance, Power consumption,
Price, Peripherals).

Possible synergies.
Existing know-how / tools /
hardware.

Decide which to use.
How to split tasks among them.

GlobalGlobal decision needed for new systems

BRANCH UNIT
Instruction

PROGRAM / DATA MEMORY

INTEGER
UNIT

FLOATING-
POINT UNIT

ALTIVEC
VECTOR UNIT

Motorola PowerPC + Altivec extension.
Altivec: SIMD expansion to PowerPC.

Not treated

Not treated herehere

Know them to:

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 16/36

9.1 Intro: DSP & architecture [2]9.1 Intro: DSP & architecture [2]

Some points to be considered:

Which DSP:Which DSP:
Fixed-point vs. floating point

Benchmarking

System architectureSystem architecture

Multi-DSP/multi-core

Radiation effects

DSP: howDSP: how
(code design)

Interfaces

Interrupt-driven vs. RTOS

Good practices

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 17/36

9.2 DSP: fixed vs. floating point9.2 DSP: fixed vs. floating point
Number format: influences DSP architecture

Fixed point: integer arithmetic
Scaling operations needed (but DSP features help, ex saturation)
Fast (but scaling operations needed…)
Algorithms (ex: MPEG-4 compression) bit-exact: made for fixed-point.

Floating point: integer/real arithmetic
High power consumption & slow speed (but scaling NOT needed)
Expensive. DSP format often not fully IEEE-compliant (speed).
High dynamic range helps many algorithms (ex.: FFT).

32-bits

NB: Variable gap between numbers.
Large numbers → large gaps; small numbers → small gaps.

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 18/36

9.2 DSP: fixed vs. floating point [2]9.2 DSP: fixed vs. floating point [2]

LHC BC example

LHC beam control: zoom
onto beam loops part.

Floating point: often choice for accelerator but … CAREFUL!

Cavities @ ~400.78 MHz.
F out:

Single floating: number
spacing > 1 @400 MHz !
TigerSHARC: h/w single-
float, emulated double

format: unsigned int (16 bits)
resolution 0.15 Hz
range: 10 kHz from 400.7819
MHz

TigerSHARC DSP for
beam control loops

→ loops calculations as
offset from 400.7819 MHz.

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 19/36

9.3 DSP: benchmarking9.3 DSP: benchmarking
Performance commonly judged via metric set

Often misleading data!

Often misleading data!

Metrics often give peak/projected values. Difficult comparison!
Clock frequencyClock frequency can differ from instruction frequency.
MIPSMIPS: VLIW DSPs have simple instruction set → one instruction
does less work.
MOPSMOPS: often based on MAC. Not included: control instructions &
memory bottlenecks.

Typical metric set &
corresponding unit.

Option: benchmark with kernel functions (ex: FFT, FIR, IIR…)

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 20/36

9.4 Architecture: multi9.4 Architecture: multi--processor optionprocessor option

Many DSPs collaborate to carry out processing.

Cluster bus: resource sharing (ex: memory) & info broadcasting.
Point-to-point bus: direct communication among processing elements.

Essential: good application partition across DSPs.

Cluster bus
configuration

Point-to-point
(ex: linkports)
configuration

a) Multia) Multi--DSPDSP

Inter-DSP communication channels: essential!

ADI SHARC DSP EXAMPLEADI SHARC DSP EXAMPLE

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 21/36

9.4 Architecture: multi9.4 Architecture: multi--processor option [2]processor option [2]

Multiple cores in same physical device: performance increase
without architectural change.

Boosts effective performance: more gain for small core freq. increase.
Already-used philosophy: coprocessors (ex: Viterbi decoders).

Two main flavours:
Symmetric Multi-Processing (SMP): similar/identical DSPs.
Asymmetric Multi-Processing (AMP): DSP + MCU.

Architecture options:
Cores operate independently (DSP farm).
Core interaction for task completion.

DSP evolution: multi-
core & coprocessor.

b) Multib) Multi--corecore

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 22/36

9.4 Architecture: multi9.4 Architecture: multi--processor option [3]processor option [3]

Resource partitioning:

@board level (like
single-core case)
@ device level
(added complexity).

Example of multi-core bus
& memory hierarchy.

Programming complex : re-entrancy rules.
Needed to keep one’s core processing from corrupting data of
another core’s processing.
Single-core follows re-entrancy rules for multitasking, too.

Inter-core communication must be available.

b) Multib) Multi--corecore

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 23/36

9.4 Architecture: multi9.4 Architecture: multi--processor option [4]processor option [4]

SMP example:SMP example:
TMS320C5421
multi-core DSP

b) Multib) Multi--corecore

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 24/36

9.5 Architecture: radiation effects9.5 Architecture: radiation effects
Single Event Upset (SEU): radiations-induced circuit alterations.
General mitigation techniques:

System level:

ADI/TI: no rad-hard DSP offered (third-party companies
offer ADI/TI rad-hard versions).

Device level: extra doping layers to limit substrate charge collection.
Circuit level: decoupling resistors/diodes/transistors… for SRAM.

Error Detection & Correction (EDAC) code…
Algorithm-based fault tolerance (ex: Weighted Checksum Code).
Rounding errors + weights overflow → difficult with floating point!

Application example: CERN LHC power supply controllers.
TI DSP ‘C32 + MCU (non rad-hard).
EDAC for SRAM protection.
Watchdog to restart system if it crashes.

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 25/36

9.5 Architecture: interfaces9.5 Architecture: interfaces

Remember:
good fences make
good neighbours!

DSP interface to define:
DSP-DSP
DSP-FPGA
Timing

Don’t hard-code addresses in DSP code – use linker!
Create data access libraries → modular approach (upgradeable!).

Digital system: typical
building blocks

DSP-Master VME (control + diagnostics)
DSP-daughtercards

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 26/36

9.6 Code design: interrupt9.6 Code design: interrupt--driven vs. RTOSdriven vs. RTOS
Fundamental choice. Depends on: System complexity

Available resources

Interrupt-driven : threads defined / triggered by interrupts.
Optimum resource use
OK for limited interrupt number.

RTOS-based : RTOS manages threads + priority + trigger.
Some resources used by RTOS
Clean design + built-in checks

Interrupt-driven control &
background tasks.

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 27/36

9.7 Code design: good practices9.7 Code design: good practices
Digital system NOTNOT black box. Add diagnostics buffer: user-
selectable / post-mortem / circular.
Add version number to identify significant code release.
Add check on execution duration. Essential for interrupt-
driven systems.

64-bit counter incremented
unconditionally @every
instruction cycle.

ADI SHARC: emuclk registers and their use.

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 28/36

9.8 General recommendations9.8 General recommendations
Careful with new DSPs – could be beta-versions !
Look @ DSP anomalies list.
Gain s/w experience with development environment & simulator.

Gain s/w + h/w experience with eval. boards: easy prototyping.

ADI & TI give 90-days fully-functional free evaluation of their tools.

Helps solving technical uncertainties!

TI C6713 DSK: picture & block diagram.

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 29/36

Chapter 9 summaryChapter 9 summary
DSP & architecture choice: influenced by many factors.
Which DSP:

Fixed-point vs. floating point : LHC BC example
Benchmarking: careful, often misleading!

System architecture:
Multi-DSP / multi-core.
Radiation effects.

DSP: code design
Interrupt-driven vs. RTOS
Good practices

General recommendations:
β-beware, anomalies
Fully functional s/w evaluations
Use evaluation boards!

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 30/36

Chapter 10 topicsChapter 10 topics

RT design flow: system integrationRT design flow: system integration

10.1 Introduction
10.2 Good practices

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 31/36

10.1 Introduction10.1 Introduction
System integration = system
commissioning, limited to data exchange
with control infrastructure & applic. prog.

Typically digital
developer works here

Different developers (groups) involved: Instrumentation +
Controls + Operation → coordination & specification work needed.
Possibly slow: developers (groups) have different priorities.

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 32/36

10.2 Good practices10.2 Good practices

Interfaces
Clear, documented & agreed upon.
Useful: recipes on how to setup/interact etc.
Keep documents updated & on server !

Spare parameters (in/out)
Mapped DSP ⇄ application prg.
Small upgrades / debug added without new iterations.

Code releases
Save current release + description. Going back easier if troubles.

Code validation
Define data set + procedure for sub-system validation.

Work in parallel
Start planning all layers asap → do not wait for low-level completion!

Input checks
Check input validity → warnings/alarms

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 33/36

Chapter 11Chapter 11

Putting it all togetherPutting it all together……

A digital system example: A digital system example:

CERN LEIR LLRFCERN LEIR LLRF

i.e. how now you know more on DSP fundamentals & i.e. how now you know more on DSP fundamentals &
system design than two days ago!system design than two days ago!

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 34/36

11. Example: CERN LEIR LLRF11. Example: CERN LEIR LLRF
ComponentsComponents:

CERN LEIR
LLRF system.

ArchitectureArchitecture: interrupt-driven + multi-DSPs [[→→ chapter 9]chapter 9]
DSPDSP--DSP DSP commscomms.: linkports + chained DMA. [[→→ chapters 4, 3, 9]chapters 4, 3, 9]
SRAMSRAM shared DSP-Master VME (FPGA access arbitration). [[→→ chapter 4]chapter 4]

DSPDSP: beam loops implementation
FPGAFPGA: fast processing + glue-logic.
PowerPCPowerPC: LLRF management & controls interface.

[[→→ chapter 9]chapter 9]

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 35/36

11. Example: CERN LEIR LLRF [2]11. Example: CERN LEIR LLRF [2]

CERN LEIR LLRF system: radial position (red line) & B field (blue line) during a cycle.

DSP bootsDSP boots from on-board FLASH memory. [[→→ chapter 4]chapter 4]

LanguagesLanguages: C + assembly (ISR + shadow registers). [[→→ chapter 6]chapter 6]

Diagnostics buffersDiagnostics buffers: four, 1024-word buffers / DSP board. User-
selectable decimation & signal (~50 / DSP board) [[→→ chapter 9]chapter 9]

M. E. Angoletta, “DSP fundamentals & system design – LECTURE 3”, CAS 2007, Sigtuna 36/36

DSP fundamentals & system design: summaryDSP fundamentals & system design: summary

DSPs born early ’80s: evolution in h/w + s/w tools.

DSP core architecture shaped by DSPing.

DSP peripherals integrated & varied.

RT design flow: s/w development.

Languages: assembly, C, C++, graphical. RTOS
Code building process: compiler, assembler. linker

RT design flow: debugging
Simulation/Emulation

RT design flow: analysis & optimisation

RT design flow: system design & integrations

	Digital Signal Processors: fundamentals & system design ��Lecture 3
	Lectures plan
	Lecture 3 - outline
	Chapter 8 topics
	8.1 Introduction
	8.2 Optimiser ON
	8.2 Optimiser ON [2]
	8.3 Analysis tools
	8.4 Optimisation guidelines
	8.4 Optimisation guidelines [2]
	8.4 Optimisation guidelines [3]
	8.4 Optimisation guidelines [4]
	Chapter 8 summary
	Chapter 9 topics
	9.1 Intro: DSP & architecture
	9.1 Intro: DSP & architecture [2]
	9.2 DSP: fixed vs. floating point
	9.2 DSP: fixed vs. floating point [2]
	9.3 DSP: benchmarking
	9.4 Architecture: multi-processor option
	9.4 Architecture: multi-processor option [2]
	9.4 Architecture: multi-processor option [3]
	9.4 Architecture: multi-processor option [4]
	9.5 Architecture: radiation effects
	9.5 Architecture: interfaces
	9.6 Code design: interrupt-driven vs. RTOS
	9.7 Code design: good practices
	9.8 General recommendations
	Chapter 9 summary
	Chapter 10 topics
	10.1 Introduction
	10.2 Good practices
	Chapter 11
	11. Example: CERN LEIR LLRF
	11. Example: CERN LEIR LLRF [2]
	DSP fundamentals & system design: summary

