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CERN accelerator complex

Rogelio Tomás Garcı́a An introduction to linear imperfections – p.3/54



The Proton Synchrotron Booster (PSB)
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The LHC Interaction Region (IR)

k 1
 a

nd
 θ

IP LHCB1 β*=0.6 m
quads
bends

 0

 1

 2

 3

 4

-400 -300 -200 -100  0  100  200  300  400

β x
,y

 [k
m

]

Longitudinal location from IP [m]

βx
βy

Rogelio Tomás Garcı́a An introduction to linear imperfections – p.5/54



The first linear imperfection is...

...gravity!. The LHC vacuum chamber has a

22 mm radius. Everything takes 67 ms to fall.

Why do protons not fall?
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Dipole magnetic field

x

y

Lorentz force:
~F = q~v × ~B
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Dipole errors
⋆ An error in the strength of a main dipole

causes a perturbation on the horizontal
closed orbit.

⋆ A tilt error in a main dipole causes a
perturbation on the vertical closed orbit.

x

y
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Orbit perturbation formula
From distributed angular kicks θi the closed orbit
results in:

CO(s) =

√

β(s)

2 sin πQ

∑

i

√

βiθi cos(πQ − |φ(s) − φi|)

Attention to the denominator sin(πQ) that makes
closed orbit to diverge at the integer resonance
Q ∈ N.

Another source of orbit errors is offset

quadrupoles.
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Quadrupole field and force on the beam
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Note that Fx = −kx and Fy = ky making horizon-

tal dynamics totally decoupled from vertical.
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Offset quadrupole - Feed-down

x

y

An offset quadrupole is seen as a centered

quadrupole plus a dipole. This is called feed-

down.
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Quadrupole strength error
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Quadrupole strength error - Formulae
Tune change (single source):

∆Qx ≈
1

4π
βx∆ki, ∆Qy ≈ −

1

4π
βy∆ki

β-beating from many sources:

∆β(s)

β
≈

∑

i

∆kiβi

2 sin(2πQ)
cos(2πQ − 2|φ(s) − φi|)

Attention to the denominator sin(2πQ) that
makes β-beating diverge at the integer and half
integer resonances, 2Q ∈ N .
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Quadrupole strength error - Tune change
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Luminosity imbalance CMS/ATLAS

Fill number in 2011
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ATLAS was not happy to get lower luminosity.

This was due to β-beating at the IPs.
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Colliders in the resonance world
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The winner so far, KEKB, sits near Qx ≈ Qy ≈ 0.5
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Can LHC beat KEKB?

D. Bocian et al, IPAC 2012

⋆ Collision debris can quench IR triplets

⋆ Luminosity limited to ≈ 1.7 × 1034cm−2s−1

(LHC cannot beat KEKB on paper)

⋆ HL-LHC with large quadrupoles → 5 × 1034

Rogelio Tomás Garcı́a An introduction to linear imperfections – p.17/54



Can LHC operate at Qx ≈ Qy ≈ 0.5?
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⋆ Half integer resonance represents a
challenge for optics control

⋆ First exploration at injection in 2011 → Need
further demonstrations
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Interlude: Farey sequences (1802)
The Farey sequence of order n is the sequence
of completely reduced fractions between 0 and 1
which, when in lowest terms, have denominators
less than or equal to N → Resonances of order N
or lower (in one plane)

Farey diagram of order 5 (F5)
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Some properties of Farey sequences
⋆ The distance between neighbors in a Farey

sequence (aka two consecutive resonances)
a/b and c/d is equal to 1/(bd)

⋆ The next leading resonances in between two
consecutive resonances a/b and c/d is
(a + c)/(b + d).

⋆ The number of 1D resonances of order N or
lower tends asymptotically to 3N2/π2
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Optics measurements
Standard approach is to record BPM data of
betatron oscillations after a single kick:

x(N, s) =
√

2βx(s)Jx cos(2πQxN + φx(s)) + CO(s)

Beta function, tune, phase advance, closed orbit

β and φ are related by:

φ0→1 = φ(s1) − φ(s0) =

∫ s1

s0

ds

β(s)

so β and φ carry the same information, φ being a
calibration independent observable.
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Turn-by-turn BPM data
⋆
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Decoherence from amplitude detuning
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Decoherence from amplitude detuning
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Decoherence from amplitude detuning

Rogelio Tomás Garcı́a An introduction to linear imperfections – p.23/54



Decoherence from amplitude detuning
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Forced oscillations with AC dipole
⋆ An AC dipole forces betatron oscillations

⋆ If addiabatically ramped up & down causes
no emittance blow up (contrary to kick)

⋆ Can be used as many times as needed with
the same beam
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Measuring β-beating versus β∗
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Measuring virgin machine (100% β-beating!) to

compute best local corrections (also for coupling)
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Tilted quadrupole

x

y

A tilted quadrupole is seen as a normal

quadrupole plus another quadrupole tilted by 45◦

( this is called a skew quadrupole).
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Skew quadrupole → x-y Coupling

x

y

~B

x

y

~F

Note that Fx = ky and Fy = kx making horizontal

and vertical dynamics to couple.
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Skew quadrupole → x-y Coupling
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Coupling
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Coupling can push tunes into resonances.
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Sextupole field and force

x

y
~B

x

y
~F

Ooops, We are entering the non-linear regime,

however...
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Offset sextupole

A sextupole horizontally (vertically) displaced

is seen as a centered sextupole plus an off-

set quadrupole (skew quadrupole). Offset sex-

tupoles are also sources of quadrupole and skew

quadrupole errors.
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Longitudinal misalignments

s
k-k +kbeam

Longitudinal misalignments can be seen as
perturbations at both ends of the magnet with
opposite signs. Tolerances are generally larger
for longitudinal misalignments.
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Correction
⋆ Local corrections

• Ideal correction: Error source
identification and repair.

• Effective local error correction.
• MICADO (ISR-MA/73-17): Best few

correctors (no guarantee of locality).

⋆ Global corrections
• Pre-designed knobs for varying particular

observables in the least invasive way (like
tunes, coupling, β∗, etc.)

• MICADO: Best N correctors
• Response matrix approach
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Local correction: segment-by-segment
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Key point: Isolate a segment of the machine

by imposing boundary conditions from measure-

ments and find corrections.
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Pre-designed knobs - Tunes
⋆ In most machines it is OK to use all focusing

quads to change Qx and all defocusing
quads for Qy: PSB, PS, SPS

⋆ In the LHC dedicated tune correctors (MQT)
are properly placed to minimize impact on
other quantities:
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Pre-designed knobs - Coupling
⋆ The full control of the difference resonance

(C−) needs two independent families of skew
quadrupoles.

⋆ PSB, PS and SPS can survive only with one
family since int(Qx) = int(Qy), making errors
in phase with correctors.

⋆ In LHC there are two families to vary the real
and imaginary parts of C− independently.
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Best corrector concepts

Elephant = 80 kg.
Available corrector
weigths: 78 kg,
1 kg, 30 kg, 50 kg

Which is the best corrector?
Which is the best second corrector? (using the 1st)
Which are the two best correctors?
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Best N-corrector challenge
⋆ LHC has about 500 orbit correctors per plane

and per beam.

⋆ Imagine you want to find the best 20
correctors

⋆ How many combinations of these 500
correctors taking 20 at a time exist?

⋆ ...

⋆ (MICADO finds a good approximation to this problem)
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Response matrix approach
⋆ Available correctors: ~c

⋆ Available observables: ~a

⋆ Assume for small changes of correctors
linear approximation is good: R∆~c = ∆~a

⋆ Use, e.g., MADX to compute R

⋆ Invert or pseudo-invert R to compute an
effective global correction based on
measured ∆~a:

∆~c = R−1∆~a

⋆ This works for orbit, ∆β/β, coupling, etc.
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Pseudo-inverse via SVD

R = U


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Imagine σ3 ≪ σ2 ≤ σ1, then just neglect σ3:

R−1 = V


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PSB β-beating

0 50 100 150

-6

-4

-2

0

2

4

6

s HmL

D
Β

x�
Β

x
H%
L

Horizontal Beta Beating - PSB

M.J. McAteer

Peak β-beating of ≈5%

Rogelio Tomás Garcı́a An introduction to linear imperfections – p.41/54



PS β-beating
H - plane

V - plane
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SPS β-beating (Q20)
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LHC β-beating, before correction
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LHC β-beating, after correction
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LHC optics makes history

Lepton Circum. Peak Hadron Circum. Peak
Collider [km] ∆β/β [%] Collider [km] ∆β/β [%]

PEP II 2.2 30 HERA-p 6.3 20

LEP 27 20 Tevatron 6.3 20

KEKB 3 20 RHIC 3.8 20

CESR 0.8 7 LHC 27 7

also, CMS and ATLAS luminosities in 2012 got equal

Phys. Rev. ST Accel. Beams 15, 091001, 2012
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Dynamic linear imperfections
⋆ Ground motion and vibrations in quadrupoles

produce sinusoidal dipolar fields

⋆ Electrical noise can cause currents in
quadrupoles and dipoles to oscillate in time

⋆ Electromagnetic pollution can act directly on
the beam.

⋆ Slow variations (f << Qx,y × frev) just cause
a time varying orbit and optics

⋆ Fast variations (f ≈ Qx,y × frev) can cause
resonances and emittance growth
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An oscillating dipolar field
⋆ Let Qdip = fdip/frev be the tune of the dipolar

field oscillation.

⋆ This causes the appearance of new
resonances

⋆ Linear resonances: Qx ± Qdip = N

⋆ Non-linear resonances of sextupolar order:

Qx ± 2Qdip = N

2Qx ± Qdip = N

⋆ Note that mQdip = N is not a problem
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Oscillating dipolar field, Qx 6= Qdip
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Oscillating dipolar field, Qx = Qdip
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An oscillating quadrupolar field
⋆ Let Qquad = fquad/frev be the tune of the

quadrupolar field oscillation.

⋆ This causes the appearance of new
resonances

⋆ Linear resonances: 2Qx ± Qquad = N
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Oscillating quadrupolar field, 2Qx 6= Qquad
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Oscillating quadrupolar field, 2Qx = Qquad
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Questions?
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