Cyclotrons

CERN accelerator school – introductory course Prague, Czech Republic, Sep 12, 2014

Mike Seidel Paul Scherrer Institut

187.57

Cyclotrons - Outline

the classical cyclotron

history of the cyclotron, basic concepts and scalings, classification of cyclotron-like accelerators

separated sector cyclotrons

focusing in Thomas-cyclotrons, spiral angle, classical extraction: pattern/stepwidth, transv./long. space charge

• cyclotron subsystems

extraction schemes, RF resonators, magnets, vacuum issues, instrumentation

- applications and examples of existing cyclotrons TRIUMF, RIKEN SRC, PSI Ring, PSI medical cyclotron
- discussion

Classification of circular accelerators

Pro's and Con's of cyclotrons for different applications

The Classical Cyclotron

two capacitive electrodes "Dees", two gaps per turn internal ion source homogenous B field **constant revolution time** (for low energy, $\gamma \sim 1$)

E.Lawrence & S.Livingston, 27inch Zyklotron

powerful concept:

- → simplicity, compactness
- continuous injection/extraction
- multiple usage of accelerating voltage

John Lawrence (center), 1940'ies first medical applications: treating patients with neutrons generated in the 60inch cyclotron

cyclotron frequency and K value

• cyclotron frequency (homogeneous) B-field:

$$\omega_c = \frac{eB}{\gamma m_0}$$

• cyclotron *K*-value:

 \rightarrow K is the **kinetic energy reach** for protons **from bending strength** in non-relativistic approximation: e^2

$$K = \frac{e^2}{2m_0} (B\rho)^2$$

 \rightarrow K can be used to rescale the energy reach of protons to other charge-to-mass ratios:

$$\frac{E_k}{A} = K\left(\frac{Z}{A}\right)^2$$

→ K in [MeV] is often used for naming cyclotrons
 examples: K-130 cyclotron / Jyväskylä
 cyclone C230 / IBA

classical cyclotron - isochronicity and scalings

continuous acceleration \rightarrow revolution time must stay constant, though E_k , R vary

magnetic rigidity:

$$BR = \frac{p}{e} = \beta \gamma \frac{m_0 c}{e}$$

orbit radius from isochronicity:

$$R = \frac{c}{\omega_c}\beta = R_{\infty}\beta$$
$$= \frac{c}{\omega_c}\sqrt{1-\gamma^{-2}}$$

deduced scaling of B:

$$R \propto \beta; BR \propto \beta \gamma \longrightarrow B(R) \propto \gamma(R)$$

thus, to keep the isochronous condition, *B* must be raised in proportion to $\gamma(R)$; this contradicts the focusing requirements (discussed later)

radius increment per turn decreases with increasing energy → extraction becomes more and more difficult at higher energies

$$R_{\infty} = R/\beta$$

field index

the field index describes the (normalized) radial slope of the bending field:

equation of motion in a classical cyclotron

centrifugal force mv²/r
Lorentz force qv×B
$$\vec{m}\ddot{r} = mr\dot{\varphi}^2 - qr\dot{\varphi}B_z$$

focusing: consider small deviations x from beam orbit R (r = R+x):

$$\ddot{x} + \frac{q}{m}vB_z(R+x) - \frac{v^2}{R+x} = 0,$$

$$\ddot{x} + \frac{q}{m}v\left(B_z(R) + \frac{\mathrm{d}B_z}{\mathrm{d}R}x\right) - \frac{v^2}{R}\left(1 - \frac{x}{R}\right) = 0,$$

$$\ddot{x} + \omega_c^2(1+k)x = 0.$$

using: $\omega_{\rm c} = qB_z/m \approx v/R, \ r\dot{\varphi} \approx v, k = \frac{R}{B}\frac{dB}{dR}$

betatron tunes in cyclotrons

classification of cyclotron like accelerators

- next: sector cyclotrons
 - AVF vs. separated sector cyclotron
 - focusing in sector cyclotrons
 - extraction: pattern/stepwidth
 - transv./long. space charge

focusing in sector cyclotrons

hill / valley variation of magnetic field (Thomas focusing) makes it possible to design cyclotrons for higher energies

$$F^2 = \frac{B_z^2 - B_z^2}{\overline{B_z}^2}$$

0

with flutter and additional spiral angle of bending field:

[illustration of focusing at edges]

Azimuthally Varying Field vs. Separated Sector Cyclotrons

- AVF = single pole with shaping
- often spiral poles used
- internal source possible
- D-type RF electrodes, rel. low energy gain
- compact, cost effective
- depicted Varian cyclotron: 80% extraction efficiency; **not suited for high power**

- PSI Ring cyclotron
- **modular layout,** larger cyclotrons possible, sector magnets, box resonators, stronger focusing, injection/extraction in straight sections
- **external injection** required, i.e. preaccelerator
- **box-resonators** (high voltage gain)
- high extraction efficiency possible: e.g. PSI: 99.98% = $(1 - 2 \cdot 10^{-4})$

derivation of turn separation in a cyclotron

starting point: bending strength for p

 \rightarrow compute total log.differential

 \rightarrow use field index $k = R/B \cdot dB/dR$

$$BR = \sqrt{\gamma^2 - 1} \frac{m_0 c}{e}$$

$$\frac{dB}{B} + \frac{dR}{R} = \frac{\gamma d\gamma}{\gamma^2 - 1}$$

$$\frac{dR}{d\gamma} = \frac{\gamma R}{\gamma^2 - 1} \frac{1}{1 + k}$$
radius change per
$$\frac{dR}{dn_t} = \frac{dR}{d\gamma} \frac{d\gamma}{dn_t}$$

$$U_t = \text{energy gain per turn}$$

$$U_t = \frac{U_t}{m_0 c^2} \frac{\gamma R}{(\gamma^2 - 1)(1 + k)}$$
isochronicity not conserved (last turns)
$$= \frac{U_t}{m_0 c^2} \frac{R}{(\gamma^2 - 1)\gamma}$$
isochronicity conserved (general scaling)

turn separation - discussion

for clean extraction a large stepwidth (turn separation) is of utmost importance; in the PSI Ring most efforts were directed towards maximizing the turn separation

extraction with off-center orbits

betatron oscillations around the "closed orbit" can be used to increase the radial stepwidth by a factor 3 !

extraction profile measured at PSI Ring Cyclotron

longitudinal space charge

sector model (W.Joho, 1981):

- \rightarrow accumulated energy spread transforms into transverse tails
- consider rotating uniform sectors of charge (overlapping turns)
- test particle "sees" only fraction of sector due to shielding of vacuum chamber with gap height 2w

two factors are proportional to the number of turns:

- 1) the charge density in the sector
- 2) the time span the force acts

$$\Delta U_{sc} = \frac{8}{3} e I_p Z_0 \ln\left(4\frac{w}{a}\right) \cdot \frac{n_{\max}^2}{\beta_{\max}} \approx 2.800\Omega \cdot e I_p \cdot \frac{n_{\max}^2}{\beta_{\max}}$$

derivation see: High Intensity Aspects of Cyclotrons, ECPM-2012, PSI

in addition:

3) the inverse of turn separation at extraction:

$$rac{1}{\Delta R_{
m extr}} \propto n_{
m max}$$

• thus the attainable current at constant losses scales as n_{max}^{-3}

longitudinal space charge; evidence for third power law

- at PSI the maximum attainable current indeed scales with the third power of the turn number
- maximum energy gain per turn is of utmost importance in this type of high intensity cyclotron

→ with constant losses at the extraction electrode the maximum attainable current indeed scales as: $I_{\text{max}} \propto n_t^{-3}$

transverse space charge

with overlapping turns use current sheet model!

vertical force from space charge: $F_y = \frac{n_v e^2}{\epsilon_0 \gamma^2} \cdot y, \ n_v = \frac{N}{(2\pi)^{\frac{3}{2}} \sigma_y D_f R \Delta R}$ [constant charge density, $D_f = I_{avg}/I_{peak}$]

focusing force:

$$F_y = -\gamma m_0 \omega_c^2 \nu_{y0}^2 \cdot y$$

thus, eqn. of motion:

$$\ddot{y} + \left(\omega_c^2 \nu_{y0}^2 - \frac{n_v e^2}{\epsilon_0 m_0 \gamma^3}\right) y = 0$$

→ equating space charge and focusing force delivers an **intensity limit for loss of focusing**!

tune shift from forces:

$$\Delta \nu_y \approx -n_v \frac{2\pi r_p R^2}{\beta^2 \gamma^3 \nu_{y0}}$$
$$\approx -\sqrt{2\pi} \frac{r_p R}{e\beta c \nu_{y0} \sigma_z} \frac{m_0 c^2}{U_t} I_{\text{avg}}$$

D2

next: cyclotron subsystems

- extraction schemes
- RF systems/power efficiency
- cyclotron magnets
 - comments on vacuum
 - specific instrumentation

injection/extraction schemes

- deflecting element should affect just one turn, not neighboured turn \rightarrow critical, cause of losses
- often used: electrostatic deflectors with thin electrodes
- alternative: charge exchange, stripping foil; accelerate H⁻ or H₂⁺ to extract protons (problem: significant probability for unwanted loss of electron; Lorentz dissociation: B-field low, scattering: vacuum 10⁻⁸mbar)

injection/extraction with electrostatic elements

electrostatic rigidity:

$$E\rho = \frac{\gamma + 1}{\gamma} \frac{E_k}{q}$$
$$\theta = \frac{qlE}{E_k} \frac{\gamma}{\gamma + 1}$$

extraction foil

- thin foil, for example carbon, removes the electron(s) with high probability
- new charge state of ion brings it on a new trajectory → separation from circulating beam
- lifetime of foil is critical due to heating, rad.damage; conversion efficiencies, e.g. generation of neutrals, must be considered carefully

stripped electrons deposit energy in the foil

How much power is carried by the electrons?

$$E_{e} = \frac{m_{e}}{m_{p}}E_{p} = 5.4 \cdot 10^{-4}E_{k}^{p}$$

ightarrow 1/2000 of beam power

Bending radius of electrons?

$$\rho^{e} = \frac{m_{e}}{m_{p}}\rho^{p}$$

$$\rightarrow \text{typically mm}$$

example: multiple H⁻ stripping extraction at TRIUMF

example: H₂⁺ stripping extraction in planned Daedalus cyclotron [neutrino source]

components: cyclotron resonators

cyclotron resonators are basically box resonators resonant frequency: $c \sqrt{1-1}$

cross sections of PSI resonators

copper resonator in operation at PSI's Ring cyclotron

- **f = 50.6MHz**; **Q**₀ = 4,8·10⁴; **U**_{max}=1.2MV (presently 0.85MV)
- transfer of up to 400kW power to the beam per cavity
- Wall Plug to Beam Efficiency (RF Systems): **32%**

components: sector magnets

 cyclotron magnets typically cover a wide radial range → magnets are heavy and bulky, thus costly

PSI sector magnet

iron weight: 250 tons coil weight: 28 tons orbit radius: 2.1...4.5 m spiral angle: 35 deg

components: sector magnets

- focusing and isochronicity need to be precisely controlled → sophisticated pole shaping including spiral bounds, many trim coil circuits
- modern cyclotrons use superconducting magnets; but for high intensity compactness is generally disadvantageous

cyclotron vacuum system

- vacuum chamber with large radial width → difficult to achieve precisely matching sealing surfaces → noticeable leak rates must be accepted
- use cryo pumps with high pumping speed and capacity
- ≈10⁻⁶mbar for p, ≈10⁻⁸mbar for ions (instability! e.g. AGOR at KVI)
- design criterion is easy access and fast mountability (activation)

example: inflatable seals installed between resonators; length: 3.5m

cyclotron instrumentation

example: PSI 72MeV injector cyclotron

instrumentation: radial probe for turn counting / orbit analysis

next: cyclotron examples

• TRIUMF, RIKEN SRC, PSI-HIPA, PSI-Comet

comparison of cyclotrons

	TRIUMF	RIKEN SRC (supercond.)	PSI Ring	PSI medical (supercond.)
particles	$H- \rightarrow p$	ions	р	р
K [MeV]	520	2600	592	250
magnets (poles)	(6)	6	8	(4)
peak field strength [T]	0.6	3.8	2.1	3.8
R _{inj} /R _{extr} [m]	0.25/3.87.9	3.6/5.4	2.4/4.5	-/0.8
P _{max} [kW]	110	1 (86Kr)	1300	0.25
extraction efficiency (tot. transmission)	0.9995 (0.70)	(0.63)	0.9998	0.80
extraction method	stripping foil	electrostatic deflector	electrostatic deflector	electrostatic deflector
comment	variable energy	ions, flexible	high intensity	compact

cyclotron examples: TRIUMF / Vancouver

photo: iron poles with spiral shape (δ_{max} =70deg)

- p, 520MeV, up to 110kW beam power
- diameter: 18m (largest n.c. cyclotron worldwide)
- extraction by stripping H⁻
 → variable energy;
 multiple extraction points
 possible

RIKEN SRC in the vault

examples: PSI High Intensity Proton Accelerator

250 MeV proton cyclotron (ACCEL/Varian)

compact cyclotrons for Isotope production

CYCLONE 30 (IBA) : H- 15 à 30 MeV

finally: discussion

- comparison of circular accelerators
- suitability of cyclotrons
- some literature

= =

classification of circular accelerators

	bending radius	bending field vs. time	bending field vs. radius	RF frequency vs. time	operation mode (pulsed/CW)	
betatron	\rightarrow	~				induction
microtron	~	\rightarrow	\rightarrow	\rightarrow		varying <i>h</i>
classical cyclotron	~	\rightarrow	***	\rightarrow		simple, but limited E _k
isochronous cyclotron	~	\longrightarrow	~	\rightarrow		suited for high power!
synchro- cyclotron	~	\rightarrow	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~		higher E _k , but low P
FFAG	>	\rightarrow	~	~		strong focusing!
a.g. synchrotron	\rightarrow	~		>		high E _k , strong focus

pro and contra cyclotron

limitations of cyclotrons	typical utilization of cyclotrons
 energy limitation ≈1GeV due to relativistic effects relatively weak focusing is critical for space charge effects (10mA ?) tuning is difficult; field shape; many turns; limited diagnostics wide vacuum vessel (radius variation) 	 medical applications ≤250MeV; intensity range well covered isotope production → several 10MeV acceleration of heavy ions (e.g. RIKEN) very high intensity proton beams (PSI:1.4MW, TRIUMF: 100kW, ADS Concepts)

cyclotron conferences – a valuable source of knowledge

Select Conference	25													
ALL 🗵														
ABDW	ERL FLS	<u>.'13</u> 🔲 <u>'06</u>	<u>HB'12</u>	ERL'1	<u>1 🗖 H</u>	<u>B'10</u>	Ecloud'1	1 <u>0</u>	<u>ERL'09</u>	<u>HB'08</u>	<u>8</u> 🔲 <u>Fa</u>	ctories'08	ERL'07	E <u>HB'06</u>
APAC 🔲	🔲 <u>'07</u>	🔲 <u>'04</u>	🗖 <u>'01</u>	🔲 <u>'98</u>										
BIW 🔲	🔲 <u>'12</u>	🔲 <u>'10</u>	🔲 <u>'08</u>											
COOL 🔲	🔲 <u>'13</u>	🔲 <u>'11</u>	🔲 <u>'09</u>	🔲 <u>'07</u>										
CYCLOTRONS	<u>'13</u> <u>'75</u>	<u>'10</u> <u>'72</u>	107	□ <u>'04</u> □ <u>'66</u>	□ <u>'01</u> □ <u>'63</u>	■ <u>'9</u> ■ <u>'5</u>	8 🔲 <u>'95</u> 9 —	<u>92</u>	<u>89</u>	<u>86</u>	firct	<u> </u>	□ <u>'78</u>	
DIPAC 🔲	🔳 <u>'11</u>	<u>09</u>	<u> </u>	🔲 <u>'05</u>	<u>03</u>	<u> </u>	<u>1 🔲 '99</u>			J	111 50)	
ECRIS 🔲	🔲 <u>'12</u>	🔲 <u>'10</u>	🔲 <u>'08</u>								1959	•		
EPAC 🔲	<u>80'</u>	<u>06</u>	<u>'04</u>	<u>'02</u>	<u>00'</u>	🗖 <u>'9</u>	<u>8 🔲 '96</u>	<u>94</u>	<u>92</u>	<u>'90</u>	88			
FEL 🗖	🔲 <u>'13</u>	🔲 <u>'12</u>	🔲 <u>'11</u>	🔲 <u>'10</u>	<u>09</u>	<u> </u>	<u>B</u> 🔲 <u>'07</u>	<u> </u>	<u> </u>	0 4				
HIAT 🔲	🔲 <u>'12</u>	<u>09</u>												
IBIC 🔲	🔲 <u>'13</u>	🔲 <u>'12</u>												
ICALEPCS	🔳 <u>'13</u>	🔲 <u>'11</u>	<u>09</u>	0 7	05	<u> </u>	<u>3</u> 🔲 <u>'01</u>	•<u>99</u>						
ICAP 🔲	<u>'12</u>	<u>09</u>	<u> </u>											
IPAC 🔲	<u>'13</u>	<u>'12</u>	🔲 <u>'11</u>	🔲 <u>'10</u>										
LINAC 🗐	' <u>12</u>	□ <u>'10</u> □ <u>'76</u>	<u>'08</u>	106	<u>'04</u>	<u> </u>	<u>2</u> 🔲 <u>'00</u>	🔲 <u>'98</u>	🔲 <u>'96</u>	🔲 <u>'92</u>	00	🔳 <u>'88</u>	<u>'84</u>	
NA-PAC 🔲	🔲 <u>'13</u>													
PAC 🔲	11 <u>'11</u>	09 <u>83</u>	. <u>'07</u>	105	1 <u>'03</u>	10 10 10 10	1 9 9 5 1 <u>73</u>	97	. <u>'95</u>	. <u>'93</u>	1 <u>'91</u>	🔲 <u>'89</u>	8 7 <u>87</u>	
PCaPAC	🔲 <u>'12</u>	🔲 <u>'10</u>	<u>80'</u>											
RuPAC	<u>'12</u>	🔲 <u>'10</u>	<u>80'</u> 🕅	<u> </u>	<u>'04</u>									
SRF 🗐	11 <u>'11</u>	09 '80	<u> </u>	<u>'05</u>	<u>'03</u>	<u> </u>	<u>1</u> 🗖 <u>'99</u>	🔲 <u>'97</u>	🔲 <u>'95</u>	<u>'93</u>	🔲 <u>'91</u>	🔲 <u>'89</u>	<u> </u>	

old cyclotron conferences are digitized for JACOW (effort of M.Craddock!) cyclotrons 2016: organized by PSI in Zürich

some literature w.r.t. cyclotrons

comprehensive overview on cyclotrons	L.M.Onishchenko, Cyclotrons: A Survey, Physics of Particles and Nuclei 39, 950 (2008) http://www.springerlink.com/content/k61mg262vng17411/fulltext.pdf
scaling of PSI concept to 10MW	Th.Stammbach et al, The feasibility of high power cyclotrons, Nuclear Instruments and Methods in Physics Research B 113 (1996) 1-7
space charge effects and scalings	W.Joho, High Intensity Problems in Cyclotrons, Proc. 5th intl. Conf. on Cyclotrons and their Applications, Caen, 337-347 (1981) http://accelconf.web.cern.ch/AccelConf/c81/papers/ei-03.pdf
long. space charge; comparison to analytical result	E.Pozdeyev, A fast code for simulation of the longitudinal space charge effect in isochronous cyclotrons, cyclotrons (2001) <u>http://accelconf.web.cern.ch/AccelConf/c01/cyc2001/paper/P4-11.pdf</u>
H ₂ ⁺ concept for high power	L.Calabretta et al, A multi megawatt cyclotron complex to search for cp violation in the neutrino sector, cyclotrons (2010); upcoming NIM paper! <u>http://accelconf.web.cern.ch/AccelConf/Cyclotrons2010/papers/tua1cio01.pdf</u>
OPAL simulations; documentation	J.Yang, A. Adelmann, et al. Phys. Rev. STAB Vol. 13 Issue 6 (2010) http://amas.web.psi.ch
cyclotrons 2013 conference Vancouver	http://accelconf.web.cern.ch/AccelConf/CYCLOTRONS2013/ conference summary: http://accelconf.web.cern.ch/AccelConf/CYCLOTRONS2013/talks/fr2pb03_talk.pdf

