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OUTLINE

Reminder of some mathematics,

see also lecture R. Steerenberg

=

Basic electromagnetic phenomena

ﬁ

Maxwell’s equations

=

Lorentz force

ﬁ

Motion of particles in electromagnetic fields

=

Electromagnetic waves in vacuum

=

Electromagnetic waves in conducting media
> Waves in RF cavities

> Waves in wave guides



Reading Material
(1) J.D. Jackson, Classical Electrodynamics (Wiley, 1998 ..)

(2) L. Landau, E. Lifschitz, Klassische Feldtheorie, Vol2.
(Harri Deutsch, 1997)

(3) W. Greiner, Classical Electrodynamics, (Springer,
February, 22nd, 2009)

(4) J. Slater, N. Frank, Electromagnetism, (McGraw-Hill,
1947, and Dover Books, 1970)

(5) R.P. Feynman, Feynman lectures on Physics, Vol2.

For many details and derivations: (1) and (2)



Variables and units used in this lecture

Formulae use SI units throughout.

= electric field [V /m]
magnetic field [A/ml]
electric displacement [C/m?]
magnetic flux density [T]
electric charge [C]

electric charge density [C/m?]

ST R Oy T

current density [A/m?]

¢ = permeability of vacuum, 4 7-107" [H/m or N/A?]

=

€0 = permittivity of vacuum, 8.854 -107'? [F/m)]
speed of light, 2.99792458 -10° [m/s]

)
|



Scalar and vector fields
Electric phenomena: E, D and ®
Magnetic phenomena: H . B and A
= Need to know how to calculate with vectors (see lecture
by R. Steerenberg)
- Scalar and vector products

- Vector calculus



Vector calculus ...

We can define a special vector V (sometimes written as 6)

o 0 3)
ox’ 0Oy’ 0z

It is called the ”gradient” and invokes ”partial derivatives”.

v=(

It can operate on a scalar function ¢(z,y, z):

op 0 0Jo. 5

Vo = (

and we get a vector G. It is a kind of ”slope” (steepness ..)
in the 3 directions.

Example: ¢(z,y,2) = C-In(r?) with r = /22 +92 + 22
— Vqﬁ — (nynyGz) _ (2?2-307 25'2'97 20-2)

r2




Gradient (slope) of a scalar field

Lines of pressure (isobars)

Gradient is large (steep) where lines are close (fast change of

pressure)



Vector calculus ...

The gradient V can be used as scalar or vector product

with a vector F', sometimes written as V
Used as:

V.- F or VxF

Same definition for products as before, V treated like a
”normal” vector, but results depends on how they are
applied:

V-® is a vector

V - F' is a scalar
V x F' is a vector



Operations on vector fields ...

Two operations of V have special names:

Divergence (scalar product of gradient with a vector):

div(F) = V.F= %F; + 8622 + %

Physical significance: ”amount of density”, (see later)

Curl (vector product of gradient with a vector):

curl(F) = VxF =

~ OF; O0Fy O0F1 O0Fs; OF,
Oy 0z 0z or’ Oz

Physical significance: ”amount of rotation”, (see later)

)



Meaning of Divergence of fields ...

Field lines of a vector field F' seen from some origin:
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The divergence (scalar, a single number) characterizes what

comes from (or goes to) the origin
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How much comes out ?

Surface integrals: integrate field vectors passing (perpendicular)

through a surface S (or area A), we obtain the Flux:
— [ [ F.ai
A

Density of field lines through the surface

(e.g. amount of heat passing through a surface)



Surface integrals made easier ...

Gauss’ Theorem:
Integral through a closed surface (flux) is integral of divergence

in the enclosed volume

Relates surface integral to divergence



Meaning of curl of fields

The curl quantifies a rotation of vectors:

2D vector field 2D vector field
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Line integrals: integrate field vectors along a line C:

=l %ﬁ-d?
C

”sum up” vectors (length) in direction of line C

(e.g. work performed along a path ...)



Line integrals made easier ...

Stokes’ Theorem:
Integral along a closed line is integral of curl in the enclosed area

jqfﬁ-dfz //VXF-M
C A

closed curve (C)

Relates line integral to curl



Integration

of (vector-) fields

Two vector fields:

2D vector field 2D vector field
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Line integral for second vector field vanishes ...



- APPLICATIONS to ELECTRODYNAMICS -



Electric fields from charges
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(negative charges) (positive charges)

Assume fields from a positive or negative charge q

Electric field E is written as (Coulomb law):

+q T

E = -
dmey 7|3

with: 7 = (x,y, 2), 7| = /22 + y2 + 22



Applying Divergence and charges ..

\\\\\\\\\\\\\\\\\\\\
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....................

We can do the (non-trivial®’) computation of the divergence:

= — dE, dFE, dFE, p
divE = VE = y - £
v v dx * dy * dz €0
(negative charges) (positive charges)
V-E<0 V-E>0

Divergence related to charge density p generating the field E

*) for a point charge for example ..



More formal/general: Gauss’s Theorem
(Maxwell’s first equation ...)

%ﬁhﬁdjziffhvﬁdvzi
VE = £

€0

Flux of electric field £ through any closed surface proportional
to net electric charge ¢ enclosed in the region (Gauss’s

Theorem).
Written with charge density p we get Maxwell’s first equation:

dvE =V .-FE =2

€0



Example: field from a charge q

A charge g generates a field E according to:

E = —
Ameg 13

Enclose it by a sphere: E = const. on a sphere (area is 4 - 1?):

/ / Fodi = 4 / / - _ g
sphere 4meo sphere r? €0

Surface integral through sphere A is charge inside the sphere




Divergence of magnetic fields

Definitions:

Magnetic field lines from North to South



Maxwell’s second equation ...

[[,B dA=[[[,VB dV = 0
VB =0

Closed field lines of magnetic flux density (é) What goes out

ANY closed surface also goes in, Maxwell’s second equation:

VB =puVH=0

== Physical significance: no Magnetic Monopoles



Maxwell’s third equation ... (schematically)

Faradays law (electromagnetic induction):
\|
\-
' P \'
A

- Changing magnetic flux through area of a coil introduces
electric current I

\ D
TN -

L]\

=
A

<
A

- Can be changed by moving magnet or coil



Maxwell’s third equation ... (formally)

A changing flux () through an area A produces circulating
electric field F, i.e. a current / (Faraday)

—— = — [ BdA = E - dr
N——
flux

> Flux can be changed by:

- Change of magnetic field B with time ¢ (e.g.
transformers)

- Change of area A with time t (e.g. dynamos)



Formally: Maxwell’s third equation ...

Ly _fA%_deg:/wmg:y{ﬁ.df
A C

J

Ve

Stoke’ sformula

Changing magnetic field through an area induces circular

electric field in coil around the area (Faraday)

Remember: large curl = strong circulating field



More general:

_fA%—?M:/vXEM:]{E.dF
A C

7

Stoke’sformula

closed curve (C)

Changing field through any area induces electric field in the
(arbitrary) boundary



Maxwell’s fourth equation (part 1) ...

From Ampere’s law, for example current density ;

Static electric current induces circulating magnetic field

VXézuoj

or in integral form the currect density becomes the current I:

[[,VxB dA = [[,pj dA = pol



Maxwell’s fourth equation - application

For a static electric current / in a single wire we get Biot-Savart

law (we have used Stoke’s theorem and area of a circle A = r? - 7):

Current — = o
_ Mo r-dr
] B = 47 561 r3
B — kol
2 r

Induced magnetic
field

For magnetic field calculations in electromagnets



Do we need an electric current ?

From displacement current, for example charging capacitor fd:

Parallel plate capacitor

E electric field
shoving alternating electric fie

)

E

displacement E magnetic field
current

betuween

itz plates. N alternating

— » conduction
n - current

—- >

alternating U

conduction — P

current \_/
+g charge \ / E —g charge

I

Bl Defining a Displacement Current fd:

Not a current from moving charges

But a current from time varying electric fields




Maxwell’s fourth equation (part 2) ...

Displacement current I; produces magnetic field, just like
”actual currents” do ...

= Time varying electric field induce magnetic field (using

the current density fd

—

V x B = pojq = €opro L

Remember: strong curl = strong circulating field



Maxwell’s complete fourth equation ...

Magnetic fields B can be generated by two ways:

V x B=poj  (electrical current)

—

V x B = ,LLonl = 60#0%—? (changing electric field)
or putting them together:

V x B = po(j + ja) = poj + copo %

or in integral form (using Stoke’s formula):

%Ed? - /wé.dg:fA (10 + cono 28 ) - dA
C A P

\ .

Stoke’ sformula



Summary: Static and Time Varying Fields

dB A , A [ dE A A Ao
S=SSSSs e
] —F— E — e
» Time varying magnetic fields produce circulating
electric field: curI(E) — VUx E = — cg_JEt?

> Time varying electric fields produce circulating

—

magnetic field: curl(B) = Vx B = MOe()Cé_LE

because of the x they are perpendicular: E L B




Put together: Maxwell’s Equations

fAE"-dZZ%
[,B-dA=0
fcﬁ'dfz_fA (d_jtg) dA

Written in Integral form



Put together: Maxwell’s Equations

Written in Differential form

VE =
VB =
V x E =
V x B

_dB

dt

2 dE
Ho) + Ho€o g



4.1

4.2

Maxwell in Physical terms

. Electric fields FE are generated by charges and

proportional to total charge

. Magnetic monopoles do not exist

. Changing magnetic flux generates circulating electric

fields/currents

Changing electric flux generates circulating magnetic
fields

Static electric current generates circulating magnetic
fields



Interlude and Warning !!

Maxwell’s equation can be written in other forms.

Often used: cgs (Gaussian) units instead of SI units, example:

Starting from (SI):

we would use:

— — 1

Ecgs — - * ESI and 60 —

and arrive at (cgs):

Beware: there are more different units giving: V- E = P



Electromagnetic fields in material

In vacuum:

€, 1s relative permittivity

1, 1s relative permeability

B):/joﬁ
B):,ur',uo'ﬁ
~ [1—10°]
~ [0(!) — 10]

Origin: polarization and Magnetization



Once more: Maxwell’s Equations

Re-factored in terms of the free current density ;
and free charge density p (ug = 1,¢¢ = 1):



Something on potentials:

Fields can be written as derivative of scalar and vector

potentials ®(x,y, 2) and ff(x,y, 2):

Electric fields | Magnetic fields
using: E = —Vd B =VxA
with: VE = £ VxB = ugj
—> V2P = - VXxVxA = ppj
in short”: | A® = — o V2x A = poj

Potentials are linked to charge p and current 5

A bientot

=P  Special Relativity ...

*)(With some vector analysis and definitions ...)




Applications of Maxwell’s Equations

» Powering of magnets

» Lorentz force, motion in EM fields

- Motion in electric fields

- Motion in magnetic fields
» EM waves (in vacuum and in material)
» Boundary conditions

» EM waves in cavities and wave guides



Powering and self-induction

primary magnetic field induced magnetic field

II. 3 L

+ + _' ' i
/|| primary  induced|| /||
current  current y'._/ |

magnetic field building induced current tries
to stop field building

- Induced magnetic flux B changes with changing current

= Induces a current and magnetic field Ez voltage in the
conductor

=% Induced current will oppose change of current (Lenz’s
law)

=» We want to change a current to ramp a magnet ...



Powering and self-induction

> Ramp rate defines required Voltage:

ol
— L
v ot

Inductance L in Henry (H)
> Example LHC:
- Typical ramp rate: 10 A/s
- With L = 15.1 H per powering sector

= Required Voltage is ~ 150 V



Lorentz force on charged particles

Moving (%) charged (¢q) particles in electric (E) and
magnetic (B) fields experience a force f like (Lorentz force):

— —

f = q(E + @ x B)
for the equation of motion we get (using Newton’s law);

d ” - 4
E(mom = f = q-(F + ¥ x B)



Motion in electric fields

\r g
F\ >
Y EY Y F oy q E

v 1 E v | E

Assume no magnetic field:

Cmot) = [ = q-F

Force always in direction of field E, also for particles at rest.



Motion in electric fields

d .
—\m 1 p— ) . E

The solution is:

v = — .t => 7 = P (parabola)

Constant E-field deflects beams: TV, electrostatic separators (SPS,LEP)



Motion in electric fields

-
|

Y

Y

d R
g(mov) = f = q-E

For constant field £

gain is:

(E,0,0) in x-direction the kinetic energy

AT = qE-L

It is a line integral of the force along the path !
Constant E-field gives uniform acceleration over length L



Motion in magnetic fields

electron

, Force
. magnetic field 3

Current

Assume first no electric field:

d — —
—(mov) = = U X B
Force is perpendicular to both, v and B

No forces on particles at rest !

Particles will spiral around the magnetic field lines ...



Motion in magnetic fields

Magnetic field (B)

. — —— —

—

electron

Assuming that v, is perpendicular to B

We get a circular motion with radius p:

movU |
q-B

p —

defines the Magnetic Rigidity: B:-p = mg” = %

Magnetic fields deflect particles, but no acceleration (synchrotron, ..)

(but can accelerate in betatron !)



Motion in magnetic fields

Practical units:
BIT)-plm] = 2%

c[m/s]

Example LHC:
B =8.33 T, p="T7000 GeV/c =» p = 2804 m



Use of static fields (some examples, incomplete)

Magnetic fields
> Bending magnets
» Focusing magnets (quadrupoles)

> Correction magnets (sextupoles, octupoles, orbit

correctors, ..)

Electric fields

> Electrostatic separators (beam separation in
particle-antiparticle colliders)

> Very low energy machines

What about non-static, time-varying fields ?



Time Varying Fields (very schematic)

B(t)A X \ A

E(t) = —— %

Time varying magnetic fields produce circulating electric
fields

Time varying electric fields produce circulating magnetic
fields

==» Can produce self-sustaining, propagating fields (i.e. waves)



Electromagnetic waves in vacuum

Vacuum: only fields, no charges (p = 0), no current (j = 0) ...

—

— Vx(VxE) =-Vx(%)
—  — (V2E) = -2(V x B)
— — (VZE) = —Moéo%

It happens to be: o€ = c%

Similar expression for the magnetic field:




Electromagnetic waves

E — E_’Oei(wt—E-:E‘)
Electric B = Bye'wt=ka)
Field iy . /2 5 ¢ ¢
agnetc YN} .
gne k| . (propagation vector)
A = (wave length, 1 cycle)
1 cycle
I\I w = (frequency - 27)
c = 7 = (wavevelocity)

Time

Magnetic and electric fields are transverse to direction of
propagation: E 1L B 1 k
Velocity of wave in vacuum: 299792458.000 m /s



Spectrum of Electromagnetic waves

-
-

Increasing energy

HIIMAVAVAVAVAVA VAN

Increasing wavelength

.

0.0001 nm 0.01 nm 108m 1000 nm  0.01 cm 1cm 1m 100 m
I | 1 1 1 1
Gamma rays Krays Ulira- Infrared Radio waves
violet
Radar TV FM AM

_//’Vi’s;hﬁgfﬂ\ N

400 nm 500 nm 600 nm 700 nm

Q

Example: yellow light =» 5-10'* Hz (i.e. 2 eV!)
gamma rays = < 3.10°' Hz (i.e. 12 MeV !)

LEP (SR) =» < 2.10*° Hz (i.e. ® 0.8 MeV !)

VAN ZZ



Waves interacting with material

Need to look at the behaviour of electromagnetic fields at
boundaries between different materials (air-glass, air-water,

vacuum-metal, ...).

Have to consider two particular cases:

> Ideal conductor (i.e. no resistance), apply to:
- RF cavities

- Wave guides

> Conductor with finite resistance, apply to:
- Penetration and attenuation of fields in material
(skin depth)
- Impedance calculations

Can be derived from Maxwell’s equations, here only the
results !



Observation: between air and water

> Some of the light is reflected
> Some of the light is transmitted and refracted

==» Reason are boundary conditions for fields between two

materials



Extreme case: ideal conductor

For an ideal conductor (i.e. no resistance) the tangential electric
field must vanish, otherwise a surface current becomes infinite.

Similar conditions for magnetic fields. We must have:

This implies:

> All energy of an electromagnetic wave is reflected from the
surface.

> Fields at any point in the conductor are zero.

> Only some fieldpatterns are allowed in waveguides and RF

cavities

A very nice lecture in R.P.Feynman, Vol. Il



Boundary conditions: air and perfect conductor

A simple case as demonstration (E-ﬁelds on an ideally
conducting sphere):

> Field parallel to surface I cannot exist (it would move
charges and we get a surface current)

> Only field normal to surface F, is possible



Boundary conditions for fields

All electric field lines must be normal (perpendicular) to surface

of a perfect conductor.

/

/ /

> All conditions for E, l_j, H : B can be derived from Maxwell’s
equations (see bibliography, e.g. R.P.Feynman or
J.D.Jackson)



X

General boundary conditions for fields

Electromagnetic fields at boundaries between different materials

with different permittivity and permeability (¢%,¢€’, u®, u%).

The requirements for the components are (summary of the
results, not derived here !):

y (B = E)),(E: # E)
(Dj # Dy),(Dy = Dy)
p (Hi = H)),(H; # H;)
» (Bf # B)),(Bi = By)

Conditions are used to compute reflection, refraction and
refraction index n.



Examples: cavities and wave guides

Rectangular, conducting cavities and wave guides (schematic)

with dimensions a X b X ¢ and a X b:
X

X

"y

b z b z
N~ 1

/ c

y y

\

> RF cavity, fields can persist and be stored (reflection !)

> Plane waves can propagate along wave guides, here in

z-direction



Fields in RF cavities

Assume a rectangular RF cavity (a, b, ¢), ideal conductor.

Without derivations, the components of the fields are:

E. = Eqo - cos(kpx) - sin(kyy) - sin(k.z) - e "
—iwt

E, = Eyo - sin(kgx) - cos(kyy) - sin(k.z) - e
. = E.o - sin(ksx) - sin(kyy) - cos(ks=z) - e ™"

B, = ~(Byok — Ezoky) - sin(k.x) - cos(kyy) - cos(k-z) - e~
w

By = —(Bzoks — Exok:) - cos(ku) - sin(kyy) - cos(k=z) - e
w

B. = —(Buoky — Byoky) - cos(ky@) - cos(kyy) - sin(kz2) - e~
w



Consequences for RF cavities

Field must be zero at conductor boundary, only possible under

the condition:
2

2 2 p2 Y
and for k., k,, k., we can write:

M T mzm
k:L' — , ky o , kz — ,
a b C

My T

The integer numbers m,, m,, m, are called mode numbers,

important for shape of cavity !

It means that a half wave length \/2 must always fit exactly the

size of the cavity.



Allowed modes

'Modes’ in cavities

T
Allowed
Allowed
Not allowed e

1 1 1 1
0 0.2 0.4 0.6 0.8 1
a

> Only modes which ’fit’ into the cavity are allowed

>A—Q A @ A a
2 T 4 2 1 2 0.8

> No electric field at boundaries, wave most have ”nodes” at

the boundaries



Fields in wave guides

Similar considerations lead to (propagating) solutions in
(rectangular) wave guides:
E, = Eyo - cos(ky) - sin(kyy) - e F=77wb)
Ey = Eyo - sin(kzx) - cos(kyy) - g Hkzz—wl)
E. =i- E.-sin(ksz) - sin(kyy) - e "F=77"

B, = l(Eyokz — E.oky) - sin(kex) - cos(kyy) - e “(F==7)
W
1 . —i(kyz—wt)
By, = —(F.oks — Exokz) - cos(kzx) - sin(kyy) e 7
W
1 —i(kyz—wt)
B, = — (Fxoky — Eyokz) - cos(kzx) - cos(kyy) - e 77

7-W



The fields in wave guides

Magnetic

field Magnetic
field
s \V—

“ , Electric
= field
-
s
~}~ Electric
TE mode field TM mode

Magnetic flux lines appear as continuous loops
Electric flux lines appear with beginning and end points

> Electric and magnetic fields through a wave guide
> Shapes are consequences of boundary conditions !

> Can be Transverse Electric (TE, no E-field in z-direction) or
Transverse Magnetic (TM, no B-field in z-direction)



Consequences for wave guides

Similar considerations as for cavities, no field at boundary.

We must satisfy again the condition:
2

2 2 2 w
ki +ky + k==

This leads to modes like:

The numbers m,, m, are called mode numbers for planar waves

in wave guides !



Consequences for wave guides

Re-writing the condition as:

Propagation without losses requires k., to be real, i.e.:

w? My T My T

)+ (=)

which defines a cut-off frequency w.. For lowest order mode:

> ky + ky = (

c? a
W, = =
> Above cut-off frequency: propagation without loss

> Below cut-off frequency: attenuated wave (means it does not

”really fit” and k is complex).



Other case: finite conductivity

Starting from Maxwell equation:

—

Tz dD __
VXH—] + at

Wave equations:

—

E — E_’Oei(wt—g-f)’ H — ﬁoei(wt—z.z)
We have:

Put together:

kxH = ioc-E — we-E = (ioc —we)- E



Finite conductivity - Skin Depth

Starting from:

kxH = ic-E — we-E = (ic —we)-E
With B = u H:

VxE = —ikxE = —28 = —u%—fl = —wpuH

Multiplication with k:

kx (kxE) = wulkx H) = wplic — we) - E

After some calculus and E | H 1 k:

k* = wu(—ioc + we)



Finite conductivity - Skin Depth

With:

k? = wu(—ioc + we)

For a good conductor o > we:

2 o~ —iwpo = ko~ JHEI(1—-4) = $(1—1)

=

§ = /= is the Skin Depth

WwHo




Attenuated waves - skin depth

N
N
N
~
~
~
~
~
1/e S

Skin Depth

~ -
-
-~
ol L

> Waves in conducting material are attenuated

> Defines Skin depth (attenuation to 1/e)

> Wave form: '@t — ko) — pilwt — (A=9)z/8) _ =5 ,ei(wt—%)



Skin depth - examples

Skin Depth versus frequency

100 T
Copper —_—

gold
Stainless steel -
1+ Carbon (amorphous) _
0.01 | S -
E ~
- 0.0001 |- S~ -
[<5) S h
— le-06 TSN e B
= TN e
e
le-08 - S e -
le-10 S~
~_
le-12 L L L
1 100000 le+10 le+15 le+20

Frequency (Hz)

> Copper: 1 GHz ) ~ 2.1 yum, 50 Hz ¢ ~ 10 mm
> Gold 50 Hz § ~ 11 mm
> Q1l: why do we use many cables for power lines 77

> Q2: why are SC cables very thin ?



Skin Depth - beam dynamics

For metal walls thicker than § we get Resistive Wall

Impedances, see later on collective effects.

Z(w) o § o< w /2
> Largest impedance at low frequencies

> Cause longitudinal and transverse instabilities (see later)



Done ...
Review of basics and Maxwell’s equations
Lorentz force
Motion of particles in electromagnetic fields
Electromagnetic waves in vacuum

Electromagnetic waves in conducting media
> Waves in RF cavities
> Waves in wave guides

> Penetration of waves in material

To make things easier:

say ”good bye” to Maxwell and ”hello” to Einstein ...




- BACKUP SLIDES -



Scalar products

Define a scalar product for (usual) vectors like: a - b,

a = (xaayaaza) 6 — (:vaybazl)

S|
Sy

— (xaayaaza) ) (wbaybazb) — (aja Ty T Yo Yp T Za ‘Zb)

This product of two vectors is a scalar (number) not a
vector.

(on that account: Scalar Product)

Example:
(—2,2,1) - (2,4,3) = —2-24+2-4+1-3 = 7



Vector products (sometimes cross product)

Define a vector product for (usual) vectors like: @ x b,

a = (xaayaaza) g — (xbaybazb)

—

= (TasYa>Za) X (v, Yb, 2p)

a X
:(ya°zb_za'yga §a°xb_xa°zga \xa'yb_ya'wlz)

Lab Yabd Zab

This product of two vectors is a vector, not a scalar
(number), (on that account: Vector Product)

Example 1:

(—2,2,1) x (2,4,3) = (2,8,-12)

Example 2 (two components only in the = — y plane):
(—-2,2,0) x (2,4,0) = (0,0,—12) (see R. Steerenberg)



Is that the full truth ?

Magnetic field (B)

. — —— —

—

electron

If we have a circulating E-field along the circle of radius R ?
== should get acceleration !

Remember Maxwell’s third equation:

%EJF - _ 4 [ 5.ai
C dt A
dd
—-I)nrREy = — —
e di



Motion in magnetic fields

This is the principle of a Betatron
> Time varying magnetic field creates circular electric field !

> Time varying magnetic field deflects the charge !

For a constant radius we need:
2

m - v p
R € ¢ R
0 1 dp
B — “r
ot () e- R dt

=» B(r,t) = QWRQ//BCZS

B-field on orbit must be half the average over the circle

=P Betatron condition



Some popular confusion ..

V.F.A.Q: why this strange mixture of E,ﬁ,é,ﬁ 77

Materials respond to an applied electric E field and an applied
magnetic B field by producing their own internal charge and
current distributions, contributing to E and B. Therefore H and
D fields are used to re-factor Maxwell’s equations in terms of

the free current density 5 and free charge density p:

O

_ 5 4
NO_’ .
= ¢l + P

M and P are M agnetization and Polarisation in material



Boundary conditions for fields

-] Material 1 Material 2
€1 M1 € Mo

/Et

d

What happens when an incident wave ([3@) encounters a

boundary between two different media 7

> Part of the wave will be reflected (X,), part is transmitted
(K+)

> What happens to the electric and magnetic fields ?



Boundary conditions for fields

Material 1 Material 2 Material 1 Material 2
€1 My € M2 €1 My €2 Mz
A Et ‘ Dt
—>En —»Dn

Assuming no surface charges:

> tangential E-field constant across boundary (E1; = FEa)

> normal D-field constant across boundary (Di, = Dan)




Boundary conditions for fields

Material 1 Material 2 Material 1 Material 2
€1 My € M2 €1 My €2 Mz
A H¢ ‘ B¢
Hn B
— —— -

Assuming no surface currents:

> tangential H-field constant across boundary (Hi¢ = Hoa;)

> normal B-field constant across boundary (Bi, = Bay)




