Leak Detection

Kirsten Zapfe, DESY CAS Vacuum in Accelerators Platja D'Aro, May 21, 2006

Special thanks to S. Holm, N. Mildner and A. Wagner

THE CERN ACCELERATOR SCHOOL

Outline

- Introduction
- Leak Rate and Leak Types
- Leak Detection Methods
- Helium Leak Detectors and Leak Detection
- Practical Experience and Examples
- He Leak Detectors State of the Art
- Concluding Remarks

Introduction

- Ideal vacuum chamber
 - maintain vacuum pressure forever after switching off pumps
- - outgassing and desorption
 - leaks

Leak Rate

No vacuum system completely leak tight weet even not necessary

specify acceptable leak rate in order to reach required pressure

$$Q_l = V \frac{\Delta p}{\Delta t}$$

	mbar·l/s	Torr·l/s	Pa⋅m³/s	cm³/s
mbar·l/s	1	0.75	0.1	0.99
Torr·l/s	1.33	1	0.133	1.32
Pa⋅m³/s	10	7.5	1	~10
cm³/s	1.01	0.76	0.101	1

Leak Rate

Examples

high vacuum (HV-) system

 $Q_{I} < 10^{-6} \text{ mbar} \cdot \text{l/s} \rightarrow \text{very tight}$ $Q_{I} < 10^{-5} \text{ mbar} \cdot \text{l/s} \rightarrow \text{tight}$ $Q_{I} < 10^{-4} \text{ mbar} \cdot \text{l/s} \rightarrow \text{leaky}$

small channels

Diameter of hole	Leak rate	
0.01 mm (hair)	10 ⁻² mbar·l/s	
10 ⁻¹⁰ m = 1 Á	10 ⁻¹² mbar·l/s	

• $Q_1 = 10^{-10} \text{ mbar} \cdot 1/\text{s} = 10^{-10} \text{ cm}^3/\text{s}$

→ 1 cm³ gas needs 317 years to flow through leak!

Leak Types

Fixed connections

- brazed, welded, glued
- glass-metal, ceramics-metal

• Pores (mechanical, thermal stress), hair cracks

- always present must be small enough
- Flanged connections
- Cold/warm leaks (reversible) at extreme temperatures

Virtual leaks

- excavations, etc. needs long time to pump
- Indirect leaks from e.g. supply lines
 - cooling water
 - gas/liquid supply lines (He, N₂) for cryogenic systems

- rubber seals
 - Perbunan (2·10⁻² mbar·l·mm/s/m²): HERA insulating vacuum tank 2·10⁻⁵ mbar·l/s/m

avoid potential leaks already during design and fabrication!

Leak Detection Methods

Goals:

localize leak

determine leak rate (locally/total)

various methods

Mechanical effects

ultra sound

 \rightarrow Q_I > 10⁻² mbar·l/s

bubbles

 \rightarrow Q_I > 10⁻⁴ mbar·l/s

Leak Detection Methods

Pressure increase

Modification of physical properties of residual gas

changing gas composition at leak (tracer gas)

- heat conductivity (tracer: alcohol/CO2, detector: Pirani gauge)
- ionization cross section (tracer: e.g. Ag, detector: ion gauge, sputter ion pump)

•....

Leak Detection Methods

Mass of residual gas

- ➡ tracer: He (Ar, air)
- detector: mass spectrometer
- most sensitive method (10⁻¹² mbar·l/s)

Tracer Gas

Properties

- unambiguous signal in RGA
- inert gas (chemically, physically)
- non explosive, not harmful
- cheap
- Iow content in air
- easy to pump/no contamination of vacuum system

Helium most commonly used

- $v_{He} = 3 \cdot v_{air} \rightarrow 3$ times more sensitive than air
- diameter comparable to lattice constant (1 Å)

Argon

- larger content in air (1 %)
- mixed signature in RGA
 - Ar^{+:} mass 40, hydrocarbons
 - Ar⁺⁺: mass 20, ²⁰Ne, ¹⁸OH₂

He Standard leak rate (He Std: Δp = 1 bar)

Helium Leak Detectors

- Operating pressure p < 10⁻⁴ mbar
- In principle any type of RGA possible
- Most sensitive/safe mmss spectrometer with 180° magnetic sector field
 - optimized for mass 4 (3,2)

CAS Vacuum in Accelerators, Leak Detection, Platja d'Aro, May 21, 2006

History of Helium Leak Detectors

• 1910 Thomson

• first mass spectrometer (Ne)

• 1942/43 Manhatten Project

- Uranium enrichment
 - He mass spectrometer leak detector by A.O. Nier (1947)
 - made out of glass → very fragile

• 1950's, 1960's

- first metallic version by General Electric (GE)
- first compact units with pump station (200 kg)

• ~1975

- counter-flow method
 - already proposed 1967/68 by Becker (Pfeiffer)
 - Vienna conference 1977 Briggs (Varian)
 - adequate turbomolecular pumps on the market

Sensitivity

- 1945 → 10⁻⁶ mbar·l/s
- 1970 → 10⁻⁹ mbar·l/s
- today → 10⁻¹² mbar·l/s

1960/Atlas MAT CH-4

Helium Leak Detection

• Tracer probe

- gas penetrating into the system
- pumped via detector

vacuum systems

total leakage measurement

leak location

Helium Leak Detection

Detector probe

- system filled with test gas
- detector (sniffer) connected to leak detector
 - capillary to reduce pressure 1 bar → 10⁻⁴ mbar
 - detection limit 10⁻⁷ mbar·l/s (He content of air)

pressurized systems

Direct Flow Method

$$Q_{He} = p_{He} \cdot S_{eff}$$
, He

- p < 10⁻⁴ mbar to start leak check
- high sensitivity >> low S_{eff,He} with high pumping speed for water

Counter Flow Method

• He partial pressure reduced by turbomolecular pump

$$Q_{He} = p_{He} \cdot S_{eff}$$
 , He $\cdot K$

 other gases suppressed more strongly (compression factor K)
example K_{He} = 50 K_{H2O} = 4000 → factor 80 suppressed

 $K_{H20} = 30.000 \Rightarrow$ factor 600 suppressed

Advantages

- no cold trap needed
- start at high pressure possible ($p \cong 10^{-1}$ mbar)

Disadvantages

- less sensitive than direct flow (1·10⁻¹⁰ mbar·l/s)
- dirty pump connected to system
 - second turbomolecular pump
 - two stage turbomolecular pump

Characteristics

Ultimate sensitivity

- partial pressure sensitivity of detector
- He pumping speed of system

 $Q_{He} = p_{He} \cdot S_{eff, He} \cdot K$

Adjustment and stability

- zero line
 - drifts from electronics
 - adjustment before measurement and regular checks necessary
- calibrated leaks
 - regular checks and readjustment necessary

Detection limit

- Helium background signal
 - He entering via exhaust line into roughing pump
 "stored" in pump oil counteract: gas ballast to flush roughing pump
 - He entering through leaks or O-rings

Leybold/ Grundlagen der Vakuumtechnik

Characteristics

• Warm up time

- stable operation of mass spectrometer
- Response/recovery time

CAS Vacuum in Accelerators, Leak Detection, Platja d'Aro, May 21, 2006

Practical Experience and Examples

Proper choice of leak detector

- sensitivity/speed
 - leak check of welds during fabrication
 - final leak check prior to installation
- O-ring/metal seals
- volume to be leak checked
 - single component
 - vacuum section in accelerator
- documentation

HERA (1992)

Practical Experience and Examples

Systematic work necessary

- check leak detector first
- reduce gas flow from He bottle
- search from top to bottom
- work against air flow in tunnel

Pump down curve

first hints for leak

• Take your time!

- small leak might initially be blocked by water
 - ➡ open up after sufficient pumping time or bake-out

N. Hilleret/CAS1999

Practical Experience and Examples

- Leak check prior to installation into accelerator
 - leak check of sealing surfaces → use metallic gaskets

100% check of components strongly recommended

- easier to find and repair leaks in lab
- leak check of large systems time consuming

Virtual Leaks

Excessive outgassing from

- excavations
- dead holes for screws
- narrow slits
- ...
- mostly poor design and/or poor manufacturing
- Pump down/pressure rise curve looks like leak
- No signal in leak detector
- Detection
 - RGA: check gas composition before and after venting with e.g. Ar
 - Ar enhancement after venting

Cold Leaks

Cooling to extreme temperatures o opening up of additional leaks

System cooled with liquid He (< 4.5 K)</p>

- He (partially) absorbed on cold walls
- leak detector/RGA to be operated at room temperature part
 - delay of He signal might be very long
- for leak check
 - warm up system to \cong 10 K
 - check He signal in leak detector
- Hot extractor gauges might be operated at liquid He temperatures
 - for large systems → several gauges
 - time profile of response signal

Cold leaks sometimes vanish after warm up!!!

Total Leakage Measurement

Vacuum method

- complete system enclosed by test gas
 - detection of very small leak rates (not location)
 - e.g. UHV components to be used in cold systems

Example

• HERA

beam pipe surrounded by liquid He (superconducting magnets)

- measure He signal during warm up with RGA
- → integral leak rate < 10⁻¹⁵ mbar·l/s at 4.5 K
- (D. Trines et al., HEAC 1992, Hamburg)

Total Leakage Measurement

Overpressure method

- fill system with several bar of test gas
 - e.g. process gas lines in vacuum tank

TTF/XFEL

He Leak Detectors - State of the Art

Very compact units

• portable!

 valve system to inject He at various locations of pumping system

Oil free pumps

triggered by semiconductor industry

Electronics equipped with semiconductors

- sensitive to radiation

He Leak Detectors - State of the Art

Sensitivity

- minimum detectable leak
 - 5.10⁻¹² mbar·l/s
 - sniffer: 5·10⁻⁸ mbar·l/s

• Tracer gas

- standard ⁴He
- optional: mass 2 (H₂), 3 (³He)

High degree of automation

- fast
 - start-up time ~ few min
 - response time < 1s</p>
- automated zero (floating zero)
- automated tuning and calibration

Concluding Remarks

Accelerator vacuum system

demanding requirements for leak tightness

• Diagnosis of acceptable leak rates requires

- adequate leak detection methods
- adequate leak detectors
- well trained personnel

Commercial leak detectors

- great progress in availability, performance and size since 1950
- mainly improvements in handling and automation during past 20 years
- available detectors fit to our demands
- Nevertheless ... finding and repairing leaks
 - time consuming process

prevent leaks during all stages of design, manufacturing and assembly