Large Systems Commissioning

Kirsten Zapfe, DESY CAS Vacuum in Accelerators Platja D`Aro, May 21, 2006

Special thanks to O. Gröbner

THE CERN ACCELERATOR SCHOOL

Outline

- Introduction
- Pump Down and Leak Check
- Components Check
- Bake Out
- Interlocks/Safety
- Cryogenic Systems
- First Beam
- Concluding Remarks

Accelerator vacuum system

static pressure dynamic pressure beam pipe aperture material rf shielding

Large systems

- length
- number of components
- complexity

Example

- LEP
 - 27 km circumference
 - ~ 2700 bellows
 - ~ 7000 feedthroughs
 - ~ 2200 pick-up connections
 - ~ 700 gauges
 - 130 sector valves
 - 520 roughing valves
 - 1900 sputter ion pumps
 - 13.000 flanged connections

TTF/FLASH

Pump Down and Leak Check

Proper fixture of components

- Ioose/fixed points
- bellows

check with RGA or pressure rise method

Leak Check

- gross check p < 10⁻⁴ mbar
- fine check $p < 10^{-6}$ mbar
 - flanged connections, ceramics, feedthroughs, windows
- equipment
 - mobile pump station with leak detector/RGA
- systematic work necessary
- switch of sputter ion pumps
 - avoid spoiling with He in case of leak

TTF/FLASH

Pump Down and Leak Check

Conditioning of vacuum system without beam

Bake Out

System check

- equipment (heaters, thermocouples, cabling)
- functionality
 reliable attachment of sensors
- heating process (ΔT /time, ...), automation
- interlock
 - power failure
 - failure of equipment
 - pressure rise/leak

Cooling of critical components

• magnets, monitors, etc.

During bake out

- avoid large temperature gradients
- check movement of components due to heating
- observe pressure for leaks

Components Check

Vacuum equipment

- correct allocation
 - components → cables → electronics
 - display on computer
- functionality of pumps, gauges, valves, etc.

Vacuum control

- remote operation of components
- functionality
- add/improve handling options
- modify/integrate additional parameters

TTF/FLASH

Components Check

Movable elements (collimators, diagnostics, ...)

- correct path length
- end switches
- remote operation
 - check for pressure increase during movements

Special equipment of experiments

• e.g. gas inlet systems

Final alignment

- be careful shifting components under vacuum
 - temporarily unfixed components

Interlocks/Safety Checks

Self safe operation of system

failing of equipment (pumps, gauges)

- pressure increase
- failing of equipment (pumps, gauges)
- switching off equipment
- Fast shutters/delay lines

prepare adequate tools for check-out in advance

TTF/FLASH

Interlocks/Safety Checks

Beam interlocks

- linear accelerator
 stop beam production
- storage rings → dump beam

Different modes of beam operation

- injection
- user beam lines

Interlocks connected to other systems

- diagnostics
- experiments

TTF/FLASH

Cryogenic Systems

Superconducting magnets

 beam pipe partially surrounded by liquid helium e.g. Tevatron, HERA, RHIC, LHC

Heat Exchanger Pipe

Beam Pipe

Cryogenic Systems

• Superconducting accelerating structures (cavities)

cavities = beam pipe surrounded by liquid helium
e.g. Tristan, LEP, CEBAF, TTF/FLASH, XFEL, ...

Special insertions for superconducting wigglers, experiments etc.

Cold Beam Vacuum Systems

Leak check of final connections

- flanges, in-situ welds
- no leak check under cold conditions possible
 - extreme care necessary, e.g. integral leak check

Cold Beam Vacuum Systems

Pressure before cool down

- permanent pumps (e.g. sputter ion pumps)
 - HERA: p ~ 10⁻⁶ mbar
- no active pumping after pump down
 - RHIC p < 10⁻² mbar

HERA

Cold Beam Vacuum Systems

Cool down

● beam pipe = cryo pump → pressure drop

Measure integral leak rate and wall coverage

HERA RT ➡ 4.5 K

• release of gas during warm up measured with RGA

Segmentation

- distance of vacuum barriers has increased with time
 - HERA 🛏 20 m
 - RHIC → 500 m
 - LHC → 200 m

Insulation Vacuum sectorization:

→ larger distance = increased complexity for commissioning

LHC ARC: CRYOGENIC AND INSULATION VACUUM BASELINE DESIGN

Pump down

- equipment
 - start with large roughing pumps
 - sufficient mobile pump stations necessary
- initial pump down dominated by large amounts of water from super insulating foils
 - be prepared for frequent maintenance of roughing pumps
 - eventually flushing with N₂

Example

first pump down takes a long time

Leak check of air leaks

- equipment sufficient granularity important
 - leak detectors at mobile pump stations and/or directly attached to tank
 - → base pressure usually not sufficient for RGA
 - gauges
- He background in tunnel may be significant
 - leaks from cryogenic He supply lines
 - no exhaust line for roughing pumps
 - → HD as alternative to He as tracer gas
- dead time could be significant
- large leaks are not exceptional
 - at high pressure small leaks are not detectable
 - needs to repair large leaks first
 - → repeat complete leak check

Leak check of air leaks (cont'd)

- O-rings
 - permeation determines detection limit for leaks
 - permeation takes time
 - → might simulate leak due to delay in signal

Leak check of process lines

- equipment
 - same as for leak check of insulating vacuum
 - leak detectors/gauges
 - sufficient He compression in case of He leaks necessary
- with insulating vacuum pumped down
 - pump out process lines
 - background level
 - pressurize one line after the other e.g. HERA: 15 bar He

LHC

Cool down

- check for movement of components due to shrinkage of materials
- pressure drop
 - 10⁻³ mbar required before cool down
 - 10⁻⁶ mbar required for routine operation
 - ➡ remove part of mobile pump stations
- check for condensation/freezing of water
 - thermal bridges
- monitoring of He signal
 - leaks from process lines
 - ➡ locate after warm up
 - ➡ cold leaks

4.5 K

Leaks which can not be localized or repaired

- He leaks
 - inside magnets, cavities, ...
 - ➡ add pump stations at insulating vacuum
- air leaks
 - flanges on insulating tanks, ...
 - ➡ glue, rubber mastic ...

b) Additional pump station at leaky section

Observe also beam vacuum

- during leak check of process lines
- during cool down
- direct leaks from (liquid) He at sc. cavities/ sc. Magnets
- leaks against insulating vacuum
- combined leaks:

process lines

- insulating vacuum
- 🛏 beam vacuum
- less critical if leak against insulating vacuum
- not so nice >> He leaking into beam vacuum
 - → supply sufficient pumping speed for He
 - e.g. sputter ion pump with enhanced He pumping speed
 - e.g. charcoal (RHIC)

First Beam

• First passage of beam ...

... possible reasons if the beam does not pass

- closed valves
- obstacles, e.g. rf fingers
- ...
- proper functioning of magnets, etc.
- Check heating of components
 - proper rf-shielding
 - proper cooling (synchrotron radiation)

First Beam

- Beam life time
- Beam-gas effects

Pressure behavior

- thermal heating
- photon-induced desorption

Conditioning of vacuum with beam

cleaning of surface → beam scrubbing

Concluding Remarks

Sufficient time for systems tests necessary

- installation of vacuum system is one of the final steps of accelerator installation
- time slot often reduced due to delays of preceding steps
- pump down can not really be speed up

proper planning of commissioning = part of vacuum system planning

Courtesy to A. de Zubiaurre Wagner