

Vacuum gauges for the fine and high vacuum

Karl Jousten, PTB, Berlin

1. Measurement of vacuum pressures and the calibration chain

2. Overview of measurement principles and gauge types

3. Direct gauges, indirectly measuring gauges

4. Accuracy of vacuum gauges

The definition of pressure *p*:

Time

Length

It follows one of the measurement principles.

This is a traceable instrument usable as primary standard

Error: A wrong reading of a gauge. A deviation from a true value defined by the SI units.

Uncertainty: The possible *range* by which a reading *may* not reflect the true value defined by the SI units.

Traceability and primary standards

Fully developed primary standards partly developed standards

Best accuracy available

Relative uncertainties of pressures in primary standards

Traceability and primary standards

The mercury U-tube exists since Torricelli (1644). It is still the most accurate vacuum gauge > 100 Pa (1 mbar)!

Mechanical gauges

3 Groups:

1. Ref.side p_{atm} and contains meas.dev.

- 3. Ref.side p=0 and contain meas.dev.
- 2. Ref.side p=0, meas.dev. on test side (1)

Mechanical gauges: Bourdon gauges

2 Photo cells Light source Amplifier Mirror Coils Precise $p_{\scriptscriptstyle { m ref}}$ Resistor Quartz spiral 10,0000 p_{mess} Voltmeter

Mechanical gauges: Bourdon gauges

Mechanical gauges: Bourdon gauges

Piezoeffect used by membrane

PB

Piezoresistive effect

Capacitance diaphragm gauge

Sensitivity of deflection: 0.4 nm!

Membrane (INVAR, Ceramic): as low as 25 µm.

Two improve zero stability: 2 capacitors plus thermostated housing

Electrical block diagram of capacitance diaphragm gauge

Thermal transpiration effect

Thermal transpiration effect

Resonance Silicon Gauges

Designed by MEMS

Heat conductivity through a gas

Uncertainties due to the physical principle of measurement

Example: Pirani gauge

Electrical circuit for Pirani gauge

Constant temperature

Constant heating voltage, current, or power

Mikro Pirani (MEMS manufactured) by MKS

Heated sheet 60°C

MEMS: higher Knudsen number, no convection

Correction factor for helium for 4 different Pirani gauges

Experimental standard deviations of repeat calibrations for 4 different Pirani gauges at various pressures

#	Gauge	s in %		
		0,05 mbar	3 mbar	30 mbar
1	Pfeiffer TPR 280	0,19	0,13	0,09
2	Thyracont VSP52	0,06	0,35	3,30
3	MKS 925C	0,10	0,12	0,19
4	Leybold TTR91	0,03	0,09	0,12

Thermocouple gauge

Viscosity

$$p = \sqrt{\frac{8kT}{\pi m}} \cdot \frac{\pi d\rho}{20\sigma} \left(\left(\frac{\dot{\omega}}{\omega} \right) - RD(\omega) \right)$$
Wand

Sprinning rotor gauge

Sprinning rotor gauge

- •No gas consumption (e.g. by ionization)
- •No dissociation (hot cathode)
- •Low outgassing rate
- •Predictable reading
- •High accuracy
- •High long-term stability

Ionisation

Ionization gauges for different vacuum ranges

Ionisation gauges for fine vacuum

$$I(\mathcal{X}^{-1}) = I_0(\mathcal{X}^{-1})e^{-S\Phi nL}$$
$$p = \frac{kT}{S(T)\Phi(\mathcal{X}^{-1} - \mathcal{X}_0^{-1})L}\ln\left(\frac{I_0(\mathcal{X}^{-1})}{I(\mathcal{X}^{-1})}\right)$$

Previous investigations showed that TDLAS is applicable for vacuum measurement:

CO, mid-infrared (5 μ m), resolution down to 10⁻⁵ Pa, high accuracy.

Reasons for inaccuracies of vacuum gauges

General	Example
Uncertainties due to calibration chain	Has the vacuum gauge been ever calibrated? Against what standard?
Uncertainties due to installation	Pressure at gauge position may not reflect the pressure where the experiment takes place.
Uncertainties due to operation	Outgassing of an ion gauge may falsify an outgassing rate measurement.
Inaccuracies caused by the physical principle of measurement	Thermal conductivity or ion gauge is used, but gas mixture is not (accurately) known.
Uncertainties caused by the device itself	See Table 2.

Reasons for inaccuracies

Gas species dependence:

Real total pressure only for force/area measuring gauges and > 100 Pa (1 mbar)! Below 100 Pa consider the thermal transpiration effect.

Spinning rotor gauges: Use a weighted mean mass, if approximate relative composition is known. $(n - 1)^2 = n$

$$m_{eff} = \left(\sum_{i=1}^{n} a_i \sqrt{m_i}\right)^2 \qquad \sum_{i=1}^{n} a_i = 1$$

Thermal conductivity gauges and ionisation gauges : Scaling factors are available, but do have high uncertainties.

$$CF_{eff} = \sum_{i=1}^{n} a_i CF_i$$

General	Examples
Offset measurement	residual drag in SRG, zeroing of Pirani gauge, X-ray- and ESD-effect for ion gauges
Offset instability (drift)	Offset drifts with environmental temperature (Piroutte effect in SRG), bridge is no more balanced with time
Resolution	Number of digits shown
Influences of environment (mainly temperature)	Enclosure temperature of Pirani changes varies, thermal transpiration effect changes in CDG, amplifier changes amplification
Non-Linearity	Ion gauge (sensitivity changes with pressure)
Integration time (scatter of data), repeatibility	Same signal at repeat measurements? Integration time in SRG, in picoammeter with ion gauge.
Reproducibility (stability of calibration constant)	Calibration constants change with time.
Hysteresis	Mechanical gauges (up, down measurement)
Prior usage, cleanliness	Surfaces change, accommodation coefficients change, secondary yield changes

Uncertainties due to the vacuum gauge itself

Table: Relative measurement uncertainty of commercially available vacuum gauges.

Gauge type	Measurement	Normal	Optimum range	Lowest
	range in Pa	uncertainty	in Pa	uncertainty
Piston gauges	1010 ⁵		10^210^5	10^{-4} 10^{-5}
Quartz-Bourdon-manometer	10^310^5		10^310^5	$3x10^{-4}$ $2x10^{-4}$
Resonance silicon gauges	$10 \dots 10^5$	0.003 0.0005	$100 \dots 10^5$	$2x10^{-4}$ $5x10^{-5}$
Mechanical vacuum gauge	$10^2 \dots 10^5$	0.10.01		
Membrane vacuum gauge	$10^2 \dots 10^5$	0.10.01		
Piezo	$10^2 \dots 10^5$	10.01		
Thermocouple gauge	$10^{-1} \dots 10^2$	1 0.3		
Pirani gauges	$10^{-1}10^4$	1 0.1	1 100	0.02 0.01
Capacitance diaphragm gauges	$10^{-4} \dots 10^{5}$	0.1 0.003	$10^{-1} \dots 10^{5}$	0.006 0.001
Spinning rotor gauges	10 ⁻⁵ 10	0.1 0.007	$10^{-3} \dots 10^{-1}$	0.0060.004
Penning gauges	10 ⁻⁷ 1	0.5 0.2	10 ⁻⁵ 1	0.30.1
Magnetron gauges	10 ⁻⁸ 1	10.1	10 ⁻⁶ 1	0.10.02
Ionisation gauges (Emission cathodes)	$10^{-10} \dots 10^{-2}$	10.05	$10^{-8} \dots 10^{-2}$	0.20.02

How accurate are vacuum gauges ?

Lowest relative uncertainties for vacuum gauges and primary standards Errors > 100 % (error factor > 1) are possible.

Todays commercial gauges

Pirani gauge

Old classical gauges:

Gauge head + controller

Today: Active gauges or transmitter (all in one)

or

Digital gauges (digital output via interface)

Todays commercial gauges

Profibus Converter

Todays commercial gauges

Commercial "active" Line vacuum gauges

Fine and high vacuum gauges

We have discussed:

Metrological system - primary standards- calibration chain Measurement principles and gauges Direct, indirect measuring gauges Sources of uncertainties with values from 0.001% up to 100% or factor

Thanks for listening !

CAS_2006