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OUTLINE

• Introduction

The interplay between technology development for the big machines of physics 

and the advancement of vacuum science

• Accelerators from the Lawrence Cyclotrons to the Large Hadron Collider

• Magnetic fusion from the “Perhapsatron” to ITER

• Gravity wave observatories  (LIGO, VIRGO )come on-line
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UHV/XHV TECHNOLOGY 
DEVELOPED FOR THE BIG MACHINES

• Vacuum vessel designs

• Vessel joining techniques

• High performance vacuum materials

• Cleaning and conditioning procedures

• Vacuum instrumentation

• Vacuum pumps

• Vacuum system controls
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EARLY HISTORY OF ACCELERATORS
(PRE-UHV ERA)

• G. Ising linear accelerator concept (1924)

• R. Wideroe’s demonstration (1928)

• 50 keV K+

• Cockcroft and Walton (1932)

• 400 keV H+ — Li

• Lawrence’s first cyclotron (1932)

• 1.2 MeV H+

• “Livingston” Curve (1960)
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LIVINGSTON CURVE

The "Livingston Curve" of the evolution 
of accelerator performance (1954), 
update by G. Krafft, Jefferson Lab 
(2003).
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FIRST GENERATION OF ACCELERATORS
G. Ising’s pioneering RF Linear Accelerator (1924)

R. Wideroe demonstrated device in 1928 with 50 keV K+
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WIDEROE’S MEASUREMENTS
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COCKCROFT-WALTON
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STORAGE RINGS

• First driver for incorporating UHV in accelerator designs

• Proposed by Gerald K. O’Neill in 1956 (a)

• Store particles injected from an accelerator into a system of guiding/focusing 

magnets

• Converts the Ecm of beam-fixed target to a much higher Ecm with colliding 

beams (Kerst, 1956)(b)

(a) G. K. O’Neill, Phys. Rev. 102, 1418 (1956)
(b) D. Kerst et al., Phy Rev. 102, 590 (1956)
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STORAGE RINGS

• O’Neill (1956) estimated that storage times would be “a few seconds” in the 
typical high vacuum environment

• O’Neill (1958)

“If vacuum technology already developed in thermonuclear
power research. . .” were employed (10-8 - 10-9 torr) storage 
times would be hours

• Constructed the “Stanford-Princeton storage rings” at Stanford from 1959-62

• Performed poorly because unable to maintain UHV with appendage oil 
diffusion pumps
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STANFORD-PRINCETON STORAGE RING 
(1959 – 62)
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STORAGE RING MILESTONES
• G.K. O’Neill design papers 1956-58

• ADA (Frascati)

• First e- stored 1961

• First e+e- collisions 1963

• Stanford-Princeton (SLAC) e--e- collider 1963

• CEA (Cambridge) 1965

• ISR (CERN) p-p collider 1971

• SPEAR (SLAC) e+e- 1972

• SPS (CERN) first p-p- collider 1981

• LEP (CERN) 30 km e+e- 1989

• SSC (Texas) 100 km p-p- collider RIP

• LHC (CERN) 30 km p-p collider 2007
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SYNCHROTRON LIGHT SOURCE 
DEVELOPMENT
• First observations of synchrotron emission, 1947

Pollack et al., G.E., 70 MeV synchrotron

• Early studies as “parasitic” uses on high 1950-60s

energy machines

• First dedicated light source: Tantalus 1968

240 MeV storage ring (Wisconsin)



May 2006CERN Accelerator School

SYNCHROTRON LIGHT SOURCE
CHRONOLOGY

• First generation light sources (parasitic) 1970s
• CEA (Cambridge)
• SPEAR (SSRL)
• SURF (NBS)
• DORIS (Hamburg)
• VEPP (Novosibirsk)

• Second generation light sources (dedicated) 1980s
• SRS (Daresbury)
• LURE (Orsay)
• Photon Factory (KEK)
• NSLS (BNL)
• BESSY (Berlin)
• Alladin (Wisconsin)

• Third generation light sources 1990s
• ESRF (Grenoble)
• ALS (LBL)
• APS (ANL)
• SPring 8 (Japan)
• SRRC (Taiwan)



May 2006CERN Accelerator School

LBL 184” CYCLOTRON



May 2006CERN Accelerator School

LBL ADVANCED LIGHT SOURCE
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STORAGE RING DEVELOPMENTS

• Storage ring vessels are long, skinny and highly conductance limited 

—> problems could not be solved by pumping alone

• Innovations necessary to meet performance and cost goals:

• Vessel design/fabrication 

• Vessel conditioning (pre-fab and in-situ)

• Distributed pumping

• Radiation absorbers
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LIGHT SOURCE VACUUM CHAMBER
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STORAGE RING UHV REQUIREMENTS

UHV conditions and UHV surface conditioning techniques are mandatory for long 

storage times (~ hrs.) and stable high current beams (~ 0.1 A)

• proton  rings

• low pressure to minimize Coulomb scattering

• clean surfaces to minimize ion-induced desorption

• e-, e+ rings

• low pressure to minimize bremsstrahlung loss on residual gas nuclei 

τΒ~ Xo/mp

• clean surfaces to minimize synchrotron radiation induced desorption
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STORAGE RING DEVELOPMENTS
• Vessel design/fabrication

• Extruded aluminum, multichamber vessels
• SPEAR (SLAC, 1971)
• NSLS (BNL, 1982)
• LEP (CERN, 1988)
• APS (ANL, 1997)

• Joining techniques
• Aluminum conflats (KEK, APS)
• Al/stainless steel bonds (SPEAR, NSLS)

• Distributed vacuum pumping
• In-situ ion pumps (high B-field operation) (SPEAR, DORIS)
• In-situ NEG’s (LEP)

• Vacuum materials/components
• High power radiation absorbers (Cu/C)
• Be windows
• All-aluminum UHV components
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ACCCELERATORS, THE CURRENT 
GENERATION

CERN, showing 
the LEP/LHC ring

(CERN)
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LEP VACUUM HISORY
Vacuum performance of LEP during its 10 
years of operation, courtesy of O. Gröbner, 
CERN.
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CONDITIONING TECHNIQUES DEVELOPED
FOR STORAGE RINGS
• Pre-Treatments

• High temperature vacuum bake

• Alkaline detergent cleaning /etching

• Ar, Ar/O2 glow discharge cleaning

• In-situ Treatments

• Vacuum bake

• N2 purge/bake

• Beam conditioning (photo-induced desorption)
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INTERSECTING STORAGE RING (ISR) AT CERN

• First proton storage ring

• Two intersecting rings, 1 km in circumference for protons with E ~ 28 GeV, 
Ip ~ 20 A

• Ring vacuum was originally specified at 10-9 torr:  

• ~ 10-10 torr was required in ring

• minimize Coulomb scattering

• minimize ion-induced desorption

• ~ 10-11 torr was required at intersection point

• minimize noise induced in detectors by gas scattering

• Ref:  E. Fischer J. Vac. Sci. Tech. 9, 1203 (1972)

Jpn. J. Appl. Phys. Suppl. 2, 199 (1974)
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ISR
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ISR EFFORTS

• Brute Force

• All stainless steel vessel (2 km) with 6000 conflat flanges

• 300 triode ion pumps (400 ll/s/s); 70 TMP stations

• 500 modulated BA gauges, 36 RGAs

• SS vessel in-situ bakeable to 300°C

• Innovations

• Prebake of SS sheet stock for vessels at 900°C in vacuum for 2 hours to 

lower hydrogenic content (10x)

• Developed Ar/O2 glow discharge cleaning



May 2006CERN Accelerator School

COLD BORE MACHINES

• (SSC),  LHC present(ed) special challenges w.r.t. vacuum design because 
of the cold (4.2-1.8 K) beam pipe

• With p > 10-10 torr, excessive beam scattering and heat load on cryostat

• Requires liner to absorb synchrotron radiation and distributed H2 pump 
between liner and beam tube

Problems:

• Nature of photodesorption at 1.8-4.2 K

• H adsorption/desorption kinetics at low temperatures

• Simplified, cost-effective liner design
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LHC VACUUM CHAMBER
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SUPERCONDUCTING RF ACCELERATORS
• SRF cavities operational and being installed in numerous machines for:

• RF power savings

• CW operation

• Low impedance structures

examples:  TRISTAN, DESY, CEBAF, LEPII, SNS ( ILC)

• 30+ years of development have produced cavities with acceleration gradients 

> 25 MV/m

• Success tied to careful attention to:

• Surface treatment

• Contamination control

• Vacuum integrity
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Superconducting RF cavities

1.5 GHz from Jefferson Lab
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BIGGER SPARKS IN THE VACUUM

The development of SRF acceleration cavities has pushed the state 
of the art for sustained (cw) fields across an evacuated electrode 
system

Applications:
- the International Linear Collider at TeV energies 
- high power (JLab) and short wavelength (x-ray) FELs

(DESY and SLAC)

(DESY)

(DESY)
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NEXT GENERATION LIGHT SOURCES

• X-Ray Free Electron Lasers using Self Amplified Stimulated Emission (SASE)

• LCLS (Stanford)

• DESY (Hamburg)

• Energy Recovered Linac Light Sources

• Jefferson Lab  - FEL

• Cornell and Daresbury Lab



May 2006CERN Accelerator School

10 kW IR and 1 kW UV
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The Next Generation Large Accelerator:ILC

Major international 
collaboration at work 
on R&D for ILC:
•Minimizing cost of 20 km of 
superconducting linac

•Conceptual design of 
accelerator, detector complex

•$10B cost range
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EARLY HISTORY OF MAGNETIC FUSION

Lyman Spitzer’s Project Sherwood (1952)   Spitzer, Tuck, Post, York

- What’s the problem:  H + D → He4 + n + 14 MeV

1. Plasma confinement

2. Plasma heating

3. Plasma fueling

4. Impurity control

- After 50 years                            Lawson

but nothing was easy!

τE ≥ 1 s

nH >1014cm−3

Ti ≥10keV

nτTi ≅0.5−0.8

“Lawson Criterion”
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PLASMA CONFIGURATIONS
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LAWSON CURVE

The "Lawson Criterion" for energy 
gain in D-T plasmas, courtesy D. M. 
Meade, Princeton Plasma Physics 
Laboratory, reprinted from Ref. 93 
with permission. 
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PRINCETON PIONEERS
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PLASMA CONFIGURATIONS OF THE FIRST 
FUSION DECADE

Model A Stellarator Princeton  1953

• Perhapsatron Los Alamos  1952

• Table Top Livermore  1953

Model C Stellarator Princeton  1958

• First UHV machine

• Suffered from poor confinement (τ ~ µs)

• Stainless steel vessel, bakeable to 450°C

• Gold-wire sealed

• Hg diffusion pumped
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MODEL A STELLARATOR (PRINCETON, 1960)
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MODEL C STELLARATOR (PRINCETON)
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L. ARTSIMOVITCH (KURCHATOV)
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MAGNETIC FUSION MILESTONES

• The primordial Tokamak T-3 1965

• Artsimovich’s Western Tour 1969

First Generation (Western) Tokamaks

• ST (Princeton) 1970

• ORMAK (ORNL) 1971

• Doublet (General Atomics) 1971

• ATC (Princeton) 1972

• Alcator-A (MIT) 1972

• Pulsator (Garching) 1974

• DITE (Culham) 1976

• JFT (JAERI) 1976

• TFR (Paris) 1974
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MAGNETIC FUSION MILESTONES

• Second Generation Tokamaks

• PLT (Princeton) 1975

• T-10 (Kurchatov) 1976

• ISX (ORNL) 1977

• D IIA (General Atomics) 1975

• PDX (Princeton) 1980

• ASDEX (Garching) 1981

• Alcator-C (MIT) 1984
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PDX TOKAMAK (PRINCETON)
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• Mirror Machines
• Baseball (LLNL) 1966
• TARA (Wisconsin, MIT) 1982-1988
• TMX, TMX-U (LLNL) 1987
• MX/MFTF-B (LLNL) 1987 (RIP)

• Field Pinches
• Zeta (Culham) 1957
• Syllac (LANL) 1971
• ZT-40  (LANL) 1985
• S-1 Spheromak (Princeton) 1981

• Stellarators, Other Toroidal Conf.
• Helitron (Japan) 1984
• Wendlestein-III (Garching) 1982
• EBT (ORNL) 1973
• ATF (ORNL) 1988

MAGNETIC FUSION:
ALTERNATIVE FIELD CONFIGURATIONS
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MIRROR MACHINES
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MAGNETIC FUSION MILESTONES

• Third Generation Tokamaks

• TFTR (Princeton) 1982

• JET (Culham) 1983

• JT-60 (JAERI) 1983

• D-III D (General Atomic) 1986

• PBX (Princeton) 1986

• Alcator-C Mod (MIT) 1992

• TORE-SUPRA (France) 1987
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TFTR (PRINCETON)
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JET (CULHAM)
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VESSEL SIZES

PDX/PBX 1979 36 m3

ASDEX 1980 40 m3

TFTR 1982 86 m3

JET 1983 200 m3

TMX-U 1984 225 m3

MFTF-B 1987 6500 m3

ITER (1993 Design) 650 m3
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CONTRIBUTIONS OF MAGNETIC FUSION
R&D TO UHV TECHNOLOGY

• Large (> 1000 m3) vacuum vessel design, fabrication, and hardware

• Large diameter bakeable seals and valves

• High speed turbo-, cryo- and getter pumps

• Surface conditioning techniques

• Materials development for high heat load structures

• Gas-flow and pressure instrumentation for severe environments
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Zr Al GETTERS IN TFTR
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FIRST WALL ARMOR (PDX)
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FIRST WALL ARMOR (PDX)
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NEUTRAL BEAM STOP (UNINTENTIONAL)
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PUMP DEVELOPMENT FOR MAGNETIC FUSION
• High speed turbo pumps

• in use - 3500 kl/s

• designs for 5—50 kl/s

• modifications for radioactive (T3) gases, remote maintenance

• modifications for magnetic environments

• ceramic bearings, ceramic rotors

• magnetic bearings

• High speed cryopumps

• large area LN2, LHe panels needed for neutral beam systems

ex:  TFTR 31 m2 S >106 l/s 

• in-vessel cryopumps being tested for divertor pumps in 

• D III D (1993)

• JET (1994)



May 2006CERN Accelerator School

CRYOPUMPS FOR NEUTRAL BEAMS
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PUMP DEVELOPMENT FOR MAGNETIC 
FUSION, CONT’D

• High Speed Getter Pumps (> 105 l/s )

TSP DCX 1957

PDX 1981

ZrAl TFTR 1984
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LARGE VACUUM VESSELS FOR
MAGNETIC FUSION
• Unique mechanical constraints because of:

• size

• temperature cycles

• electromagnetic loading

• diagnostic access

• Large area (~m2) gate valves

• Large area (~m2) bakeable seals
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IMPURITY AND PARTICLE CONTROL
• Conditioning Procedures

• Significant efforts devoted toward vacuum vessel and “first-wall” surface 
conditioning to obtain pure hydrogenic plasmas
• H2 and He glow discharge cleaning
• Higher power pulse discharge cleaning

• First-Wall Materials Development
• As device power increased, high heat load structuring (director plates and 

limiters) and the vacuum vessel had to be protected by low Z, refractory 
materials
• Graphite, c/c composites
• Be
• αBC, αSic films

• Particle Control
• Plasma edge density (fueling/exhaust) modified by pumping limiters or 

directory
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ENERGY BREAKEVEN DEMONSTRATIONS (Q = 1)

• JET:  1992 and 1995-96

• TFTR:  1993 - 94

• Tritium delivery, inventory control and recovery

• Supporting Studies on the Road to the D-T Reactor

• D III D, Alcator-C Mod, JT- 60 U
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THE NEXT STEPS

• The Proto-Reactor:  ITER

• 103 s plasma burn

• Director pumping/He exhaust

• T recovery from Li- blankets

• Remote maintenance of the first  wall

• Site Selected in 2006 (Caderache)

• International engineering teams being assembled
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ITER
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GRAVITY WAVE OBERVATORIES

• LIGO (USA)

4  X 4 km

• VIRGO (Italy)

2 x 3 km

• TAMA (Japan)

2  x 300 m

• GEO 600 (UK/Germany)

2 x 600 m

• Extremely tight specifications on hydro carbon outgassing (< 10-14 t-l/s cm2) 
due to light scattering

• LIGO has obtained HC outgassing (< 10-16 t-l/s cm2) after 400C/150 C bakes 
(R Weiss)
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LIGO
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LIGO END STATION
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EPILOGUE

• Over the past 50 years key scientific advances and technical developments 
were needed for the vacuum environment for the “big machines” devoted to 
frontier physics research:

• Accelerating and storing particle beams
• Heating and confining high temperature plasmas
• Laser interferometers for detecting gravity waves

• These advances have fed-back into many other fields of research
and practical applications

• Will the next generation of these machines be built
(ILC, ITER, LIGO-II)

so that this important pathway of technology development and transfer 
continues?
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