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Evolution of SASE FELs  

 First SASE FEL (12 µm wavelength) was put in operation at the UCLA (University of California, 
Los Angeles) in 1997.  

 During the next decade there was permanent (nearly exponential) progress in the reduction of 
the wavelength. Milestones we achieved by Argonne National Laboratory (LEUTL, down to 385 
nm), DESY (TTF FEL, FLASH, down to 4.x nm in the fundamental, and 1.6 nm in the 5th 
harmonic), SLAC (LCLS, down to 0.12 nm in the fundamental harmonic), SACLA (down to 0.07 
nm ).  

 Several projects of hard x-ray FELs are on track: SwissFEL, PAL XFEL, European XFEL. 
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1997/1998: UCLA/LANL/RRCKI/SLAC experiment 
on a high-gain SASE FEL 

1998: publication in PRL of two papers on  UCLA/LANL/RRCKI/SLAC experiment 
raised hot debates in the FEL community: 
 
Measurements of High Gain and Intensity Fluctuations in a Self-Amplified, Spontaneous-
Emission Free-Electron Laser  (Phys. Rev. Lett. 80 (1998) 289) 
M. Hogan, C. Pellegrini, J. Rosenzweig, G. Travish, A. Varfolomeev,* S. Anderson, K. Bishofberger, 
P. Frigola, A. Murokh, N. Osmanov,* S. Reiche, and A. Tremaine 
Department of Physics and Astronomy, UCLA 
(Received 1 July 1997) 
 
Measurements of Gain Larger than 105 at 12 mm in a Self-Amplified Spontaneous-Emission 
Free-Electron Laser (Phys. Rev. Lett. 81 (1998) 4867) 
M. J. Hogan, C. Pellegrini, J. Rosenzweig, S. Anderson, P. Frigola, and A. Tremaine 
Department of Physics and Astronomy, UCLA 
C. Fortgang, D. C. Nguyen, R. L. Sheffield, and J. Kinross-Wright 
Los Alamos National Laboratory 
A. Varfolomeev, A. A. Varfolomeev, and S. Tolmachev 
RRC–Kurchatov Institute, Moscow, Russia 
Roger Carr 
Stanford Synchrotron Radiation Laboratory 
(Received 29 April 1998) 
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1997/1998: UCLA/LANL/RRCKI/SLAC experiment 
on a high-gain SASE FEL 

E.L. Saldin, E.A. Schneidmiller and M.V. Yurkov,   
Numerical simulations of the UCLA/LANL/RRCKI/SLAC experiment on a high-
gain SASE FEL, Nucl. Instrum. and Meth. A 429 (1999) 197-201:  
 

4. Conclusion 
In conclusion, we should like to point out that there is no doubt that the 
UCLA/LANL experiment [1] is a proof-of-principle of a high-gain SASE FEL. Even 
though it was performed at a relatively long wavelength, the physics of its 
operation is described with the same equations as future VUV and X-ray SASE 
FELs. All the simulations presented in this paper have been performed with the 
simulation code developed for simulation of short-wavelength SASE FELs. It is 
seen that there is good agreement between theoretical predictions and 
experimental results, which forms a reliable base for the future design of short-
wavelength SASE FELs. 
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1997/1998: UCLA/LANL/RRCKI/SLAC experiment 
on a high-gain SASE FEL 

M. Hogan et al., Phys. Rev. Lett. 81 (1998) 4867 E.L. Saldin, E.A. Schneidmiller and M.V. Yurkov, 
Nucl. Instrum. and Meth. A 429 (1999) 197 

More details can be found in: The Physics of Free Electron Lasers (Springer-Verlag, 1999) – 
Chap. 6.4 is devoted to analysis of the experiment using methodology described here.  
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Outline 
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FEL, optical replica synthesizer, undulator tapering for efficiency 
increase, reverse undulator tapering, harmonic lasing and harmonic 
lasing self-seeding, external seeding developments.   



TESLA, ILC, FLASH, European XFEL 
  

• FLASH (Free-electron -LASer in Hamburg) is a 
superconducting linear accelerator with free electron laser 
for radiation in the vacuum-ultraviolet and soft X-ray range 
of the spectrum. 

• It originated from the TTF (TESLA Test Facility), which was 
built in 1997 to test the technology that was to be used in 
the planned linear collider TESLA, a project which was 
replaced by the ILC (International Linear Colider).  

• At FLASH technology for the future-project European XFEL 
is tested as well as for the ILC.  

• Five scientific  instruments have been in use since the 
commissioning of the facility in 2004.  

• Second stage, FLASH2 is under commissioning now. First 
lasing has been obtained in August, 2014, and first user 
operation started in 2016.  

FLASH was leading SASE FEL 
facility during last decade. 
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1994: start of the TESLA Test Facility FEL 

TTF FEL, Pase 1: proof of principle experiment of SASE FEL in the VUV (270 MeV, 80 nm) 
TTF FEL, Phase 2: 6-120 nm & upgrade for the self-seeding option (1 GeV, 6 nm) 
Linear collider with integrated x-ray laser facility  

Bjoern Wiik, 1994 
TTF FEL at Expo 2000 
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1994-2001: TESLA Test Facility FEL, Phase 1 
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Energy                            270 MeV 
Rep. rate                          1-5 Hz 
Macropulse duration       1 ms 
Micropulse rep. rate      2.25 MHz 

Period   2.73 cm 
Module length  4.5 m 
Number of modules  3 
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2001: TESLA Test Facility FEL, Phase 1 
Pioneer user’s experiments 

H. Wabnitz et al.,  Nature, 420, 482-485 (2002): Coulmb explosion of clusters  

λ = 98 nm,  W=100 TW/cm2 

Jacek Krzywinski et al.: Au film (15 nm) on Si substrate irradiated by a single  SASE pulse  
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2005: VUV FEL (FLASH)  
First soft x-ray FEL user facility 
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FLASH facility in 2016 
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FLASH facility in 2016 

Linac:  SRF burst, 1 msec x 10 Hz  
  Energy  [GeV] 0.5-1.25 
  Length [m] 315  
Undulators: 
 Period Length 
  FLASH1:  2.73 cm 27 m (6 x 4.5 m modules)   fixed gap 
  FLASH2:  3.14 cm 30 m (12 x 2 m modules)    variable gap 
Radiation:  
  Wavelength [nm] 4.1-55 (FLASH1), 3.x-8.x (FLASH2) 
  Up to 0.8 W average radiation power 
  Up to 1 mJ average radiation pulse energy 
  A few 10 fs to a few 100 fs pulse duration 
  A few GW peak radiation power 
  Up to 5000 pulses per second 

FLASH1 

FLASH2 
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DESY areal view in August, 2015 

PETRA III: East Hall, Max von Laue Hall (left), Nord Hall (left) 
FLASH: 1.25 GeV SC linac, FLASH and FLASH2 experimental hall (center) 
European XFEL: AMTF, cryogenic plant and injector (top-right) 



M.V. Yurkov, Experience from FLASH: FEL Theory versus Experiment, CERN Accelerator School on FELs and ERLs, 31 May – 10 June, 2016 

Outline 
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Analysis of experimental results 
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Step 1: Analysis of physical parameters 
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Step 2: Quick calculation of main FEL characteristics 
1D Handbook 

Simple and physically transparent 1D formulae are useful for educational purpose.    
However, accuracy of estimations is poor (no energy spread and emittance effects).  
There is no hint on power of diffraction effects and spatial properties of the radiation.  
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Step 2: Quick calculation of main FEL characteristics 
3D fitting formulae 

Fitting formulae by Ming Xie: 
  
- Gain length; 
- Saturation length; 
- Saturation power.  
 
Physical model: axisymmetric electron beam, diffraction, energy spread, betatron oscillations, 
detuning. 
____________________ 
 
Fitting formulae for optimized SASE FEL by ES&MY: 
 
- Gain length and saturation length; 
- Saturation power, radiation pulse energy; 
- Radiation spot size and divergence; 
- Radiation pulse duration; 
- Coherence time and spectrum width;  
- Number of modes in the radiation pulse and fluctuations of the radiation pulse energy;  
- Degree of transverse coherence; 
- Brilliance.  
 
Physical model: axisymmetric electron beam, diffraction, energy spread, betatron oscillations.  
SASE FEL is tuned to maximum gain of the fundamental radiation mode. 
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Step 2: Quick calculation of main FEL characteristics 
Fitting formulae by Ming Xie 

Ming Xie,  
Exact and variational solutions of 3D eigenmodes in high gain FELs, Nucl. Instrum. and Meth. A  445 (2000) 59; 
Design optimization for an X-ray free electron laser driven by SLAC linac, 1995 Particle Accelerator Conference  

Gain length, saturation length, saturation power in 3D case in all parameter space: 
diffraction, energy spread, betatron oscillation, detuning 
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21 Step 2: Quick calculation of main FEL characteristics 
Fitting formulae for optimized SASE FEL 
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22 Step 2: Quick calculation of main FEL characteristics 
Fitting formulae for optimized SASE FEL 
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Step 2: Quick calculation of main FEL characteristics 
Fitting formulae for optimized SASE FEL at saturation 

E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov, Opt. Commun. 281(2008)1179; 281(2008)4727 ; New Journal of Physics 12 (2010) 035010; 
E.A. Schneidmiller, M.V. Yurkov, Proc. FEL2012 Conference, MOPD06. 
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24 Step 4: Simulations with S2E beam simulation tools 
and time-dependent FEL simulation codes 
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2001: TESLA Test Facility FEL, Phase 1 
Saturation: Phys. Rev. Lett. 88(2002)10482 

Photon 
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undulator rf-gun 
FEL 

beam 

Tail particle, more momentum 
Head particle, less momentum 

• The feature of TTF FEL was strongly nonlinear 
beam formation system.  

• As a result, short spike in the head of electron 
bunch produced SASE FEL radiation.  
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TESLA Test Facility FEL, Phase 1 
Saturation: Phys. Rev. Lett. 88(2002)10482 

• Electron beam diagnostics at TTF did not allow to perform all required slice 
measurements of the electron beam parameters.  

• Within uncertainty range of the electron beam parameters it was possible to select 
those which were consistent with measured FEL gain curve and fluctuations.  

• Measured divergence of the radiation and spectrum were visibly wider than 
theoretical values.  
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2001: TESLA Test Facility FEL, Phase 1 
First iteration: Phys. Rev. Lett. 88(2002)10482 

Difference in angular divergence  
indicates on difference in the spatial 
structure of the radiation at the undulator 
exit. 

 Visible disagreement between 
experimental and simulated spectra is a 
clear indication for higher value of beam 
current, or for large energy chirp along 
the bunch. 

experiment 

simulations 
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• To find the origin of difference between measured and simulated FEL parameters we launched 
dedicated study of the chain of simulation procedures from the cathode, trough the whole 
accelerator, and with final simulations of FEL performance with time-dependent FEL code 
FAST (M. Dohlus et al., Nucl. Instrum. Meth. A 530 (2004) 217).  

• Our finding was strong influence of the space charge effects in the process of the formation of 
lasing spike: 
 
 
missed in original studies which happened due significant overestimation of the slice energy 
spread at the exit of the electron gun.  

2001: TESLA Test Facility FEL, Phase 1 
Extended analysis: Nucl. Instrum. Meth. A 530 (2004) 217 

  ASTRA (DESY)   - beam tracking with space charge (gun, ACC, drifts) 
  elegant (Argonne Natl. Lab.)   - electron beam tracking in BC (including CSR) 
  FAST (DESY/JINR)   - time-dependent simulations of SASE FEL 
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2001: TESLA Test Facility FEL, Phase 1 
Extended analysis: Nucl. Instrum. Meth. A 530 (2004) 

217 

Start-to-end-simulations 

Spectra Angular divergence  Experimental data 

 It turned out that energy chirp along the lasing part was responsible for (1) widening 
of the spectrum, and (2) distortion of the beam radiation mode due to significant 
chirp on a scale of coherence length. 
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Production of ultra-short radiation pulses 

• The program for production of ultra-short electron pulses at FLASH has been launched 
several years ago by DESY and Hamburg University.  

• Experiment has been performed on January, 11, 2013. Some results are presented at the 
FEL 2013 Conference: 
 

J. Roensch-Schulenburg, E. Hass, A. Kuhl, T. Plath, M. Rehders, J. Rossbach, G. Brenner, C. 
Gerth, U. Mavric, H. Schlarb, E. Schneidmiller, S. Schreiber, B. Steffen, M. Yan, M.V. Yurkov, 
Short SASE-FEL Pulses at FLASH, Proc. FEL2013 Conference, New York, USA, 2013, tupso64. 
http://accelconf.web.cern.ch/AccelConf/FEL2013/papers/tupso64.pdf 
 
Extended analysis  have been presented at the IPAC2016 Conference (report ID: MOPOW013). 
Good agreement between simulation and experimental results is observed. 
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Production of ultra-short radiation pulses 
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Production of ultra-short radiation pulses 
Parameters of the electron bunch for simulations 

Measured parameters of the electron bunch were used  
as input for SASE FEL simulation: 
 
Reference electron energy: 689 MeV 
Reference peak beam current: 685 A 
Bunch charge: 70 pC 
Bunch profile: LOLA measurements 
rms normalized emittance: 0.8 mm-mrad – 1 mm-mrad 
Energy chirp: 10 keV / fs along lasing fraction 
Bunch head is on the right-hand side 
 
Optics in the undulator:  
 
- Assumption for an ideal tuning (periodic solution) 
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Production of ultra-short radiation pulses 
FAST: Average radiation energy and fluctuations  

Experimental data: 
After 4th module (20 m): 2.1 uJ and 40% 
After 6th module (30 m): 25 uJ and 12.5%  

FAST: curves derived from 120 shots 
Average energy in the radiation pulse 
Deviation of energy fluctuations 

FAST: 
After 4th module (20 m): 2.3 uJ and 39.6% (800 sh.) 
After 6th module (30 m): 30 uJ and 10.5% (120sh.)  
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Production of ultra-short radiation pulses 
FAST: Radiation spectra 

Averaged and single shot spectra 
Points of output: 4th mod. (z = 20 m) and 6th mod (z = 30 m) 
 
Experimental data for FWHM specrum width: 
After 4th module (20 m): 0.32% 
After 6th module (30 m): 0.46%  

Red: FAST, 4th module 
Green: FAST, 6th module 
Blue: FLASH, 6th module 

FAST 
6th mod. 

FLASH 
6th mod. 
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Production of ultra-short radiation pulses 
Single-shot pulse energies in the linear regime (after 4 modules) 

Red curve is averaging over 50 shots. 
Blue curves present gamma distribution. 
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FLASH: Transverse coherence and pointing stability 

Energy  [GeV] 0.5-1.25 
Wavelength [nm] 4.1-55 (FLASH1)  
   3.x-8.x (FLASH2) 
Pulse energy [uJ]               up to 1000 
Rep. rate  [Hz] 5000 
Undulators 
 Period Length 
FLASH1:  2.73 cm 27 m (6 x 4.5 m modules)   fixed gap 
FLASH2: 3.14 cm 30 m (12 x 2 m modules)    variable gap 

Observation at FLASH:  
• The degree of transverse coherence is visibly less than unity in the post-saturation regime 
• Transverse shape of the photon pulse is not stable.  
• Pointing stability is not perfect. 
• Pointing stability degrades for shorter photon pulses.  

FLASH experiment :      2006            2015    



M.V. Yurkov, Experience from FLASH: FEL Theory versus Experiment, CERN Accelerator School on FELs and ERLs, 31 May – 10 June, 2016 

FLASH: Transverse coherence and pointing stability 

Parameter space of FLASH: 
Large values of diffraction parameter (B = 10 - 25) and “cold” electron beam. 
Mode degeneration effect is strong (gain of TEM10 mode is 0.8 – 0.83 of the fundamental TEM00).  
Contribution of the first azimuthal mode to the total power is 10 to 15%. 
Result: unstable shape and pointing of the photon pulse.  

FLASH: experiment 

FLASH: FAST simulations 
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40 

FLASH: Transverse coherence and pointing stability 

Evolution of the intensity distribution in the far zone along radiation pulse.   

FLASH: FAST simulations 
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Photon and electron beam diagnostics at FLASH 

Electron beam:  
 

Electron beam energy. 
Measurements of the bunch charge with toroids and rf techniques. 
Measurements of orbit.  
Longitudinal phase space tomography with transverse deflecting cavity. 
Transverse phase space tomography with screens. 
 

Photon beam: 
 

Average radiation pulse energy with gas monitor detector (GMD). 
Single pulse energy and statistical measurements with MCP based detector. 
Single shot spectra with plane grating monochromator (PGM). 
Single shot radiation pulse profile with CeYaG screen (qualitative data). 
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43 
Statistical fluctuation method 

C. Behrens et al., Phys. Rev. ST Accel. Beams 15, 030707 (2012) 
E.A. Schneidmiller and M.V. Yurkov, Proc. IPAC2016, MOPOW013.  

V. Ayvazyan et al., Pys. Rev. Lett. 2002 
S. Ackermann et al., Nature Photonics 1 (2007) 346.  

Degree of transverse coherence  (red)  
FEL power (blue).  
Circles:  the ratio of fluctuations of the 
total radiation energy to the fluctuations 
of the radiation energy in a pinhole. 
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44 Statistical fluctuation method 
Coherence time. Pulse duration 

C. Behrens et al., Phys. Rev. ST Accel. Beams 15, 030707 (2012) 
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45 Statistical fluctuation method 
Degree of transverse coherence 

Experimental results from FLASH1, 01.05.2016 
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46 Statistical fluctuation method 
Gaiting of machine fluctuations 

Example from: C. Behrens et al., Phys. Rev. ST Accel. Beams 15, 030707 (2012)  
 

Pyrodetector 
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Statistical fluctuation method 
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Outline 

I. Introduction to FLASH facility.  
II. Practical guide on analysis of SASE FEL operation. 
III. TESLA Test Facility FEL, Phase I: nonlinear compression and 

production of ultra-short radiation pulses. 
IV. Present day performance of FLASH: (i) Example from the program for 

production of ultra-short radiation pulses; (ii) Transverse coherence 
and pointing stability.  

V. Development of statistical methods for measurements of the main 
parameters of SASE FEL radiation.  

VI. Advanced developments: FIR undulator, 
optical afterburner for SASE FEL, optical 
replica synthesizer, undulator tapering for 
efficiency increase, reverse undulator 
tapering, harmonic lasing and harmonic lasing 
self-seeding, external seeding developments.   
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FIR undulator at FLASH: tool for femtosecond 
resolution pump-probe experiments 

 
  

FIR 

To pump-probe 
experiment 
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FIR undulator at FLASH: tool for femtosecond 
resolution pump-probe experiments 

 
  

•Two beams (FIR and soft X-ray) were transported about 100 m via separate beam 
lines and combined in time and space. Measured timing jitter was less than 5 fs rms. 

•Currently dedicated beamline and user station at FLASH serve pump-probe user 
experiments using precisely synchronized FIR and x-ray pulses.  

Courtesy of Ulrike Frühling 

FLASH: 13.5 nm  
FIR: 85 µm 
Gas: Krypton (4p) 
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Optical afterburner for SASE FEL at FLASH 
 
  

• Electron beam produces x-ray modulation in main undulator and gains mean spiky 
energy loss on a scale of coherence length.  

• This energy loss is converted to the current modulation in the dispersion section.  
• Optical replica of X-ray pulses is produced in the radiator.  
• X-ray pulse and optical replica are naturally synchronized.   

E.L. Saldin, E.A. Schneidmiller, and M.V. Yurkov, Phys. Rev. ST Accel. Beams 13 (2010) 030701. 
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Optical afterburner for SASE FEL at FLASH 
 
  

FIR 

To pump-probe 
experiment 

M. Foerst et al., Optical Afterburner for a SASE FEL: First Results from FLASH, 
Proceedings of IPAC2011, San Sebastian, Spain, 2011, THPC084, p. 3089. 
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Optical afterburner for SASE FEL at FLASH 
On-line monitoring of x-ray pulse duration 

 
  

• “Visualization” of X-ray pulse, i.e. translating its width and shape into optical range 
(making “optical replica”). 

• On-line measurement with FROG or similar devices of optical replica. 

SASE at 8 nm, FIR undulator at 800 nm  
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Optical replica synthesizer (ORS) 
Slice diagnostics of electron beam parameters 

 
  Optical replica synthesizer •Main purpose: measurements of electron 

bunch profile with  a few femtosecond 
resolution. Envelope of optical pulse 
produced ORS repeats envelope of the 
electron pulse, and is analysed with 
standard optical techniques like frequency 
resolved optical gating (FROG).   
 

•Future potential: organization of pump-
probe experiments with 10 fs temporal 
resolution. 

•Pump-probe experiments involving VUV 
radiation and external fs laser. Optical replica 
is used for selection of synchronized pulses. 
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Advanced developments 
Undulator tapering for efficiency increase 

• Optimum conditions of the undulator tapering assume the starting point to be by two field gain 
lengths before the saturation point (corresponding to the maximum brilliance of the SASE FEL 
radiation). 

• Saturation point on the gain curve is defined by the condition for fluctuations to fall down by a 
factor of 3 with respect to their maximum value in the end of exponential regime.  

• Then quadratic law of tapering is applied (optimal for moderate increase of the extraction 
efficiency at the initial stage of tapering). 

Use of statistical measurements for tuning optimum undulator tapering: 

Experimental results from FLASH 2, January-May 2016 
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Advanced developments 
Reverse undulator tapering 

E. Schneidmiller and M. Yurkov, Phys. Rev. ST-AB 110702(2013)16  

reverse-tapered planar undulator (saturation)     helical 
afterburner 

• Fully microbunched electron beam but strongly suppressed radiation power at the 
exit of reverse-tapered planar undulator 

• The beam radiates at full power in the helical afterburner tuned to the resonance 

Bunching and power at saturation   Relative increase of the saturation length   

b   - bunching factor (0<b<1) 
- normalized power (efficiency) 
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Advanced developments 
Reverse undulator tapering 

• Beam energy 720 MeV,  
• Wavelength 17 nm. 
• Reverse taper of 10% along 10 

undulator segments; 
• The gap of the 11th and 12th 

segments was scanned.  
• Power ratio of 200 was obtained. 

For a helical afterburner it would 
be larger by a factor of 2.   

Experiment at FLASH2 on 23.01.2016 

reverse-tapered undulator “afterburner” 

≈ 200 
(x 2) 

E. Schneidmiller and M. Yurkov, Proc. IPAC2016, MOPOW008 
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Advanced developments 
Harmonic lasing self-seeding (HLSS) 

exponential gain saturation 
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Advanced developments 
Harmonic lasing self-seeding (HLSS) 

exponential gain saturation 

E. Schneidmiller and M. Yurkov, Proc. IPAC2016, MOPOW009 

Experiment at FLASH2 on May 1, 2016 (945 MeV, 400 pC, 7 nm): 
- Demonstration of harmonic lasing in a high-gain FEL; 
- Demonstration of HLSS scheme.  

  21 nm         7 nm 
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Seeding developments 

http://photon- science.desy.de/research/research_teams/x_ray_femtochemistry_and_cluster_physics/research/research_fields/hhg_seeding_at_flash/index_eng.html 

The FLASH facility comprises a 260m long tunnel housing the linac and undulators of 
the SASE FEL, followed by an experimental hall with photon beamlines. A 40m long 
section preceding the SASE undulators has been remodeled to accommodate 
additional undulators for sFLASH. Seed pulses from high-harmonic generation (HHG) 
in a building adjacent to the FLASH tunnel are aligned to the electron beam at a 
dogleg chicane (left). At the undulator exit, the electron beam will be displaced while 
FEL radiation is sent by mirrors to an experimental hutch. Delayed laser pulses will be 
sent directly to the hutch for pump probe applications (dashed line). Also shown are 
dipole magnets and steerers (yellow), quadrupoles (red) and devices for longitudinal 
bunch diagnostics (ORS, LOLA and TEO) 
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Seeding developments 

R&D is in progress 
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Seeding developments 

R&D is in progress 
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Summary 

• In this lecture we presented methodology of analysis of SASE FEL experimental 
results together with set of practical formulae for quick calculation of FEL parameters. 
An overview of perspective developments at FLAH has been presented as well. More 
deep details can be found in the recommended references.  

• Operation of SASE FEL has been illustrated with practical examples from FLASH free 
electron laser which is in operation since the year 2000. A lot of practical experience 
has been collected, and all key systems has been upgraded several times for the best 
performance.  

• Electron and photon beam diagnostics have been improved as well. An essential 
piece of diagnostics – statistical methods - is based on fundamental principles of 
SASE FEL physics.  

• We believe that FEL theory and practical simulation tools are on mature level - with 
well tuned systems FLASH demonstrate performance which is in good agreement with 
theoretical understanding of FEL physics, both, qualitative and quantitative. 

• Many perspective developments have been implemented at FLASH, but an essential 
number of them is still on waiting list. The reasons are (i) no space left for new 
installations; (ii) overbooking of the facility schedule, and strong competition for beam 
time.   

Thank you for your attention!       
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Backup slides 

FLASH: Transverse coherence and pointing stability: details 
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FLASH: Transverse coherence and pointing stability 

Energy  [GeV] 0.5-1.25 
Wavelength [nm] 4.1-55 (FLASH1)  
   3.x-8.x (FLASH2) 
Pulse energy [uJ]               up to 1000 
Rep. rate  [Hz] 5000 
Undulators 
 Period Length 
FLASH1:  2.73 cm 27 m (6 x 4.5 m modules)   fixed gap 
FLASH2: 3.14 cm 30 m (12 x 2 m modules)    variable gap 

Observation at FLASH:  
• The degree of transverse coherence is visibly less than unity in the post-saturation regime 
• Transverse shape of the photon pulse is not stable.  
• Pointing stability is not perfect. 
• Pointing stability degrades for shorter photon pulses.  

FLASH experiment :      2007            2015    
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FLASH: Transverse coherence and pointing stability 
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FLASH: Transverse coherence and pointing stability 

Parameter space of FLASH: 
Large values of diffraction parameter (B = 10 - 25) and “cold” electron beam. 
Mode degeneration effect is strong (gain of TEM10 mode is 0.8 – 0.83 of the fundamental TEM00).  
Contribution of the first azimuthal mode to the total power is 10 to 15%. 
Result: unstable shape and pointing of the photon pulse.  

FLASH: experiment 

FLASH: FAST simulations 
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FLASH: Transverse coherence and pointing stability 

Evolution of the intensity distribution in the far zone along radiation pulse.   

FLASH: FAST simulations 
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71 FLASH: Transverse coherence and pointing stability 
Recipes for improving transverse coherence 
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Backup slides 

FLASH: production of short pulses: details 
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Production of ultra-short radiation pulses 

• The program for production of ultra-short electron pulses at FLASH has been launched 
several years ago by DESY and Hamburg University.  

• Experiment has been performed in January, 2013. Some results are presented at the FEL 
2013 Conference: 
 

J. Roensch-Schulenburg, E. Hass, A. Kuhl, T. Plath, M. Rehders, J. Rossbach, G. Brenner, C. 
Gerth, U. Mavric, H. Schlarb, E. Schneidmiller, S. Schreiber, B. Steffen, M. Yan, M.V. Yurkov, 
Short SASE-FEL Pulses at FLASH, Proc. FEL2013 Conference, New York, USA, 2013, tupso64. 
http://accelconf.web.cern.ch/AccelConf/FEL2013/papers/tupso64.pdf 
 
Extended analysis  have been presented at the IPAC2016 Conference (report ID: MOPOW013). 
Good agreement between simulation and experimental results is observed. 



M.V. Yurkov, Experience from FLASH: FEL Theory versus Experiment, CERN Accelerator School on FELs and ERLs, 31 May – 10 June, 2016 

Production of ultra-short radiation pulses 
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Production of ultra-short radiation pulses 
Parameters of the electron bunch for simulations 

Measured parameters of the electron bunch were used  
as input for SASE FEL simulation: 
 
Reference electron energy: 689 MeV 
Reference peak beam current: 685 A 
Bunch charge: 70 pC 
Bunch profile: LOLA measurements 
rms normalized emittance: 0.8 mm-mrad – 1 mm-mrad 
Energy chirp: 10 keV / fs along lasing fraction 
Bunch head is on the right-hand side 
 
Optics in the undulator:  
 
- Assumption for an ideal tuning (periodic solution) 
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Production of ultra-short radiation pulses 
Analysis of physical parameters 



M.V. Yurkov, Experience from FLASH: FEL Theory versus Experiment, CERN Accelerator School on FELs and ERLs, 31 May – 10 June, 2016 

Production of ultra-short radiation pulses 
Analysis of physical parameters 

 
  

TEM00:  L_max = 0.36 (L_g_min = 190 cm, L_g_av = 200 cm)   for I = 700 A 
               L_max = 0.37 (L_g_min = 210 cm, L_g_av = 230 cm)   for I = 570 A 
• Fundamental TEM00 mode is expected to be dominant.    
• Contribution of the non-symmetric azimuthal modes is 2% in terms  
     of the radiation power at the saturation point. 
• Expected FWHM angular divirgence in the linear regime about 60 urad.   

 

M. Xie, Nucl. Instrum. and Methods A 445, 59 (2000). 
E.L. Saldin, E.A. Schneidmiller and M.V. Yurkov, Nucl. Instrum. and Methods A 475, 86 (2001). 
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Production of ultra-short radiation pulses 
Quick estimate of expected parameters with fitting formulae  
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Production of ultra-short radiation pulses 
Quick estimate of expected parameters with fitting formulae  
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Production of ultra-short radiation pulses 
FAST: Average radiation energy and fluctuations  

Experimental data: 
After 4th module (20 m): 2.1 uJ and 40% 
After 6th module (30 m): 25 uJ and 12.5%  

FAST: curves derived from 120 shots 
Average energy in the radiation pulse 
Deviation of energy fluctuations 

FAST: 
After 4th module (20 m): 2.3 uJ and 39.6% (800 sh.) 
After 6th module (30 m): 30 uJ and 10.5% (120sh.)  
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Production of ultra-short radiation pulses 
FAST: Effective power of shot noise and gain  

• Average gain is defined by the shape of the 
lasing fraction of the electron beam and 
bandwidth of SASE FEL of 1.3 x FEL 
parameter. Power gain length is 1.15 cm 
(green curve on the left bottom plot).   

• Effective power of shot noise of 14 W (SSY, 
The Physics of Free Electron Lasers) gives 
pulse energy of 3.5E-13 J for the pulse 
duration of 25 fs (bottom right plot). This value 
is consistent with simulation results.  
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Production of ultra-short radiation pulses 
FAST: Radiation spectra 

Single shot spectra 
FAST: points of output: 4th mod. (z = 20 m) and 6th mod (z = 30 m) 
FLASH: 6th module 
 
Experimental data for FWHM specrum width: 
After 4th module (20 m): 0.32% 
After 6th module (30 m): 0.46%  

FAST 
4th mod. 

FAST 
6th mod. 

FLASH 
6th mod. 
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Production of ultra-short radiation pulses 
FAST: Radiation spectra 

Averaged and single shot spectra 
Points of output: 4th mod. (z = 20 m) and 6th mod (z = 30 m) 
 
Experimental data for FWHM specrum width: 
After 4th module (20 m): 0.32% 
After 6th module (30 m): 0.46%  

Red: FAST, 4th module 
Green: FAST, 6th module 
Blue: FLASH, 6th module 

FAST 
6th mod. 

FLASH 
6th mod. 
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Production of ultra-short radiation pulses 
Single-shot pulse energies in the linear regime (after 4 modules) 

Red curve is averaging over 50 shots. 
Blue curves present gamma distribution. 
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Production of ultra-short radiation pulses 
Single-shot pulse energies in saturation (after 6 modules) 

Red curve is averaging over 50 shots. 
Blue curves present gaussian distribution. 
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