CERN Accelerator School on Free Electron Lasers and Energy Recovery Linacs

## **Photon Beam Transport**

Makina YABASHI RIKEN SPring-8 Center yabashi@spring8.or.jp June 8, 2016 @Hamburg

## **Initial Remarks**

- Photon beam transport = Photon beamline or X-ray beamline
- Not just "transport"
- Control & characterization of photon beam properties in 6-dimensional phase space (+ polarization)
- Key bridge & interface between accelerator and experiments

## Goal

- To provide key concepts on design and working principles of x-ray beamlines & optics
- To promote comprehensive understanding of both XFEL machine and x-ray beamline as a *light source complex*

#### Hard or Soft ?



#### Contents

- 1. Introduction: Brief history of photon beamlines for SR/XFEL
- 2. Preparatory: Phase space
- 3. X-ray optics
- 4. X-ray diagnostics
- 5. Design of beamline
- 6. Applications
  - 1. Photon-based undulator alignment
- 7. Summary

#### Prototypical photon beamline at 1<sup>st</sup> gen. synchrotron sources ('70~)

## Synchrotron Radiation as a Source for X-ray Diffraction

G. ROSENBAUM & K. C. HOLMES Max-Planck-Institut für Medizinische Forschung, Heidelberg

**Nature 1971** 

#### J. WITZ

Laboratoire des Virus des Plantes, Institut de Botanique de la Faculté des Sciences de Strasbourg, Strasbourg



Fig. 1 The F41 bunker at DESY and its position with respect to the synchrotron.

- Parasite to synchrotrons for high-energy physics
- Separation of experimental area from accelerator
- Key optics: monochromator (white spectrum of bending magnet source)



#### Beamline at 2<sup>nd</sup> gen. SR ('80~)

Photon Factory (KEK, Japan) Kohra & Sasaki, NIM **208** (1983) 23



- Facility dedicated for utilizing X-rays
- Establishment of basic scheme of beamline
- Development of various X-ray optics (e.g., monochromator, focusing mirrors)
- Common optics installed into "optics hutch"



K. Kohra, T. Sasaki / Present status of the Photon Factory



#### Beamline at 3<sup>rd</sup> gen. SR



SPring-8 (JP)

- Facility dedicated for utilizing undulator radiation at low-emittance storage ring
- Matured technologies
- "Coherence" much pronounced
- Higher quality required for x-ray optics to preserve coherent wavefront and to avoid speckles







**Front-end** 

#### **Beamline at XFEL**

- XFEL: Pulsed x-ray source with excellent transverse coherence
- Shot-to-shot changes in x-ray properties: photon diagnostics needed for conducting good experiments
- X-ray properties sensitive to machine parameters:
   BL provides useful information for achieving stable machine operation
- Enhanced connection between accelerator and BL



**Figure 3.** Photon diagnostic system on BL3. SCM1–8: screen monitor module; BM1,2: thin-foil beam monitor; WM: thin-foil wavelength monitor; GM: scattering-based gas monitor; SCM (MCP): screen monitor with a micro-channel-plate image intensifier.

#### Beamline configuration of SACLA XFEL Tono et al, New J Phys **15** (2013) 083035







# Summary: Development on x-ray beamline



### Contents

- 1. Introduction: Brief history of photon beamlines for SR/XFEL
- 2. Preparatory: Phase space
  - 1. Transverse phase space & coherence
  - 2. Longitudinal phase space
- 3. X-ray optics
- 4. X-ray diagnostics
- 5. Design of beamline
- 6. Summary

#### Phase space

Role of photon beamline: "Control & characterization of photon beam properties in 6-dimensional phase space (+ polarization)"



Longitudinal x 2

Frequency (=photon energy or wavelength)  $h\nu~$  (=hc/ $\lambda$ ) Time: t

Brilliance: photon density in 6-D phase space



- Area of ellipse is called emittance
- Emittance is conserved with optical transformation
- Minimum emittance:  $\Delta x \cdot \Delta \theta \sim C \cdot \lambda$  Diffraction-limited condition e.g., XFEL:  $\Delta x \cdot \Delta \theta \sim 10$  um. 1 urad~ 1e-11 um ~ 1 Å/4 $\pi$

#### Distribution in transverse phase space (x- $\theta$ )



#### **Transverse coherence**



Partially transverse coherence

#### **Distribution in longitudinal phase space**



- Minimum area:  $\Delta \omega \cdot \Delta t \sim \lambda / 2\pi$  Fourier-limited condition
- X-ray pulse can be compressed into very short duration ( $\lambda/c^{-1e-18}$  s = 1 as)

#### Short summary

 Phase space is a useful concept for intuitive understanding of photon beam properties and optics design

References:

- K. J. Kim, "Characteristics of synchrotron radiation" AIP Conf. Proc. 184 (1989)
   565: Excellent introduction of synchrotron light sources with usage of phase space
- M. Born & E. Wolf, "Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light," 7<sup>th</sup> ed. Cambridge University (1999); standard textbook on general optics and interference
- J.W. Goodman, "Statistical optics" A Wiley-Interscience Publication, New York, (2000); facilitate essential understanding of coherence and statistical optics
- A. Yariv & P. Yeh, "Photonics: Optical Electronics in Modern Communication (The Oxford Series in Electrical and Computer Engineering)", Oxford Univ. Press, (2006): One of the most standard textbooks on optics and beam physics

### Contents

- 1. Introduction: Brief history of photon beamlines for SR/XFEL
- 2. Preparatory: Phase space
- 3. X-ray optics
  - 1. Interaction of x-ray to matter
  - 2. Optical elements
  - 3. Function
- 4. X-ray diagnostics
- 5. Design of beamline
- 6. Summary

#### X-ray optics



X-rays: High penetration to materials Small (but non-zero) interactions with matters Design of x-ray optics is feasible, but not straightforward

We could not use magnetic forces

#### Major interactions of x-ray with matter



#### **Key optical property: Refractive index**



### Contents

- 1. Introduction: Brief history of photon beamlines for SR/XFEL
- 2. Preparatory: Phase space
- 3. X-ray optics
  - 1. Interaction of x-ray to matter
  - 2. Optical elements Reflective/Refractive/Diffractive
  - 3. Function
- 4. X-ray diagnostics
- 5. Design of beamline
- 6. Summary

# Reflective optics: Total reflection at surface with grazing angle incidence



Refraction angle: Snell's law 
$$n = \frac{\cos\theta_0}{\cos\theta}$$
  
Total reflection ( $\theta = 0$ ) with incident  
angle smaller than  $\theta_C$   
 $1 - \delta = \cos\theta_c = 1 - \frac{\theta_c^2}{2}$   
 $\rightarrow \theta_c = \sqrt{2\delta} \sim 1e-3$  (rad)  
Reflectivity/transmissivity at interface:  
Fresnel's formula  
 $\theta_0$   
 $\theta_$ 

 $\theta_{C}$ 

θ

#### **Reflective optics: X-ray mirror**

 $\theta_{C}$ ~ mrad

-> give small deflection angle to incident x-rays

(beam steering)

-> focusing with specific surface shape

-> long length required along the meridional direction (1 mrad x 1 m length = 1 mm acceptance)

$$\theta_{C} = \sqrt{2\delta} \sim \sqrt{\frac{2\lambda^{2} r_{e}(Z+f')N}{2\pi}} = A \cdot \lambda c \sqrt{\rho}$$

 -> Total reflection only for λ > λ<sub>C</sub> for fixed θ<sub>C</sub> (low-pass filter in frequency domain)
 -> reject higher harmonics or gamma-rays from source







#### **Diffractive optics**





Fresnel Zone Plate (FZP)



#### Grating



## Contents

- 1. Introduction: Brief history of photon beamlines for SR/XFEL
- 2. Preparatory: Phase space

#### 3. X-ray optics

- 1. Interaction of x-ray to matter
- 2. Optical elements
- 3. Function

Focusing/monochromator/speckle-free

- 4. X-ray diagnostics
- 5. Design of beamline
- 6. Summary

#### **Function of x-ray optics**

Tailor of photon beam properties in 6-dimensional phase space (+ polarization)



Longitudinal x 2

Frequency (=photon energy or wavelength) hv (=hc/ $\lambda$ )  $\leftarrow$  monochromator

Time: t Brilliance: photon density in 6-D phase space

### **Function (I): Focusing**

- Focusing capability is one of the most essential functions in x-ray microscopy and analysis

- Reflective, refractive, diffractive optics are used for focusing





- Smaller beam size, larger divergence (NA)  $\Delta x \cdot NA \sim \lambda$ 
  - → Large NA is required for generating small spot
     X-ray beam can be focused into small spot (~nm)

### Comparison

Reflective

Refractive

Diffractive



- High efficiency (R>70%)
- Achromatic
- Small spot (7 nm)
- Fabrication complexity
- Small deflection of exit beam



- Operation feasibility
- Tunable focal length with changing # of stack
- Prefer to high energy x rays (> 10 keV) for
   reducing absorption



- Utilized in various types of soft x-ray microscopy
- Variation in patterns for phase control
- Compact design
- Fabrication complexity
- Efficiency limited by diffraction
- Bandwidth:  $\Delta\lambda/\lambda \sim 1/N$

#### Trend of spot size



#### **Resolution Trend of X-ray Microbeam**

Courtesy of Dr. Yoshio Suzuki

## **Focusing with mirrors**

- Total reflection only working at grazing incidence condition
- Combination of two cylindrical mirror was first proposed by Kirkpatrick and Baez (JOSA, 1948)
- High reflectivities, but challenging in fabrication
- Cylindrical  $\rightarrow$  elliptical shape for generating small spot without aberration
- Technological developments since 2000 for achieving accurate figure shape



K. Mimura et al.

Nature Phys. 2009

30nm 25pm 15nm

2007

2006

7nm

2009

40nm

2005



#### **Nano-focusing for XFEL**

- Focusing of XFEL  $\rightarrow$  production of extremely high intensity of X-ray pulse
- Low divergent beam (~urad) → small beam size at focusing optics → limitation of NA → difficulty in achieving small focus
- Combination of two focusing system: first one for enlarging divergence and beam size, and second one for small focusing
- 50 nm size achieved with extreme intensity over 10<sup>20</sup> W/cm<sup>2</sup>



#### 9 keV (pump) & Yoneda *et al.*, Two-stage 8 keV (seed) Nature 524 446 focusing (2015)8 keV Intense pump x-rays strip K-shell electrons and generate "population inversion: Cu foil Pump intensity [W/cm<sup>2</sup>] Amplification of Ka 1019 1020 within 5.6eV bandwidth at Klpha 1 [arb. unit] 10<sup>5</sup> ASE 0.8 (resonant) line 0.6 W/ Seeding 0.4 $0^{4}$ 0.2 Ka1 seed **Uutput energy** Κα2 W/O Seeding Ka2 seed 7,990 8,010 8,030 8,050 8,070 8,090 0.8 03 Photon energy [eV] 0.6 $K\alpha 1$ 10<sup>2</sup> 0.4 seeding laser 0.2 10<sup>1</sup> 0 $10^{5}$ $10^{6}$ 7,990 8,010 8,030 8,050 8,070 8,090 Pump energy density [J/cm<sup>2</sup>] Photon energy [eV]

#### Achievement of Hard X-ray Cu-Ka atomic laser

#### **Function (II): Monochromator**

- Monochromator is the key optical device in SR beamlines
- Energy resolution (typically several percent for SR) is insufficient for most x-ray applications (crystallography, spectroscopy, etc.)
- Perfect crystals are widely used as monochromator optics


#### Representation of perfect-crystal monochromator in angular-frequency ( $\theta$ - $\lambda$ ) phase space



## Monochromator on DuMond diagram



#### 

For efficient lasing, overlap between e-beam and p-beam with an accuracy of ~urad is required

- E-beam trajectory easily bends at the edges of undulator modules
- P-beam goes through along the e-beam in the undulator

- P-beam can be used to monitor the e-beam trajectory in each undulator module

Cf. central cone of the undulator radiation

 $1/g= 1/16000 = \frac{60 \text{ urad}}{1000}$  for 8 GeV  $\rightarrow$  too large



# X-ray based undulator alignment

Profile of monochromatized spontaneous radiation



# Function (III): Speckle-free X-ray optics for transversely coherent sources

Coherent illumination on imperfect optical elements can easily produce speckles

Measured at 1-km BL of SPring-8





IF1 grade Be

PVD Be

Yabashi et al., J Synchrotron Rad. **21** (2014) 976

# Function (III): Speckle-free X-ray optics for transversely coherent sources

Coherent illumination on imperfect optical elements can easily produce speckles



 $\delta < \lambda/10 \rightarrow d < \lambda/(20 \cdot \sin\theta) = 0.1 \text{ nm}/(20 \cdot 2.5 \text{ mrad}) = 2 \text{ nm}$ 

# Short summary

- Reflective/refractive/diffractive optics are used for controlling x-ray properties of beam size (focusing) or bandwidth (monochromator)
- Special high quality is required for x-ray optics under coherent x-ray illumination to avoid speckles

References:

- J. Als-Nielsen & D. McMorrow, "Elements of Modern X-ray Physics" (Wiley, 2001): General introduction of x-ray optics and x-ray applications
- A. Authier, "Dynamical Theory of X-ray Diffraction" Oxford Univ. Press (2001): An authentic textbook on dynamical theory of diffraction
- Yabashi et al., J Synchrotron Rad. **21** (2014) 976; Overview of recent development of x-ray optics for coherent x-ray applications

# Contents

- 1. Introduction: Brief history of photon beamlines for SR/XFEL
- 2. Preparatory: Phase space
- 3. X-ray optics
- 4. X-ray diagnostics
  - 1. Pulse energy
  - 2. Pulse duration
  - 3. Arrival timing
- 5. Design of beamline
- 6. Summary

# **X-ray diagnostics**

Characterization of x-ray beam properties in 6-dimensional phase space (+ polarization) + coherence

- Total intensity
- Transverse x 4

Real space:  $(x,y) \leftarrow$  fluorescent screens Angular direction:  $(\theta x, \theta y)$ 

 $\leftarrow$  L ×  $\theta$ : free-space propagation + size measurement

- Longitudinal x 2

Frequency (=photon energy or wavelength) hv

Time: pulse duration t

+ arrival timing  $\tau$  for pump-probe experiments with external optical laser

- Coherence

# Key words

- Absolute or relative ?
- Resolution and range ?
- How fast ?
  - XFEL: Shot-to-shot fluctuation
  - Shot-to-shot measurements are desirable
- Destructive or nondestructive ?
  - Destructive: full photons are available for diagnostics, more accurate measurements
  - Nondestructive: diagnostics parallel to experiments

# **Temporal structure**



# Pulse energy measurement (I)

- Pulse energy is the most fundamental parameter for both machine and experimental sides
- Pulsed nature  $\rightarrow$  signals easily saturated; reliable measurement is challenging



Detection of small temperature increment after x-ray absorption

#### Destructive Portable

T. Tanaka et al., *Nucl. Instrum. Methods* A 659, 528 (2011).



Detection of electrons/ions ionized with x-ray irradiation

#### Nondestructive

#### Vacuum system

M. Richter et al, *Appl. Phys. Lett.* **83** 2970 (2003) K. Tiedtke et al, *J. Appl. Phys.* **103** 094511 (2008)

# **Total intensity measurement (II)**

Detection of x-ray scattering (mainly Compton scattering) from thin foil



# **Shot-by-shot measurement**



# **Mutual Calibration**



4.4 keV



| Photon<br>energy /keV | Pulse energy /µJ |                 |
|-----------------------|------------------|-----------------|
|                       | Radiometer       | XGMD            |
| 4.4                   | $32.26 \pm 0.35$ | 32.9±2.0        |
| 5.8                   | $104.2 \pm 1.3$  | $106.6 \pm 6.1$ |
| 9.6                   | 95.3±2.3         | 93.9±6.1        |
| 13.6                  | $42.2 \pm 1.1$   | 40.8±2.9        |
| 16.8                  | $0.96 \pm 0.03$  |                 |
|                       | AIST (JPN)       | РТВ             |

Excellent agreement 52

# Contents

- 1. Introduction: Brief history of photon beamlines for SR/XFEL
- 2. Preparatory: Phase space
- 3. X-ray optics
- 4. X-ray diagnostics
  - 1. Total intensity
  - 2. Pulse duration
  - 3. Arrival timing
- 5. Design of beamline
- 6. Summary

# **Pulse duration measurement**

Deflection cavity after undulator: Measure time-resolved energy loss/spread after x-ray lasing



FIG. 1. A layout of the diagnostic system with a transverse rf deflector and an energy spectrometer.



THz streaking method: photoelectrons -> modulation of energy with external THz field (streaking)



Fruhling et al., Nat. Photon **3**, 523 (2012)

## **Distribution in longitudinal phase space**



Large bandwidth/long pulse

- Distribution in frequency domain  $E(\omega) <-$  FT -> Distribution in temporal domain  $A(\theta)$ 





#### Measurement with perfect-crystal spectrometer

Divergent beam + flat crystal analyzer Single-shot detection



$$\frac{\Delta\lambda}{\lambda} = \frac{\Delta E}{E} = \Delta\theta \cot\theta_{\scriptscriptstyle B}$$
  
Energy Angle

$$\xi = L\Delta\theta = \frac{\Delta E}{E}L\tan\theta_{B}$$

Position

# Example



Y. Inubushi et al., Phys. Rev. Lett. 109, 144801 (2012).

# Contents

- 1. Introduction: Brief history of photon beamlines for SR/XFEL
- 2. Preparatory: Phase space
- 3. X-ray optics

## 4. X-ray diagnostics

- 1. Total intensity
- 2. Pulse duration

#### 3. Arrival timing

- 5. Design of beamline
- 6. Summary



Measure timing jitter for every pulse Sorting with "tag" information

# **Arrival timing measurement**

XFEL excites electronic system in fs scale  $\rightarrow$  probed by change of optical transmittance Spatial encoding technique: cross-beam geometry between XFEL and optical laser



Harmand et al., Nature Photon **7** 215 2012 Gahl et al., Nature Photon **2** 165 2008 T. Sato et al APEX **8**, 012702 (2015)

# Correlation measurement between two independent setup



#### **Correlation between independent measurements**



# Short summary

- New developments are on-going for characterizing XFEL beam properties, especially towards achieving high resolution
- Cross-check among different schemes is important for assuring reliability

References:

- K. Tono et al., New Journal Phys. **15** (2013) 083035: Review of x-ray beamline and diagnostics of SACLA
- Harmand et al., Nature Photon **7** (2012) 215: Arrival timing monitor at LCLS

# Contents

- 1. Introduction: Brief history of photon beamlines for SR/XFEL
- 2. Preparatory: Phase space
- 3. X-ray optics
- 4. X-ray diagnostics
- 5. Design of XFEL beamline
  - Example: SACLA

K. Tono et al., New Journal Phys. 15 (2013) 083035

6. Summary

## **Example: SACLA**



## SACLA beamline

OH: Common optics & diagnostics

EH1: Beam diagnostics (Spectrum, timing)

EH2: Pump & Probe w/ unfocused beam

EH3: 1-um focusing (Imaging, crystallography)

EH4c: 1-um focusing (Nonlinear, Pump & Probe ) Laser booth (CPA, OPA)

BL3

#### Configuration of beamline & optics at SACLA-SPring-8 Experimental



#### **Basic optics**

- Plane mirrors (A & B): rejection of high-energy harmonic and gamma-rays
- Double-crystal monochromator (Si 111): Band-pass filter



# **Mirrors for harmonic rejection**



B.L. Henke, E.M. Gullikson, and J.C. Davis, Atomic Data and Nuclear Data Tables Vol. **54** (no.2), 181-342 (1993)

#### **Double-crystal monochromator**


# **X-ray Diagnostics**



2015/9/25

#### SACLA Operation Status

14:22:40

| Operation Mode                           |                                         |
|------------------------------------------|-----------------------------------------|
| BL3 User Operation                       |                                         |
| Hutch in Use                             |                                         |
| BL3 EH2                                  |                                         |
| Pulse Energy ~ 500 ul @ 10               | keV Photon Energy / Wavelength          |
| 230.9 micro J/puls <b>≷10 fs pulse d</b> | uration 15.0 keV / 0.082 nm             |
| Repetition Rate                          | Intensity Fluctuation in 30 shots (STD) |
| 30 Hz                                    | 14.8 %                                  |



# Summary

- Connection between XFEL machine and beamline/optics becomes much important in advanced x-ray sources, including XFEL, DLSR and XFEL-O
- Tighter communications among electron & photon people (i.e., broader view) should significantly contribute to development of new light sources

# Acknowledgement

Drs. Shunji Goto, Kensuke Tono, Tetsuo Katayama, Yuichi Inubushi, (SPring-8/SACLA)

#### Thank you for your attention

#### End