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1. Introduction

• Many of the early theoretical studies of free electron lasers 
(low gain) were quantum mechanical (see e.g. [1,2]).

• It was realised, however, that the behaviour of low gain FELs were 
described by expressions which were independent of h 
i.e. they were essentially classical .

• All FEL experiments to date (from mm-wave →X-rays ) are well 
described by classical models where the electron beam is a 
collection of particles interacting with a classical electromagnetic field.

• As FEL operation moves to generation of shorter wavelengths 
(emission of photons with larger momenta), eventually classical 
models will break down. 



2. When could quantum effects become significant?

2.1 Energy / momentum considerations

The FEL process involves electrons emitting photons. 

Each photon has a finite amount of momentum = ħk.

In an electron beam with a finite momentum spread, Dp, it will only be 
possible to resolve the electron recoil if Dp < ħk .

Each photon emission event will therefore result in the electron 
recoiling, reducing its momentum by ħk.
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We know from classical FEL physics (see e.g. K-J Kim lectures) 
that the FEL process induces an energy/momentum spread in 
the electron beam [3,4].

This can be visualised as electrons moving along continuous trajectories
in phase space :
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This validity of the classical model will depend on the ratio :
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How to realise the quantum FEL limit ?
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For a magnetostatic X-ray FEL e.g. LCLS 

Another option is to use a laser undulator :

Advantage : allows use of much smaller   suggests               possible when  

Challenge : shorter interaction lengths/times (see [5] for full details)
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2.2 Alternative argument – electron beam coherence

Q. Electrons are particles, right ?

A. Sometimes…

Electron beams can demonstrate wave phenomena i.e. interference [6]. 

The subject of e.g. electron holography, is based on this.

Interference pattern visible if path difference < e-beam coherence length.

To describe this, a wavefunction description of the electron beam  is required. 
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E-beam (longitudinal) coherence length is defined as :
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of the electrons.

In terms of FEL, wave-like nature of electrons should be significant if
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This is the same condition as derived previously for observation of 
quantum effects. 

This suggests that, in this regime, a wavefunction description 
(or equivalent)  of the FEL interaction  is required. 



3. A 1D Model of the Quantum High-Gain FEL

Here I present an outline derivation of a 1D high-gain 
quantum FEL model. 
More rigorous treatments can be found in [7,8].

First, let us look at the classical, 1D high-gain FEL equations
i.e. the pendulum-like electrons coupled to the EM field 
(see e.g. K-J Kim lectures – different notation). 
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(i) Electrons 

These equations can be derived from the single electron Hamiltonian : 
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This Hamiltonian can be used to write a Schrodinger equation for the
single-electron wavefunction :
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motion for electron j :



(ii) EM Field 

Consider the EM field equation Aie
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The equations which describe the quantum FEL interaction are 
therefore :
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It is possible to solve this coupled set of PDEs/ODEs directly using a number of 
numerical methods e.g.

- finite difference (e.g. Crank-Nicholson)
- finite element 
- splitstep FFT

However it is easier to gain some insight if we rewrite them in terms of 
momentum states. 



Quantum FEL model : Momentum state representation

The states                            are momentum eigenstates 
because they satisfy the eigenvalue equation
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We can expand the electron wavefunction in terms of these 
momentum eigenstates i.e.  
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Quantum FEL model : Momentum state representation
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The EM field is driven by bunching of electrons. 

In the position representation , bunching is described by  

In the momentum representation , bunching is described by
i.e. a coherent superposition of momentum states.  








n

nncc 1
*

n=0

n=1

n=2

n=-1

n=-2

k
 mc0 

In the momentum representation the interaction is described as 
exchange of  population between different electron momentum states 
via the electromagnetic field in discrete amounts           .k

 1

*

1

2

2
  nnn

n cAAcc
n

i
zd

dc






Quantum FEL model : Linear Stability Analysis
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A stationary solution to these equations is :

- A=0 (no EM field)
- c0=1, ck=0 for all k≠0   
(all resonant electrons/
spatially uniform electron distribution) 

Considering small fluctuations 
in cn and A about these 
stationary values i.e.
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Quantum FEL model : Linear Stability Analysis
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Looking for solutions of the form

we find the dispersion relation :
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Quantum FEL model : Linear Stability Analysis
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4. Quantum FEL Simulations
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Solving the momentum
representation equations numerically : 

- A=0 (no EM field)

- c0=1, ck=0 for all k≠0   

Initial conditions :

Classical limit :

10

• Many momentum states 
are populated 

• Field evolution is 
identical to that in 
classical , particle FEL 
models.



4. Quantum FEL Simulations

Quantum limit  :

1.0

• Very different evolution 
to classical case

• At most 2 momentum 
states are populated 

• FEL behaves as 
2-level system



4. Quantum FEL Simulations – Including Slippage
So far we have assumed steady-state / single frequency FEL operation :
• Relative slippage between light and electrons is neglected
• E-beam described using a single ponderomotive potential 

with periodic boundary conditions.
• Every ponderomotive potential in the e-beam behaves the same.
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position along the electron bunch i.e.  

c

z
1

l

v tz
z




where




4
cl is the cooperation length

To model Self-Amplified Spontaneous Emission (SASE) this is insufficient
• The FEL interaction starts from random shot noise 
• Different parts of the e-beam → different noise
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See [9] for full details.



4. Quantum FEL Simulations – Including Slippage
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In our model , this means that the EM field and momentum state 
amplitudes must be defined at each position along the electron bunch i.e.
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so the quantum FEL model including slippage is the set of coupled PDEs
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As time-dependence is now included, we can look at the frequency spectrum 
of the emitted radiation. 



4. Quantum FEL Simulations – Including Slippage

Classical limit :

5

• Broad, noisy SASE 
spectrum as 
produced from 
classical particle 
models 

(see e.g. lecture by 
M. Yurkov on  
coherence 
of SASE FEL) 

Example : e-beam length = 20 lc
Phases of cn are random to simulate shot noise. 



4. Quantum FEL Simulations – Including Slippage

Quantum limit :
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• Discrete 
line
spectrum

• separation of 
spectral lines is
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i.e. relativistic 
recoil frequency

Hight degree of temporal coherence of quantum FEL is potentially attractive.



4. Conclusions

• When quantum effects may be significant
• Features of quantum FEL operation
• Classical and quantum limits of the quantum FEL model
• Possibility of using quantum regime to produce highly coherent, 

X-ray/-ray sources.

Covered : 

Not covered : 

• 3D models and effects (see e.g [10, 11])
• Spontaneous emission (see e.g. [12] and references therein)
• Effects associated with a quantized EM field e.g. entanglement

, photon statistics (see e.g. [13,14])

Quantum FEL regime not realised ….yet.
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