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1. Introduction

—
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* Many of the early theoretical studies of free electron lasers
(low gain) were quantum mechanical (see e.g. [1,2]).

* It was realised, however, that the behaviour of low gain FELs were
described by expressions which were independent of h
i.e. they were essentially classical .

* All FEL experiments to date (from mm-wave —X-rays ) are well
described by classical models where the electron beam is a
collection of particles interacting with a classical electromagnetic field.

* As FEL operation moves to generation of shorter wavelengths
(emission of photons with larger momenta), eventually classical
models will break down.



2. When could quantum effects become significant?

—

2.1 Energy / momentum considerations Strathclyde

The FEL process involves electrons emitting photons.

Each photon has a finite amount of momentum = hk.

Each photon emission event will therefore result in the electron
recoiling, reducing its momentum by hk.

o—— * O—
D p- hk

e-

In an electron beam with a finite momentum spread, Ap, it will only be
possible to resolve the electron recoil if Ap < hk.
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We know from classical FEL physics (see e.g. K-J Kim lectures)
that the FEL process induces an energy/momentum spread in

¢
the electron beam [3,4]. f_;"ﬁma't"h'::[
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This can be visualised as electrons moving along continuous trajectories
in phase space :
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4 This validity of the classical model will depend on the ratio : & A
hk
l.e meAy or M,0 = ,;
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\_ £ isthe quantum FEL parameter )




Classical FEL limit
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Classical description — - umm
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holds well if ————————

hk << Ap r\‘%‘ o ik

i.e. /_? >>1

Quantum FEL limit

Classical description ! |
will break down if o ; — | Ak

A - Ap
hk > Ap - (\/ _

ie. p<l1




How to realise the quantum FEL limit ?
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We need m07/ — P = p <1 SSﬂLrgthclyde
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A h B
This can be rewritten as 7; p<1| where |4, =—~=2.4x10 m
MC
C

For a magnetostatic X-ray FEL e.g. LCLS
4 A —
~3x10*, p~5x10 R 40, so |p>>1 (classical)
A

C

Another option is to use a laser undulator :

A

Advantage : allows use of much smaller y — suggests ; < ] possible when — —> 1.

. . C
i.e. approaching y—rays.

Challenge : shorter interaction lengths/times (see [5] for full details)



2.2 Alternative argument — electron beam coherence
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Q. Electrons are particles, right ? u..mm
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A. Sometimes...

Electron beams can demonstrate wave phenomena i.e. interference [6].

The subject of e.g. electron holography, is based on this.

Electron biprism 5 T A
(a)

Detector Monitor 2 :t‘ 2 5 2
Experimental arrangement of a two-slit experiment for electrons (A. Tonomura et al.: R R4 % :
Amer. J. Phys. 57 (1989) 117). %L . 3 1 !

(b) (d)

Interference pattern visible if path difference < e-beam coherence length.

To describe this, a wavefunction description of the electron beam is required.
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E-beam (longitudinal) coherence length is defined as :

.2 h -

c = —Ail where A, =— isthe de Broglie wavelength FEiGELE
e P of the electrons.

L

In terms of FEL, wave-like nature of electrons should be significant if

L. > A
. . h* p* h
Rewriting L_in terms of electron momentum, p : L, = —; =
p° hAp Ap
h .
so L, >4 implies Ap > ie.  |hk>Ap

This is the same condition as derived previously for observation of
guantum effects.

This suggests that, in this regime, a wavefunction description
(or equivalent) of the FEL interaction is required.



3. A 1D Model of the Quantum High-Gain FEL

Here | present an outline derivation of a 1D high-gain

guantum FEL model.

—
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More rigorous treatments can be found in [7,8].

First, let us look at the classical, 1D high-gain FEL equations
i.e. the pendulum-like electrons coupled to the EM field
(see e.g. K-J Kim lectures — different notation).
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(i) Electrons dg. p

—

Consider the equations of dz p Strathclyde
motion for electron j : dp, _;( i0 )

This Hamiltonian can be used to write a Schrodinger equation for the
single-electron wavefunction :

ow(o,2)
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=H j\P(H, z) ,where p is the momentum operator p =—lI %
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(i) EM Field

¢
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Consider the EM field equation = <e_'g> +10A Sdence

dz

Consequently, the EM field evolution is described by :

dAz) Zﬂ\y(e z]'e " do+ion

dz




The equations which describe the quantum FEL interaction are
therefore :
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It is possible to solve this coupled set of PDEs/ODEs directly using a number of
numerical methods e.g.

- finite difference (e.g. Crank-Nicholson)
- finite element
- splitstep FFT

However it is easier to gain some insight if we rewrite them in terms of
momentum states.




Quantum FEL model : Momentum state representation

The states |n)= .eXp(lnﬁ) are momentum eigenstates ot e

because they satisfy the eigenvalue equation Sclence
p[n)=n|n)

where |6=—ii is the momentum operator and n is an integer.

\ 00 /
[ We can expand the electron wavefunction in terms of these \

momentum eigenstates i.e.

( ) Zc ( )exp ing)
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where |c,|?isthe probablllty of an electron having momentum

\ (¥ = 7o Jme = ik y
/" Substituting for ‘Pié’ﬂ , the quantum FEL equations become : )
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Quantum FEL model : Momentum state representation

In the momentum representation the interaction is described as Strathclyde
exchange of population between different electron momentum states [us
via the electromagnetic field in discrete amounts 7K

s A

2 . =1 4
dc_n = —| n—_Cn — IO(ACn—l - A*Cn+1) " i hk
dz 20 _
o (7/_7/0)mcln_o
g chc*n_l +i0A n=-1
yA—
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The EM field is driven by bunching of electrons.

2 N2 .
In the position representation , bunching is described by ”‘P(H zl e'’do
0

In the momentum representation , bunching is described by chc*n—l
i.e. a coherent superposition of momentum states. =



Quantum FEL model : Linear Stability Analysis
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A stationary solution to these equations

- A=0 (no EM field)
- ¢,=1, ¢,=0 for all k0
(all resonant electrons/

spatially uniform electron distributicy

-

o

A=0+A® A
Considering small fluctuations c —1sc®
in c, and A about these o
. . 1
\statlonary values i.e. ¢, =0+¢.”  forall k0 y
/ dc, | — \
2= =GP
4 2p
then retaining only terms linear in de, i . LA
the fluctuation variables we dz 2p
obtain :
%ZC*—1+C1+i5A
A

¢
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Quantum FEL model

: Linear Stability Analysis
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Differentiating eq.(3) twice and substituting  d3A . _d2A _ _
. : — =10 ——— ——10A |+1A
eq.(1) and (2) allows us to write an equation ~ 43° 47
in A alone :
\_
4
Looking for solutions of the form /12 L
D +
Aocexp(ifz) Quantum
_ We find the dispersion relation : term
( —_
As p— o | this reduces to the dispersion relation of 22(A-5)+1=0
the classical high-gain FEL :
\_




Quantum FEL model : Linear Stability Analysis

(AT

1 Uniwrsllynf
Quantum FEL dispersion relation:  (1-5) 22 ——5 |+1=0 SORtEEe
4p
1 -
.— Classical FEL
0.8 - galn curve Growth rate ,Im(L), vs d when
0.6 - (a) p=10
— @)/ /) (b) p=1
S © () p=0.167
= 0.4 . p =Y.
\ @ (d) p=01
. / | '|| A {;\1 | (e) p=0.071
0.0 L !I T ‘ T || T ‘ || T
-10 -5 0 5 10 15 Graph from [8]

As P decreases, gain curve narrows and shifts to increasing 0 (=1/2/_3)

he. Yo~ Vr =5



4. Quantum FEL Simulations

0.2}

0.0- : :
—30 —20 —10

10 20 30

Solving the momentum de, _ . - mmm
representation equations numerically : dz ) Strathclyde
Initial conditions :- A=0 (no EM field) d_'f‘ -
- ¢,=1, ¢, =0 for all k#0 dz
. . . z=0.0
Classical limit : ’
1.4}
J— 1.2}
p = 10 1.0}
% 0.8}
- 0.6}
0.4}
Many momentum states 0.2}
are populated 0% 2 2 6 B 10 12 14
1.0 2
Field evolution is 0.8}
identical to that in . 06]
classical , particle FEL < ol
models.
L
n



4. Quantum FEL Simulations

Strathclyde
Quantum limit : i
z=0.5
P = 0.1 10}
81
~_ 6
=
Very different evolutio ar
to classical case 2t
00 2I0 4‘0 6I0 8I0 100
At most 2 momentum 1.0 2
states are populated 0.8|
A 0.6
FEL behaves as <.,
2-level system |
0.2}
0.0
-4 -2 0 2 4



4. Quantum FEL Simulations — Including Slippage

So far we have assumed steady-state / single frequency FEL operation : @

* Relative slippage between light and electrons is neglected Etima?lfdyde

 E-beam described using a single ponderomotive potential -
with periodic boundary conditions.

* Every ponderomotive potential in the e-beam behaves the same.

To model Self-Amplified Spontaneous Emission (SASE) this is insufficient
 The FEL interaction starts from random shot noise
e Different parts of the e-beam — different noise

To include slippage we introduce an additional length scale which represents the
position along the electron bunch i.e.

z-v 4 r )
O, c R .,
2 ¥

is the cooperation length e r

Zy

where |C

:%

See [9] for full details. \_ -/




4. Quantum FEL Simulations — Including Slippage

—

In our model, this means that the EM field and momentum state Strathclyde
amplitudes must be defined at each position along the electron bunch i.e. B

A(z) > Az, z,)
c,(2) > ¢,(2,2,)

so the quantum FEL model including slippage is the set of coupled PDEs

oc\z,z, . n°  — R
L~ =—1——-plAc. . —AC
82 2,0 IO( n-1 n+1)

AL A S vin

0z 07, —

As time-dependence is now included, we can look at the frequency spectrum
of the emitted radiation.



4. Quantum FEL Simulations — Including Slippage

Example : e-beam length = 20 |,

] . Universityof 1&)’
Phases of ¢, are random to simulate shot noise. Strathclyde
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Classical limit :

P = 5 z=0.1
0.0000020 [
. 0.0000015}
* Broad, noisy SASE

spectrum as Sonanae

produced from 0.0000005

classical particle — . . . .

models ' 30 40 50 60 70
0.0000025 : ; ; !
0.0000020 |-

(see e.g. lecture by
0.0000015f

M. Yurkov on

of SASE FEL) 0.0000005 ;
0.0000000 ' 0 : : : U\/\/\j\
w

-20 —i15 -10 -5



4. Quantum FEL Simulations — Including Slippage

Quantum limit :

0=0.2

e Discrete
line
spectrum

* separation of
spectral lines is
ik
Aw=——
"M

i.e. relativistic
recoil frequency

Hight degree of temporal coherence of quantum FEL is potentially attractive.
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4. Conclusions

Covered : Strathclyde
Science

 When quantum effects may be significant
* Features of quantum FEL operation

* Classical and quantum limits of the quantum FEL model

* Possibility of using quantum regime to produce highly coherent,
X-ray/y-ray sources.

Quantum FEL regime not realised ....yet.

Not covered :

* 3D models and effects (see e.g [10, 11])

e Spontaneous emission (see e.g. [12] and references therein)
* Effects associated with a quantized EM field e.g. entanglement
, photon statistics (see e.g. [13,14])
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