
Synchrotron Radiation, L. Rivkin, CAS on FELs and ERLs, 1.06.16, Hamburg 

Synchrotron Radiation 

Lenny Rivkin 
 

Paul Scherrer Institute (PSI) 
and 

Swiss Federal Institute of Technology Lausanne (EPFL) 



Synchrotron Radiation, L. Rivkin, CAS on FELs and ERLs, 1.06.16, Hamburg 

Click to edit Master title style Useful books and references 

 
H. Wiedemann, Synchrotron Radiation 
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H. Wiedemann, Particle Accelerator Physics I and II 
Springer Study Edition, 2003 
 
A.Hofmann, The Physics of Synchrotron Radiation 
Cambridge University Press 2004 
 

 
A. W. Chao, M. Tigner, Handbook of Accelerator Physics and 
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Synchrotron Radiation and Free Electron Lasers 
 

Grenoble, France, 22 - 27 April 1996  
(A. Hofmann’s lectures on synchrotron radiation) 
CERN Yellow Report 98-04  
 

Brunnen, Switzerland, 2 – 9 July 2003 
CERN Yellow Report 2005-012 
 
 

Previous CAS Schools Proceedings 

CERN Accelerator School Proceedings 

http://cas.web.cern.ch/cas/CAS%20Welcome/Previous%20Schools.htm
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Curved orbit of electrons in magnet field  

Accelerated charge            Electromagnetic radiation 
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Electromagnetic waves 



Crab Nebula 
6000 light years away 

First light observed 
1054 AD 

First light observed 
1947 

GE Synchrotron 
New York State 
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1873 Maxwell’s equations 
 
1887 Hertz: electromagnetic waves 
 
1898 Liénard: retarded potentials 
1900 Wiechert: retarded potentials 
 
1908 Schott: Adams Prize Essay 
 

  ... waiting for accelerators … 
1940: 2.3 MeV betatron,Kerst, Serber 

 
 



Maxwell equations (poetry) 

War es ein Gott, der diese Zeichen schrieb 
Die mit geheimnisvoll verborg’nem Trieb 
Die Kräfte der Natur um mich enthüllen 

Und mir das Herz mit stiller Freude füllen. 
    Ludwig Boltzman 

Was it a God whose inspiration 
Led him to write these fine equations 

Nature’s fields to me he shows 
And so my heart with pleasure glows. 

          translated by John P. Blewett 
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1873 Maxwell’s equations 
 
1887 Hertz: electromagnetic waves 
 
1898 Liénard: retarded potentials 
1900 Wiechert: retarded potentials 
 
1908 Schott: Adams Prize Essay 
 

  ... waiting for accelerators … 
1940: 2.3 MeV betatron,Kerst, Serber 

 
 



THEORETICAL UNDERSTANDING  

1873 Maxwell’s equations 

  made evident that changing charge densities would 
result in electric fields that would radiate outward 

1887 Heinrich Hertz demonstrated such waves: 

It's of no use whatsoever[...] this is just an experiment that proves  
Maestro Maxwell was right—we just have these mysterious electromagnetic waves  

that we cannot see with the naked eye. But they are there. 



Electromagnetic waves 
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1873 Maxwell’s equations 
 
1887 Hertz: electromagnetic waves 
 
1898 Liénard: retarded potentials 
1900 Wiechert: retarded potentials 
 
1908 Schott: Adams Prize Essay 
 

  ... waiting for accelerators … 
1940: 2.3 MeV betatron,Kerst, Serber 

 
 



1898 Liénard:   

ELECTRIC AND 
MAGNETIC FIELDS 
PRODUCED BY A POINT 
CHARGE  MOVING ON AN 
ARBITRARY PATH 
(by means of retarded potentials 
…  
proposed first by Ludwig Lorenz 
in 1867) 



1912 Schott:   

COMPLETE THEORY OF 
SYNCHROTRON RADIATION 
IN ALL THE GORY DETAILS 
(327 pages long) 
… to be forgotten for 30 years 
(on the usefulness of prizes) 
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1873 Maxwell’s equations 
 
1887 Hertz: electromagnetic waves 
 
1898 Liénard: retarded potentials 
1900 Wiechert: retarded potentials 
 
1908 Schott: Adams Prize Essay 
 

  ... waiting for accelerators … 
1940: 2.3 MeV betatron,Kerst, Serber 

 
 



Donald Kerst: first betatron (1940) 

"Ausserordentlichhochgeschwindigkeitelektronenent
wickelndenschwerarbeitsbeigollitron"  
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1946 Blewett observes energy loss   
  due to synchrotron radiation 
  100 MeV betatron 
1947 First visual observation of SR 
  70 MeV synchrotron, GE Lab 
 
1949 Schwinger PhysRev paper 
… 
1976 Madey: first demonstration of 
  Free Electron laser 
 

NAME! 



GENERATION OF 
SYNCHROTRON RADIATION 

Swiss Light Source, Paul Scherrer Institute, Switzerland 
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60‘000 SR users world-wide 
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Why do they radiate? 
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Synchrotron Radiation is 
not as simple as it seems 

… I will try to show  
that it is much simpler 



Synchrotron Radiation, L. Rivkin, CAS on FELs and ERLs, 1.06.16, Hamburg 

Charge at rest 
Coulomb field, no radiation 
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Uniformly moving charge does not radiate 

v = constant 

But! Cerenkov! 
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Easy proof using 4-vectors and relativity 
 

 momentum conservation if a photon is emitted 
 
 
 

 square both sides 
 
 
 

 in the rest frame of the electron 
 
 
 
this means that the photon energy must be zero. 

𝑷𝑷𝑖𝑖 = 𝑷𝑷𝑓𝑓 + 𝑷𝑷𝛾𝛾 

𝑷𝑷𝛾𝛾 = (𝐸𝐸𝛾𝛾 ,𝑝𝑝𝛾𝛾) 

𝑚𝑚2 = 𝑚𝑚2 + 2𝑷𝑷𝑓𝑓 ∙ 𝑷𝑷𝛾𝛾+ 0   ⇒  𝑷𝑷𝑓𝑓 ∙ 𝑷𝑷𝛾𝛾 = 0  

𝑷𝑷𝑓𝑓 = (𝑚𝑚, 0) 



We need to separate the field from charge 



Bremsstrahlung  
or  

“braking” radiation 



Transition Radiation 

𝝐𝝐𝟏𝟏 𝝐𝝐𝟐𝟐 

𝑐𝑐1 =
1
𝜖𝜖1𝜇𝜇1

 𝑐𝑐2 =
1
𝜖𝜖2𝜇𝜇2

 



    
ϕ t = 1

4πε0

q
r 1 – n ⋅ β ret

    
A t = q

4πε0c
2

v
r 1 – n ⋅ β ret

   
∇ ⋅A + 1

c2

∂ϕ
∂t = 0

   B = ∇ ×A

   
E = – ∇ϕ –

∂A
∂t

and the electromagnetic fields: 

(Lorentz gauge) 

Liénard-Wiechert potentials 



    
E t = q

4πε0

n – β

1 – n ⋅ β 3γ 2
⋅ 1

r 2
ret

+

    
q

4πε0c
n × n –β × β

1 – n ⋅ β 3γ 2
⋅ 1

r
ret

   
B t = 1
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Fields of a moving charge 



Transverse acceleration 

v 
a 

Radiation field quickly 
separates itself from the 

Coulomb field 



v 

a 

Radiation field cannot 
separate itself from the 

Coulomb field 

Longitudinal acceleration 
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Synchrotron Radiation 
Basic Properties 



Moving Source of Waves 

Cape Hatteras, 1999 
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Electron with velocity β emits a wave with period Temit 
while the observer sees a different period Tobs because the 
electron was moving towards the observer 
 
 
 

 
The wavelength is shortened by the same factor 
 
in ultra-relativistic case, looking along a tangent to the 
trajectory                              
                                                 since 

 n

 β

 θ

  
1 – β = 1 – β2

1 + β ≅ 1
2γ2

  
λobs = 1

2γ2 λemit

emitobs TT )1( βn ⋅−=

emitobs λθβλ )cos1( −=



Radiation is emitted into a narrow cone 

v << c v ≈ c 

v ~ c 

θe θ   
θ = 1

γ ⋅ θe



Synchrotron Radiation, L. Rivkin, CAS on FELs and ERLs, 1.06.16, Hamburg 

Sound waves (non-relativistic) 

v 

θe θ 
v 

    
θ =

vs⊥
vs|| + v =

vs⊥
vs||

⋅ 1
1 + v

vs

≈ θe ⋅ 1
1 + v

vs

Angular collimation 

Doppler effect (moving source of sound) 
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s
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Synchrotron radiation power 

   P ∝ E2B2

   
Cγ = 4π

3
re

mec 2 3 = 8.858 ⋅ 10– 5 m
GeV 3

Power emitted is proportional to: 

2

4

2 ρπ
γ

γ
EcC

P ⋅=



2

4

2 ρπ
γ

γ
EcC

P ⋅=

The power is all too real! 
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Synchrotron radiation power 

   P ∝ E2B2

   
Cγ = 4π

3
re

mec 2 3 = 8.858 ⋅ 10– 5 m
GeV 3

   
U0 = Cγ ⋅ E 4

ρ    
U0 = 4π

3 αhcγ 4

ρ

  
α = 1

137

   hc = 197 Mev ⋅ fm

Power emitted is proportional to: 

Energy loss per turn: 

2

4

2 ρπ
γ

γ
EcC

P ⋅=
2

4
2

3
2

ρ
γαγ ⋅= cP 
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Typical frequency of synchrotron light 
Due to extreme collimation of light observer sees only 

a small portion of electron trajectory (a few mm) 
   

l ~ 2ρ
γ

   
∆t ~ l

βc – l
c = l

βc 1 –β

γ/1

Pulse length: 
difference in times it 

takes an electron 
and a photon to 

cover this distance 

   
∆t ~ 2ρ

γ c ⋅ 1
2γ 2

   
ω ~ 1

∆t ~ γ 3ω0
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Spectrum of synchrotron radiation 

• Synchrotron light comes in a 
series of flashes 
every T0 (revolution period) 
 
• the spectrum consists of 
harmonics of  
 
• flashes are extremely short: 
harmonics reach up to very 
high frequencies 
 
• At high frequencies the  
individual harmonics overlap 

time 

T0 

0
0

1
T

=ω

0
3ωγω ≅typ

continuous spectrum ! 

! Hz10~
4000 ~

MHz1~

16
typ

0

ω

γ
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Wavelength continuously tunable ! 
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Angular divergence of radiation 

The rms opening angle R’ 
 

• at the critical frequency: 
 
 
 

• well below 
 
 
 

• well above 

  
ω = ωc R′ ≈ 0.54

γ

  
ω « ωc R′ ≈

1
γ

ωc

ω

1 31 3

≈ 0.4
λ
ρ

1 31 3

independent of γ ! 

  
ω » ωc R′ ≈

0.6
γ

ωc

ω

1 21 2



Angular divergence of radiation 

 
• at the critical frequency 
 
 
 
 
• well below 
 
 
 
 
• well above 

cωω 2.0=

cωω 2=

γθ

γθ

γθ
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The “brightness” of a light source: 

Flux, F 

F 
S x Ω 

Brightness = constant x _________ 

Angular 
divergence, Ω 

Source 
area, S 



X-rays Brightness  
Average Brightness 

(3rd Gen) 

Peak Brightness 

(XFELs) 

XFELs 

Bertha Roentgen’s 
hand 

(exposure: 20 min) 
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Sources of  
Synchrotron Radiation 



3 types of storage ring sources: 

1. Bending magnets: 

short 
signal 
pulse 

broad 
hν-band 

time frequency 

B ~ Ne 

detector 



3 types of storage ring sources: 

2. Wigglers: large 
undulations 

Series of 
short 

pulses 

broad 
hν-band 

frequency time 

B ~ NeNw    x10 



3 types of storage ring sources: 

3. Undulators: 
small 

undulations 

detector 
continuously 
illuminated 

time 

long 
signal  
pulse 

frequency 

hν/∆hν  
≈ N 

detector 

narrow 
hν-band 

B ~ NeN2
u    x103 
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Incoherent, 
spontaneous 
emission of light: 
 
 
 
 
 
 
 
Large phase space 

Bright beams of particles: phase space density 

Coherent, stimulated 
emission of light 
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In an undulator  
an electron  
(on a slalom)  
races an emitted  
photon 
 
 
 

at  A  an electron emits a photon with wavelength  λ and flies one period 
λu ahead to B with velocity  v = βc. There it emits another photon with the 
same wavelength  λ. At this moment the first photon is already at C. If the 
path difference δL corresponds to n  wavelengths, then we have a positive 
interference between the two photons. This enhances the intensity at this 
wavelength. 
 

period λu δL= nλ 

A B    C 

N S    N(orth)      S(outh) 

electron  

photon 

v ≡ β c 

c 



Selection of wavelength in an undulator II 

 
 
 
 
 
 
The path difference 

period λu δL= nλ 

A B    C 

N S    N(orth)      S(outh) 

electron  

photon 

v ≡ β c 

c 

22
11,)1(
γ

βλβλδ ≈−−≈≡ unL
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Undulator radiates from the whole  
length L into a narrow cone. 
Propagation of the wave front BC  
is suppressed under an angle θ0,  
if the path length AC is just shorter by a half wavelength compared to  AB 
(negative interference). This defines the central cone. 
 
 
 
                                                     
      Negative interference  for  
 

( ) 2
00 4

1cos1
2
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Undulator radiation 
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Microwave, laser undulators 

T. Shintake, OIST 
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Also known as Compton or Thomson scattering 
 
 
 
 
 

 backscattered photon has the maximum energy 
 

 at an angle of 1/γ the energy drops by a factor of 2 
 

 undulator’s periodic magnetic field could be viewed as a 
«photon», with useful parallels between the two cases 
 
 
 

𝜺𝜺𝑓𝑓 =
4𝛾𝛾2𝜀𝜀𝑖𝑖

1 + 𝛾𝛾2𝜃𝜃2
 θ e- 

εi 

εf 



Undulator of infinite length 
  

Finite length undulator 
• radiation pulse has as many periods as 

the undulator 
• the line width is 

 
Due to the electron energy spread 

   
Nu = ∞ ⇒ ∆λ

λ
=0

   ∆λ
λ

∼ 1
Nu

   ∆λ
λ

= 2σE
E

Undulator  
line width 
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Free Electron Lasers 



COHERENT EMISSION BY THE ELECTRONS  

INCOHERENT EMISSION COHERENT EMISSION 

Intensity ∝ N Intensity ∝ N 2 



BRIGHTNESS OF SYNCHROTRON RADIATION  

electrons periods 
Bending magnet ~ Ne 

Wiggler ~ Ne ~ N 10 

Undulator ~ Ne ~ N 2 104 

FEL ~ N2
µ-b

 ~ N 2 1010 

Superradiance ~ Ne
2
 ~ N 2 1012 



T. Nakazato et al., Tohoku University, Japan 

FIRST DEMONSTRATIONS OF  COHERENT EMISSION 
(1989-1990) 

J. Ohkuma et al., Osaka University, Japan 
180 MeV electrons 30 MeV electrons 



WAVELENGTH 

MUCH HIGHER BRIGHTNESS CAN BE REACHED 
WHEN THE ELECTRONS  COOPERATE 

INCOHERENT EMISSION COHERENT EMISSION 
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Particle beam emittance: 

Emittance   =  

Angular 
divergence, Ω 

Source 
area, S 

S x Ω 



Undulator radiation 
from 6 GeV beam 

with zero emittance, 
energy spread  

(example ESRF) 
 

Emittance 4 nm·rad, 
1% coupling,  

finite energy spread 
 

7th harmonic 

9th 8th 
10th 



Storage rings in operation (•) and planned (•). 
The old (—) and the new (—) generation. 

The storage ring generational change 

Riccardo Bartolini (Oxford University) 
4th low emittance rings workshop, Frascati , 

Sep. 17-19, 2014 
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Multi-Bend Achromat (MBA) 
 
 
 
 
 
short & strong multipoles 
 short lattice cells 
 many lattice cells 
 low angle per bend 
 
 

Aperture reduction  
 

 
 
 
 
Technological achievement: 

NEG* coating of small 
vacuum chambers 
 

 Small magnet bore 
 High magnet gradient 
  
*Non Evaporable Getter 

Pioneer work: MAX IV (Lund, Sweden)  

 Emittance reduction from nm to  10...100 pm range 

βx  βy  D 

emittance ε ∝ (energy)2 × (bend angle)3 
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Synchrotron light polarization 



An electron in a storage ring 

TOP VIEW 

Polarization: 
Linear in the plane of the ring 

the electric field vector 

SIDE VIEW 

TILTED VIEW 
 

elliptical out of 
the plane 

E  

E  



Polarisation: spectral distribution 

( ) ( ) ( )[ ]xSxSPxSP
d
dP

c

tot

c

tot
πσωωω

+==

x 

SS
8
7=σ

SS
8
1=π

3:1 



Angular distribution of SR 

E  

E  

γθ
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Synchrotron light based 
electron beam diagnostics 
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Seeing the electron beam (SLS)  
visible light, vertically polarised X rays 

mx µσ 55~



Seeing the electron beam (SLS)  
Making an image of the electron beam using the vertically  
polarised synchrotron light 



High resolution measurement 
Wavelength used: 364 nm 

 
 

For point-like source the 
intensity on axis is zero 

 
 
 

Peak-to-valley intensity ratio 
is determined 

by the beam height  
 
 

Present resolution: 3.5 µm 
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