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(== On-axis Field of Planar Undulator

* For planar undulator with only one X
transverse magnetic field component, the
field is given on-axis:

B = B,§, sin(k,z)

with K, =—

* Using Lorentz Force equation with the assumptions:
— Relativistic electron beam moves primarily into z-direction
— The energy of the electrons is preserved in the magnetic field.

F=eixB = ymc%ﬂx =—ecB,f, sin(k,z)

* The equation cannot be solved directly because the time-dependence of the
longitudinal position z(t) and velocity A(t) is unknown.
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(== Dominant Motion On-Axis I

* We assume that the deflection strength per module is small so that the electron
still moves predominantly in the z-direction.

The transverse motion and the resulting modulation of the longitudinal motion
can be regarded as small.

2(t)=cpt+ef(t), B.(t)=5+(/c)f'(t)

The parameter and function € and f(t) are undefined but we assume that they
are sufficiently small to treat them as a perturbation.

Later we will justify this assumption when the explicit form of € is known.

Because the motion in a magnetic field does not change the energy the
longitudinal and transverse velocity are linked by
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(F={» Dominant Motion On-Axis II

* Integration of leading term in Lorentz Force equation:

yme L, =—ecB f,sin(k,2) = o, ~— 20 B sin(k,cA)
dt dt ym

= p. = B, cos(k,z)
ymck

u

* The physical constants and the undulator parameters are
combined into the so-called undulator parameter

eB,
mck

u

K= =0.93-B,[T]- 4 [cm] = ﬂxzﬁcos(kuz)
/4

* Two comments:
— The value of K is typically around unity

— For a relativistic beam the maximum angle in the orbitis X'=8, /8, =K /y
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BS Dominant Motion On-Axis III

* Because total energy is preserved, longitudinal and transverse velocities are
linked by energy:

1 1 1( 1
ﬂxZ—'_ﬂzz:l__z — ﬂz:\/l__z_ﬂxz zl__(_z—i_ﬂxz)
4 4 2\ y

* Using the expression of £, and the identity cos(x)?=[1+cos(2x)]/2, we
are getting:

2 2
P g LHKI2 K

cos(2k z
Y 27/2 47/2 (2k,2)

* The mean longitudinal velocity is given:

7 _1_1+ K?/2
z 27/2

The integration by perturbation is well justified because the oscillating term in
longitudinal velocity remains small over the entire undulator length.
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(==f}» Trajectory in Planar Undulator

* Integration (by perturbation again) of the velocities in x and z yield the trajectory:

K . = Co-moving Frame
X(t) = ——sin(cAk,z(t))
Bk,
_ K 2 _
z(t)=cpt———=—sin(2cp k t
(t)=cp, 8,27k, (2cB.k,t)
* Longitudinal wiggle motion has half period length. traj\ectory
* Causes a figure “8” motion in the co-moving frame. \ =
* The longitudinal position is effectively smeared out Effective
position

— Coupling to harmonics
— Reduced coupling to fundamental
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(== Harmonics in Planar Undulator

* Including longitudinal oscillation term in transverse oscillation:

. _ 2
ﬁ ZKCOS(k Z)—ESRE( |kz. —|;(sm(2kuz)) TZCBt ¥ = K_
y y Z 8y° P,
— Eme eikuf i (—1)m.J (z)eikauf
4 M=—0 " Identities of Bessel Function
) K |asmb Z J (a)elmb
= (-D"J —cos([2m+1]k,Z
3 ("3, cos((2m +1k,2) a1 @)

8

=3 ("B - Jmﬂ(z)];cos([zmﬂ]k 7)

* Motion has:
— Reduced amplitude of fundamental oscillation Jn(x)0 1form=0
— Occurrence of odd harmonics.
— On the scale of the undulator period the harmonics are hardly noticeable (Though
it becomes important with respect to a given radiation wavelength)
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(== On-axis Motion in Helical Undulator

* Helical undulators has a transverse magnetic field, which rotates along the
undulator axis:

B =By &, sin(k,z) +& cos(k,2)|

* From the Lorentz force we obtain:

ecB,
ymc

d s __ i d,_
aﬂx - ﬂz Sln(kuz) dt ﬂy -

* Integration similar to planar undulator case:

b, = 5cos(kuz) B, = 5sin(kuz)
Y Y

* Longitudinal velocity

1+ K?

1 1( 1
B, = \/1—?—@2 —,Byz z1_5[7+ﬂf +ﬂf) =1
Note that there is no longitudinal oscillation
- no harmonics are excited

27/2
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(=)= Comparison Planar and Helical Undulator

* Excluding higher harmonics in case of planar undulator
* Using average position Z — z (for convenience)

Planar Helical
K K
B, [3,(2) — 3, ()1 cos(k,2) K cos(k 2)
Y Y
By 0 K sin(k,2)
YV
2 2 1+K?
P, 1—1+K2/2— K2 cos(2k,z) 1-—
2y 4y 2y
v 1+ K?/2 1+ K2
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(== Off-Axis Field Components I

* The simple field dependence B = B,€, sin(k,z) cannot be used for the entire
transverse plane because it violates Maxwell condition of free space:

VxB=0
* We assume a vector potential to derive B:
VxA=B Conditionl: AA=0Q  Condition Il: VA = Q

* Dominant vector component is in x:

A = —%cosh(kxx) cosh(k,y)cos(k,z)

u

Condition I: AA = (k; +k; —kI)A =0 = ki+kj=k]

Meaning of k, and k, will be explained later

Condition ll: 0, A =—0 A, = A :%E—Xsinh(kxx)sinh(kyy)cos(kuz)

u "y
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e With the valid vector potential the field is:

* It provide focusing of the electron if not

S

Off-Axis Field Components II

injected on-axis:

Horizontal Focusing:

Effective Field B, for [x,x+Ax]

Effective Field B, for [X-AX,X]
Off-Axis: B; > B,

B,

Net kick inwards

AX
<>

y

B=B,| cosh(k,x)cosh(k,y)sin(k,z)

y

Vertical Focusing:

l;—xsinh(kxx)Sinh(kyY)Si”(kuZ)

E—“cosh(kxx)sinh(kyy) cos(k,2)

* 1% half-period: F, = -ev,B,
- 2" half-period: F, = -e(-v,)(-B,)
Off-Axis: B,~k,y

Net kick inwards

Field Lines

XX

Transverse Velocity
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(== Curved Poles — Meaning of k, and k,

* Note that the magnetic field can also be derived from a scalar potential

%sinh(kxx)Sinh(kyY)Sin(kuZ)
y

B ) )
¢ = —k—Ocosh (k,x)sinh (kyy)sm (k,2) —Vg¢=B=B,| cosh(k,x)cosh(k,y)sin(k,z)
y
t—”cosh(kxx)sinh(kyy) cos(k,z)

y

Setting the scalar potential to a constant
values defines an equipotential plane with
the dependence for small transverse
extensions:

sinh(k, y) = — AymC 4G, [1—%&2#}

C
cosh(k, x)
* The parameter k, describes the transverse

P X k2>0 k2<0

dependence on the pole surface:
—k,> >0 =2 poles are curved inwards
—k,> <0 = cosh is replaced with cos 2>

poles are curved outwards = defocusing
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(=== Helical Undulator

* In an ideal helical undulator the focusing is symmetric with: k; =k =k; /2

* The simplest vector potential and magnetic field is:

A [1,(k,r)—1,(k,r)]cos(¢—k,z) [1,(k,r)+1,(k,r)]cos(¢—k,z)
A=| A, =k—° [1,(k,1)+1,(k,N]sin(¢—k,z) | B=By]| [I,(k,r)—1,(k,r)]sin(g—k,2z)
A ’ 0 21, (k,r)sin(¢—k,z)

* However a helical undulator field is also obtained by superposition of two planar
fields. If the symmetry is broken (e.g. APPLE Undulator) the roll-off parameters k,
and k, are different for the two polarization planes.

* The sum of all coefficient in square still have still to be the square of ku.

* For APPLE type undulator the resulting net constants can be significantly larger,
e.g.:
k? =-5k?, k? =6k’

u?l’'ly
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(=J» The Hamilton Function and Electron Motion I

* The Hamilton function is a constant of motion because there is no explicit time-

dependence in the vector potential (here planar undulator):

. \2 —cosh(k, x) cosh(k, y) cos(k,z
H =\/(P—eA) ¢ +m%c* = ymc? el (kx)coshik, y)costk,2)
A:k—0 k—xsinh(kxx)sinh(kyy)cos(kuz)
u y
* The velocities are: 0
— P —e
op, ym ap, ym ap, ym

Note that the velocity term proportional A, is exactly the fast oscillation
term but now with the transverse dependence on the undulator field:

B, = ;cosh(kxx) cosh(k,y)cos(k,z)

* The canonical momentum P, describes mostly the slow betatron-oscillation



=(zI5}= The Hamilton Function and Electron Motion II

—cosh(k,x) cosh(k,y) cos(k,z)

A= % E—Xsinh(kxx) sinh(k,y)cos(k,z)

y

H = \/(IS —eﬁl)z ¢’ +m’c* = ymc’
0

* The transverse momenta are given by:

F=P=—VH=——=—V(P—eA)

2ym

o &Bs S (cosh(k x)? cosh(k y)2 (k7K ) sinh(k x)2 sinh(k_y)?
<= mir ¥ (00s(60° coshlk, y)*+ (. k,)* sinn(k, ) sinhk, )°)

* Some terms have been dropped or simplified for the evaluation of the “slow”

betatron motion:

0

1 P 5
&pXZO <C03(ku2)2>: pX&AKocCOS(kUZ):><pX&AK>:0

2
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()= Electron Motion for Small Amplitudes

* The resulting betatron equations of motion become:

. P e’B. . :
X = = =— 2y2mgk2 k, sinh(k x) cosh(kxx)(cosh(ky y)* +(k, /k,)?sinh(k, y)z)
2
* For small amplitudes in x: xz—czK—zkfx
2y
K2
* Similar calculation for y: j ~—c* 2—7/2k§y

Natural focusing of undulators

Total focusing strength is given by undulator period:

K2+ K2 = K?
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(= Betatron Motion for Natural Focusing

* The transport matrix for quadrupole focusing is given by

v [ cos(Q,z) éx sin(QXz)J a

—-Q,sin(Q,z)  cos(Q,z)

" 5(.

~ 252
c° B,

X

— K k
X \/E]/BZ X

T~

. Matching condition is: Note: beam energy and long. velocity

_a J—
(ﬂ J:M[(ﬂ a][MT = B= 2 2le2 -2, a=0 y =
? y —a y J2-MZ-MZ -2M,M,

Note: twiss parameter

— At about 100 MeV the matched betatron function is around 1 m
— At 10 GeV it is 100 m

For X-ray FELs there is the need for external focusing
to reduced the electron beam size
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BS External Focusing

* |f the natural focusing is not sufficient, superimposed quadrupole fields can
provide more focusing.

Undulator Module guadrupo/e

* Equations of motions for the slow betatron-oscillation are:

X'=(Q2(2)+Q(2))x, Y =(-Q3(2)+Q(2))y
Formal solution of x: Special case: Natural focusing only

X(z) = Jlxﬂx(z) cos(¥,(z)+4,) x(z) = \/gcos(ﬁxz +¢,)
x'(z)=%=—,/%[a(z)cos(wx(z)+¢x)+sin(wx(z)+¢x)] K(2) =T, sin(Q,2+4,)

z
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(==» Longitudinal Velocity for Natural Focusing

* Including betatron-motion in longitudinal velocity:

[ } Betatron motion
B, \/1———ﬂ -B; 1———— B+ B}

X':&:&
B _1+K 12 K? 1o e KXB, 12 p, B,
=1 2,7 47/ ~cos(2k,z) ( )'BZ+—7/ sin(k,z) 2(y) B

* Averaging out all fast oscillating terms

1+K2/2 K21, . K%kg 1, 2
B, =1- e sin(Q,z+4,) —V;Q—ysm(ﬂyzmﬁy)
X y

e The K-value should be evaluated at the position of the electron with:

K(x,y)=Kcosh(kx)cosh(k,y) =

|
K(x, )" ~ K? (L+k2X* +k7y?) = K? + K?k? glz 2+ KK Q—ycos(Qyz +9,)°

X y

1+ K?/2 K? |
ﬁzzl_ 2 _ 2|:k2
4y

X4 k2 I_y} No dependence on the betatron-phase
2 O
/4 y

“Q

X
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