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we expect the saturation power to be about ρPbeam, the total amplification factor

will be about Nlcoh , which is a large number whose typical magnitude is 105 to

107.

4.3.3 Temporal fluctuation and correlation of SASE

The SASE radiation consists of a random collection of a large number of co-

herent pulses, much like synchrotron radiation. To see this in the time domain,

we construct the temporal amplitude by Fourier transforming the field in the

frequency representation,

Ex(z, t) =

∫
dν Eν(z)e

iΔν[(k1+ku)z−ω1t]ei(k1z−ω1t), (4.72)

with Eν given by the growth SASE solution for the case of vanishing energy

spread

Eν(z) =
iκ1ne

2ρkuNλ

e−iμ2ρkuz

μD′(μ)

Ne∑
j=1

e−iνθj(0). (4.73)

In general, the integral cannot be evaluated exactly due to the dependence of μ

on Δν. However, in the limit that the energy spread is negligible, an approximate

result can be obtained using the second order expansion derived in (4.66). Hence,

we insert

μ = −1

2

[
1− Δν

3ρ
+

(Δν)2

36ρ2

]
+ i

√
3

2

[
1− (Δν)2

36ρ2

]
(4.74)

into the exponential of μ, and the resulting expression is a Gaussian integral that

can be done analytically. We obtain [6]

Ex(z, t) ∝ e
√
3ρkuz

√
z

Ne∑
j=1

exp
{
−iω1

[
t− z

c
(1 + ρΔβ)− tj

]}

× exp

{
−1 + i/

√
3

4σ2
τ

[
t− z

c

(
1 + 2

3Δβ
)− tj

]2}
,

(4.75)

where the normalized difference of the average electron beam velocity from unity

is Δβ ≡ 1− β̄z = (1 +K2/2)/2γ2, and the rms temporal width

στ =
1√
3σω

≈ 1

2ω1

√
z/λu

ρ
. (4.76)

The total field profile (4.75) describes a sum of Ne wave packets of rms pulse

length στ that grow exponentially as they propagate. This random collection

of modes has the essential properties of chaotic light, although in this case the

power grows exponentially with z while its coherence length increases ∼ √kuz.

Note that the relationship between the rms temporal and spectral widths of these

modes differ from the usual στσω = 1/2 due to the quadratic phase dependence

in (4.75). We show an example of such temporal evolution of SASE in Fig. 4.5.
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Figure 4.5 Evolution of the LCLS radiation power and temporal structure in a 1%
time window. Courtesy of H.-D. Nuhn.

The wave packets are distributed randomly in time in a manner quite similar

to undulator radiation. The phase velocity is less than the speed of light by the

small factor ρΔβ, and it is interesting to note that the group velocity of each

wave packet/temporal mode is [7]

vg =
c

1 + 2Δβ/3
≈ c

(
1− 2

3Δβ
)
. (4.77)

The group velocity is slightly faster than the electrons (by Δβ/3), but slower

than c because the growing radiation mode is shaped by the FEL gain. Since the

FEL gain is tied to the local electron bunching that moves with velocity v̄z, the

gain tends to follow the electron beam; the interplay of radiation slippage and

FEL gain leads to group velocity (4.77). Fig. 4.6 plots simulation results that

confirm this interesting property in the exponential growth regime. Additionally,

we see that the group velocity of these wave-packets is about equal to c after

saturation, when the coupling between the radiation and the electron beam is

greatly reduced.
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Figure 4.6 Simulation of the SASE radiation power as a function of the speed of light
coordinate ct− z and ẑ. The power at each location in z is scaled by the maximum at
that location. Vertical lines correspond to wavefronts of electromagnetic waves in
vacuum, while the arrows labeled v̄z and vg identify the slopes associated with the
average electron beam speed along z and the theoretical SASE group velocity (4.77),
respectively. The coherent regions move at the group velocity until saturation near
ẑ ∼ 10, after which the radiation becomes nearly uncoupled from the beam and moves
approximately at the speed of light. Courtesy of W. Fawley.

As previously mentioned (and shown in Figs. 4.5-4.6), the temporal modes of

SASE are randomly distributed over the pulse. This is because SASE is initial-

ized by fluctuations in the beam current attributable to the discrete nature of

the electron, namely, the shot noise. Thus, SASE is an example of a partially

coherent wave, and its temporal fluctuations are those of chaotic light that we

discussed in Sec. 1.2.5. Specifically, there are about M ∼ T/tcoh temporal (and

spectral) modes or spikes, and the integrated energy fluctuates by a relative

amount 1/
√
M from shot-to-shot. A detailed description of SASE beyond these

simple characteristics can be obtained using the techniques of statistical optics

described in, e.g., [8]; such methods have been applied to SASE light in Refs. [9]

and [10], among others. Here, we discuss a few such properties in a little more

detail.

The characteristic time scale of the temporal fluctuations in SASE power is
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given by the coherence length which we derived in (4.70):

tcoh =

√
π

σω
→ 3√

2πz/LG0

λ1

cρ
∼ λ1

cρ
, (4.78)

where the last two expressions have inserted the cold, 1D result and then assumed

a propagation distance of order a few gain lengths. The field envelope in any

given SASE pulse varies over times ∼ tcoh as seen in Fig. 4.5, while the position

and height of the intensity peaks are completely uncorrelated from pulse to

pulse. These latter variations lead to shot-to-shot fluctuations in the SASE pulse

energy which depend on both the coherence time and the temporal duration of

the pulse T . To understand these fluctuations, we first consider a single SASE

pulse. Using the fact that the electric field is approximately constant over the

temporal duration T � tcoh, it can be shown [11, 12] that the energy contained

within a time interval much less than the coherence time is described by the

negative exponential distribution, so that in this limit the probability p(U) to

measure the energy U over the time T is

T � tcoh : p(U) =
1

〈U〉 exp
(
− U

〈U〉
)
, (4.79)

where 〈U〉 is the average energy contained in the time T . Equation (4.79) applies

if T � tcoh, for which the field will comprise one longitudinal mode, i.e., M =

1. On the other hand, in the limit M → ∞ (T → ∞), the energy will be

normally distributed in accordance with the central limit theorem. A probability

distribution that interpolates between these two limiting forms is the Gamma

probability distribution; this line of reasoning underlies the suggestion in Ref. [9]

that the statistics of the energy U in a flattop SASE pulse with duration T are

governed by the Gamma distribution

p(U) =
MM

Γ(M)

UM−1

〈U〉M exp

(
−M U

〈U〉
)
. (4.80)

Here, 〈U〉 is the ensemble average of the electromagnetic energy for a SASE pulse

of duration T , while Γ(M) is the Gamma function. Using the properties of the

Gamma distribution, M is related to the relative rms fluctuation in energy σU

by [6, 9, 13]

M =
1

σ2
U

=
〈U〉2

〈U2〉 − 〈U〉2 ≈
{
T/tcoh if T � tcoh

1 if T ≤ tcoh
. (4.81)

Thus,M characterizes the number of longitudinal degrees of freedom (or “modes”)

in the pulse, with (4.80)-(4.81) giving its more formal definition. Extensive sim-

ulations [9] have shown that (4.80) describes the energy probability distribution

very well even up to saturation, while a more thorough statistical analysis has

shown that the average number of intensity spikes in the time domain is about

0.7M [10].

For hard x-ray wavelengths, the coherence time determined by (4.78) is only
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of order a few hundred attoseconds, while the SASE pulse duration T is dictated

by the length of the electron beam. Typically, the electron beam is between ten

and a few hundred femtoseconds in length, so that M � 1 and the Gamma

distribution of shot-to-shot pulse energies approaches a Gaussian distribution

with a small relative rms fluctuation given by 1/
√
M . On the other hand, if the

electron beam length is comparable to the coherence length so that T � tcoh,

than the resulting FEL radiation will be comprised of one longitudinally coherent

mode at the expense of shot-to-shot stability: the energy variations from pulse

to pulse will approach 100%.

The frequency domain exhibits very similar statistical properties. The full

SASE bandwidth is about 2
√
πσω, within which ∼ M independent spectral

modes of width 2π/T are randomly distributed. At saturation where z ∼ λu/ρ,

the full bandwidth for a monoenergetic beam is
√
6
√
3ρω1 ≈ 3.2ρω1. Addition-

ally, it is interesting to consider the effect of a monochromator on the radiation

statistics. To illustrate the basic physics, here we consider a single SASE pulse

that initially comprises many longitudinal modes, so that M � 1 and T � tcoh;

more complete treatments can be found in Refs. [9, 10]. Passing the SASE pulse

through a monochromator selects a certain frequency bandwidth in an analogous

manner as the time interval T identifies a temporal region. If we denote the rms

bandwidth of the monochromator by Δω, after the monochromator the average

pulse energy 〈U〉Δω ≈ (Δω/σω)〈U〉 if Δω � σω, and 〈U〉 otherwise. Assuming

that the monochromator bandwidth is less than that of the SASE, Δω � σω,

the monochromator reduces the spectral bandwidth and the number of spectral

modes is given by

MΔω ≈
⎧⎨
⎩

Δω

σω

T

tcoh
if Δω � 1/tcoh

1 if Δω ≤ 1/tcoh

. (4.82)

Thus, the radiation after the monochromator has a narrower bandwidth but

larger energy fluctuations from pulse-to-pulse than the original SASE.

The statistical fluctuations discussed here can be generalized to three dimen-

sions by redefining the total number of modes via M = MLM
2
T , where ML is

the longitudinal mode number [whose limiting values are given by (4.81)], and

M2
T are the number of transverse modes. Initially, the undulator radiation is also

composed of many transverse modes M2
T � 1, so that in 3D the initial fluctua-

tion level is relatively small. Since there is typically one transverse mode with the

largest FEL gain, however, the exponential growth tends to preferentially select

that single transverse mode, and MT → 1 after several gain lengths. Thus, the

SASE fluctuations near saturation are largely governed by the 1D longitudinal

statistics that we described above.


