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Classical Electrodynamics (CED)

( .. and applications to accelerators)
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Recommended Reading Material (in this order)
[1 ] R.P. Feynman, Feynman lectures on Physics, Vol2.
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Ebeltoft, Denmark, 8-17 June 2010,
Edited by R. Bailey, CERN-2011-007.

[3 ] J.D. Jackson, Classical Electrodynamics (Wiley, 1998 ..)

[4 ] L. Landau, E. Lifschitz, The Classical Theory of Fields,
Vol2. (Butterworth-Heinemann, 1975)

[5 ] J. Slater, N. Frank, Electromagnetism, (McGraw-Hill, 1947,
and Dover Books, 1970)

Some refresher on required vector calculus in backup slides
(Gauss, Stoke ..)



OUTLINE

This does not replace a full course (i.e. =~ 60 hours, some additional
material in backup slides, details in bibliography)

Also, it cannot be treated systematically without special relativity.

The main topics discussed:

Basic electromagnetic phenomena

Maxwell’s equations

Lorentz force and motion of particles in electromagnetic fields
Electromagnetic waves in vacuum

Electromagnetic waves in conducting media, waves in RF cavities
and wave guides



Variables and units used in this lecture

Formulae use Sl units throughout.
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electric field [V/m]

magnetic field [A/m]

electric displacement [C/m?]

magnetic flux density [T]

electric charge [C]

electric charge density [C/m"]

current [A], current density [A/m?]
permeability of vacuum, 4 7-10"" [H/m or N/A?]
permittivity of vacuum, 8.854 -107'* [F/m]

To save typing and space where possible (e.g. equal arguments):

same for other variables ..



- ELECTROSTATICS -




Gauss’ theorem in the simplest form:
Surface S enclosing a volume V' within which are charges: q1, g2, ...
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Electric field lines
diverging from the
enclosed charges ..
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Sum up the fields passing through the surface = flux ¢
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7 is the normal unit vector and E the electric field at an area element
dA of the surface

Surface integral of E equals total charge () inside enclosed volume



Essence:

This holds for any arbitrary (closed) surface S, and:

} Does not matter how the particles are distributed inside the
volume

> Does not matter whether the particles are moving

> Does not matter whether the particles are in vacuum or
material



If we have not discrete charges but a continuous™ distribution:

Replace charge by charge density ¢; = p = charge per unit
volume dV'.

For a charge density it is replaced by a volume integral:

/E-ﬁdA - /ﬁdv _ @
S Jv €0 €0

Ve

this part is trivial

The volume V is the one enclosed by the surface S

*) obviously does not exist ...



With some vector calculus:

€0 €0
E-dA= [ VE-dV  (relates surface and volume integrals)
Gauss’\;ormula
—> VE =2 written as divergence :  div E
€0

Flux of electric field £ through any closed surface is proportional to net
electric charge () enclosed in the region (Gauss’ Theorem).

Written with charge density p we get Maxwell’s first equation:

L= = OE, O0OE, OE. p
dvlr=V-E= Ox * oy * 0z e

Divergence: "measures” outward flux &z of the field ...



Simplest possible example: flux from a charge q

A charge ¢ generates a field E according to (Coulomb):

E = —
Ameg 13
Enclose it by a sphere: E = const. on a sphere (area is 47 - 2):

// E.qA = _4 // A _ g
sphere 47T€0 sphere T2 €0

Surface integral through sphere A is charge inside the sphere (any radius)



We can derive the field E from a scalar electrostatic potential
o(x,y, z), i.e.:

0p 09 0¢
8x’6y’az)

E = —grad ¢ = —V¢p = —(

then we have

—

VB - _vg - (0, 06 0%

¢ _ pl=my,2)
ox?  0y? * 822> N €0

This is Poisson’s equation

All we need is to find ¢ Example —p>



Simplest possible charge distribution: point charge




A very important example: 3D Gaussian distribution

Q 2132 y2 22
p(xaya Z) — eXp | — T )

3 2 2 2
Op0y0 V2T 200 20y 20

(02,04,0, r.m.s. sizes)

e
Q ooexp(—%%H T 2024t 2a§+t>

dmeo Jo \/(203 +1)(202 +1)(202 + 1)

dt

gb(fl?, y7 Z, 0-337 O-ya O-Z) —

For the interested: Fields given in the backup slides

For a derivation, see e.g. W. Herr, Beam-Beam Effects,
in Proceedings CAS Zeuthen, 2003, CERN-2006-002, and references therein.



Very important in practice:

Poisson’s equation in Polar coordinates (r, ¢)

ror \ Or r2 0p? €0
Poisson’s equation in Cylindrical coordinates (7, ¢, 2)
10 [ 0 1 0? 2
ror \_ Or r2 Jp>? 022 €0

Poisson’s equation in Spherical coordinates (r, 0, ¢)

1 0 ( 500 1 0 (. 09 1 0%
(T ) T T 25in0 96 (Sme(%) T Zsing 0p?

Examples for solutions in [3]



- MAGNETOSTATICS -




Morth Pole

South Pole

Definitions:

Magnetic field lines from North to South
Properties:

Described as vector fields

All field lines are closed lines =—»



Gauss’ second law ...

Closed field lines of magnetic flux density (5): What goes out ANY
closed surface also goes in, Maxwell’s second equation:

VB =puoVH =0

==» Physical significance: no Magnetic Charges (Monopoles)



From Ampere/Qersted law, for example current density 5

Static electric current induces encircling (curling) magnetic field

curlé = V X ézuoj

or in integral form the current density becomes the current I:

ffAVXE de: ffA,U,oj dfi) = ,U,of

Curl: "measures” directional strength along the field lines ...



Application (derivation see [1 - 5]):

For a static electric current [ in a single wire we get Biot-Savart law (we

have used Stoke’s theorem and area of a circle A = r* - 7):

- 0 = T XdS
Current B — Iu— f/; [ . 3
4 r
B = ===
Induced magnetic 27T T
field

For magnetic field calculations in wires ..



- THIS IS NOT THE WHOLE STORY -

-  enter Maxwell -



Do we need an electric current ?

Maxwell’s displacement current, e.g. a charging capacitor j’d:

Parallel plate capacitor
showing alternating
displacement
current
between

E electric field
E /N

B magnetic field

|
L 4

current

its plates. N alternating
= » conduction
n . current
alternating U i
conduction \:/ >

—g charge

a8

7
N

+g charge

=
L

Defining a Displacement Current Iy

) dg 1D d L
i o= % _ e _a B dA
d T 0 EOdt/ / :

Not a current from moving charges

But a current from time varying electric fields




Displacement current I; produces magnetic field, just like
"actual currents” do ...

= Time varying electric field induce magnetic field (using the

current density fd

_ . OF
V X B = pjg = €010~



Bottom line:
Magnetic fields B can be generated in two ways:
V x B=poj (electric current, Ampere)

oF

v (changing electric field, Maxwell)

V X EZMOJ?Z = €olto

or putting them together:

. OF

V X B = MO(;‘FJZ) = poj + Cofo 5

or as integral equations (using Stoke’s formula):

%E-d?z /VXE-M: fA<Moj+eouan>-dﬁ
c A ot

A\ - 7/

Stoke’s formula



- enter Faraday -

- first unification -



Faraday’s law (electromagnetic induction):

\
| -

[ \
éo éﬁ
\Via .

A changing flux €2 through an area A produces " electromotive force”
(EMF) = in a conducting coil: current /
(Can move magnet or coil: any relative motion will do ..)

VAN
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J

7L

ﬂux:ﬂzfécM’ EMF = E - ds
A C
G _ﬁ/zm: . ds
ot ot/ 4 -
N——



> In a conducting coil: changing flux induces circulating current

» Flux can be changed by:
- Change of magnetic field B with time ¢ (e.g. transformers)

- Change of area A with time ¢ (e.g. dynamos)
» Electromotive force (EMF):

1. Energy of a unit charge after one loop

2. Voltage if the loop is cut, i.e. open circuit



—an—BMZ/VXEM:%E-dg
ot Ja -

Ve

Stoke’ sformula

_ OB
E -ds V X 5

closed curve (C)

Changing field through any closed area induces electric field in the
(arbitrary) boundary

= becomes Maxwell-Faraday law



Summary: Time Varying Fields (most significant for RF systems !)

Q.
o
o

dB dE f 4 pooA
dt A dt A

Ci\‘\\\ IIILD é: >
B

> Time varying magnetic fields produce curling electric field:
dB
ot

> Time varying electric fields produce curling magnetic field:
. . dE
CUI’l(B) = VX B = ,LL()EOE

—

crl(E) = VxE =

because of the x they are perpendicular: E L B



Put together: Maxwell’s Equations in vacuum (SI units)

vVE= 2 = _A¢ (1)
€0
VB = 0 (1)
V x E = —d—lf (1)
. R dE
VXB= pol|j + €0E> (V)

(a.k.a. Microscopic Maxwell equations)



For completeness

Equivalent equations written in Integral Form, (using
Gauss’ and Stoke’s formulae)



Maxwell in Physical terms

1. Electric fields E are generated by charges and proportional to
total charge

2. Magnetic monopoles do not exist

3. Changing magnetic flux generates circumscribing electric
fields/currents

4.1 Changing electric flux generates circumscribing magnetic
fields

4.2 Static electric current generates circumscribing magnetic
fields

Frequent complaint: "l have seen them in a different form !”

The Babel of Units: =—»



Units: Gauss law Ampere /Maxwell
= dE
Sl VE = £ V x B = ,uoj + po€o——
€0 dt
. . ~ 41 > 1 dE
Electro-static (o = 1) VE = 4mp V x B = =i+ 5
Electro-magnetic (1o =1) || VE = 4nc’p | VX B = 4mj + ot
- . 4w~  1dE
Gauss cgs VE = 4mp V x B = _Wj -
C c dt
- . 1. 1dE
Lorentz VE = p VxB= =3 -
C c dt
SI
Also: BG5S — w/47T§ Gauss _ _P and so on .....
Mo TEQ




That’s not all =» Electromagnetic fields in material

In vacuum:

In a material:

Origin: Polarization and Magnetization

e, (E,7,w) =» ¢, is relative permittivity ~ [1 — 10°]

. (H, 7, w) = pu, is relative permeability =~ [0(!) — 10°]

(i.e.: linear, isotropic, non-dispersive)



Once more: Maxwell’s Equations

(a.k.a. Macroscopic Maxwell equations)



Something on potentials (needed in lecture on Relativity):

Electric fields can be written using a (scalar) potential ¢:

E = -V¢

Since div B = 0, we can write B using a (vector) potential A:
B =VxA = curl A

combining Maxwell(l) + Maxwell(lll):

. . DA

Fields can be written as derivatives of scalar and vector potentials
®(z,y,2) and A(z,y, 2)

(absolute values of potentials ® and A can not be measured ..)




The Coulomb potential of a static charge q is written as:

o) = — 1

ey |77 — Tq]

where 7 is the observation point and 7, the location of the charge

The vector potential is linked to the current 5

—

VA = poj

The knowledge of the potentials allows the computation of the
fields => see lecture on relativity (fields of moving charges)



Applications of Maxwell’s Equations

» Powering of magnets

» Lorentz force, motion in EM fields
- Motion in electric fields

- Motion in magnetic fields
» EM waves (in vacuum and in material)
» Boundary conditions

» EM waves in cavities and wave guides



Powering and self-induction

primary magnetic field induced magnetic field

primary  induced)
current  current y'._/ |

magnetic field building induced current tries
to stop field building

- Induced magnetic flux B changes with changing current

=% Induces a current and magnetic field EZ voltage in the

conductor

=% Induced current will oppose change of current (Lenz’s law)

=» \We want to change a current to ramp a magnet ...



Ramp rate defines required Voltage:

o1
U=-L=

Inductance L in Henry (H)

Example:

- Required ramp rate: 10 A/s

- With L = 15.1 H per powering sector
=% Required Voltage is ~ 150 V



Lorentz force on charged particles

Moving (7) charged (¢) particles in electric (E) and magnetic (3)
fields experience a force f (Lorentz force):

—

f = ¢ (E 4+ 7 x B)

Why a mysterious and incomprehensible dependence on the
velocity of the charge 777

Often treated as ad hoc plugin to Maxwell’s equation, but it is
not (see lecture on " Special Relativity”) !!



Motion in an electric field

E F q
4 med) = f = q B
de oY) T - 4
The solution is:
.E .E
v = d -t = = d -t (parabola)
™Mo 2myg

Constant E-field deflects beams: TV, electrostatic separators (SPS,LEP)



Motion in magnetic fields

eleciron
& e
magnetic field
Assume first no electric field:
i(mﬁ) — f = ¢-U x B
ar Y= - 4

Force is perpendicular to both, v and B
No forces on particles at rest

Why: see lecture on special relativity

Current



Important application:

(‘?‘L \. f__H
= m\'*m i ‘-s_

Tracks from particle collisions, lower energy particles have smaller
bending radius, allows determination of momenta ..

Q1: what is the direction of the magnetic field 77?7
Q2: what is the charge of the incoming particle 777?



Example: Motion in a magnetic dipole

Practical units:

BT] plm] = LY

clm/s]

Example LHC:
B=833T, p=7000GeV/c = p=2804 m



Use of static fields (some examples, incomplete)

Magnetic fields
» Bending magnets
> Focusing magnets (quadrupoles)
> Correction magnets (sextupoles, octupoles, orbit
correctors, ..)
Electric fields

> Electrostatic separators (beam separation in
particle-antiparticle colliders)

> Very low energy machines

What about non-static, time-varying fields ?



Time Varying Fields (very schematic)

B(t)A X \ A

0 = —

Time varying magnetic fields produce circular electric fields
Time varying electric fields produce circular magnetic fields
==» Can produce self-sustaining, propagating fields (i.e. waves)

==» Example for source (classical picture): oscillating charge



Electromagnetic waves (classical picture)

Vacuum: only fields, no charges (p = 0), no current (5 = 0) ...

OB

ot
2—’_ ia2§
V= c? Ot?

From: VX FE=-——
~ B
— VX (VXE) :_vx(aa_)
= —(V’E) :—%(VXE)
2 73 *E
— - (V E) = —Uo€o atQ
It happens to be: po - €0 = %
c
- 1 9%E 0% F
2E — ——= — . .
VIE=Ggp THo 0 G and

General form of a wave equation




Solutions of the wave equations:

E = E_’Oei(E-F—wt)
B — B_’Oei(E-F—wt)
Electric
Field - 27 w .
Magnetic k| = — = — (propagation vector)
Field A c

A = (wave length, 1 cycle)
1 cycle

I\I w = (frequency - 2m)

% = (wave velocity)

Time

Magnetic and electric fields are transverse to direction of propagation:

— —

E 1 B 1k =b kxFE2 = wh

Speed of wave in vacuum: ¢ = 299792458.000 m/s



Examples: Spectrum of EM waves (we are exposed to)

« Increasing energy
Increasing wavelength =
0.(}0?1 nm 0.01 nm 10 nim 190? nm {).'D]l cm l::m 1|m IO(I)m
Gamma rays Krays :Jigm Intrared Radio waves
Radar TV FM AM
_/’//‘Vi’s;FEEQF”\_
400 nm 500 nm 600 nm 700 nm

Radio =»  as low as 40 Hz (< 1072 eV)
CMB =»> < 3.10" Hz (< 107°%eV)
yellow light =»> =~ 5.10' Hz (~ 2eV)
X rays =» < 1-10" Hz (~ 4keV)
v rays = < 3-10%' Hz (< 12 MeV)
0 =y = > 2.10%% Hz (> 70 MeV)



Polarization of EM waves (Classical Picture !):

The solutions of the wave equations imply monochromatic plane waves:

— —

E — E’Oei(E-F—wt) B — B_’Oei(E-F—wt)

Look now only at electric field, re-written using unit vectors in the plane
transverse to propagation: ¢; 1 e L k

Two Components: FE; = ¢ F; /P70 By = &E, elFm—wt)

=> F = (B\+E) = (6B +&E,y) /*«)

With a phase shift ¢ between the two directions:

E =6E eF™ e 4 R, lkmwite)

¢ = 0: linearly polarized light

¢ # 0: elliptically polarized light

¢ = x5 and E1 = FE>: circularly polarized light



Polarized light - why interesting:

Produced (amongst others) in Synchrotron light machines
(linearly and circularly polarized light, adjustable)
blue sky !

Accelerator and other applications:

> Polarized light reacts differently with charged particles
> Beam diagnostics, medical diagnostics (blood sugar, ..)
> Inverse FEL

> Material science

> 3-D motion pictures, LCD display, outdoor activities, cameras
(glare), ...

5 ..



Energy in electromagnetic waves (in brief, details in [2, 3, 4]):

We define as the Poynting vector (Sl units):

— 1 — —
S = —FExB (in direction of propagation)
Ho
describes the " energy flux”, i.e. energy crossing a unit area, per
second | J ]
m2s

In free space: energy in a plane is shared between electric and
magnetic field

The energy density ‘H would be:

1 1
H = = (€0E2 + —32)
2 Ho



Waves interacting with material

Need to look at the behaviour of electromagnetic fields at
boundaries between different materials (air-glass, air-water,

vacuum-metal, ...).
Have to consider two particular cases:

» ldeal conductor (i.e. no resistance), apply to:
- RF cauvities
- Wave guides
» Conductor with finite resistance, apply to:
- Penetration and attenuation of fields in material (skin
depth)

- Impedance calculations

Can be derived from Maxwell’s equations, here only the results !



Observation: between air and water

> Some of the light is reflected
> Some of the light is transmitted and refracted

==» Reason are boundary conditions for fields between two materials




Extreme case: surface of ideal conductor

For an ideal conductor (i.e. no resistance) the tangential electric field

must vanish Corresponding conditions for normal magnetic fields. We

must have:

This implies:
> Fields at any point in the conductor are zero.

> Only some field patterns are allowed in waveguides and RF cavities

A very nice lecture in R.P.Feynman, Vol. Il

Now for Boundary Conditions between two different regions =%



Boundary conditions for electric fields

Material 1
€ W

Material

& Mo
A

2

Assuming no surface charges (proof e.g. [3, 5])":

From curl E = 0:

== tangential E-field continuous across boundary (E;

From div D = Jok

Material 1 Material 2
€1 s & Mo
__—Dn
— Ef)

= normal D-field continuous across boundary (D), = D?)

with surface charges, see backup slides




Boundary conditions for magnetic fields

Material 1
€ s

Material

& M2

2

Assuming no surface currents (proof e.g. [3, 5])":

From curl H = ;

= tangential [-field continuous across boundary (H}

From div B = 0:

= normal B-field continuous across boundary (B}

with surface current, see backup slides

Material 1 Material 2
€1 s & M2
B
— e
— Hf)
— Bg)




Summary: boundary conditions for fields

Electromagnetic fields at boundaries between different materials
with different permittivity and permeability (¢, o, 11, p2).

y (BEi = Ef), (B, # E;)
y (Di # Df), (D, = Dj)

(Hi = Hf), (H, # H;)
» (B # Bf), (B, = B})

(derivation deserves its own lectures, just accept it)

They determine: reflection, refraction and refraction index n.



Reflection and refraction angles related to the refraction index n and n’:

sin « n’

- = — = tan ap
sin (3 n

incident wave
reflected wave

/ n depends on wave length
~ a
1= Yen dn

< 0

d\

Ny

refracted wave

If light is incident under angle ag [3]:
Reflected light is linearly polarized perpendicular to plane of incidence

(Application: fishing ==» air-water gives ap ~ 53°)



Rectangular cavities and wave guides

Rectangular, conducting cavities and wave guides (schematic) with
dimensions a X b X ¢ and a X b:

"y

o
\
o

> Fields must be zero at boundary
> RF cavity, fields can persist and be stored (reflection !)

> Plane waves can propagate along wave guides, here in z-direction



Assume a rectangular RF cavity (a, b, c¢), ideal conductor.

Without derivations (e.g. [2, 3, 6]), the components of the fields are:

E. = Eyo - cos(kzx) - sin(kyy) - sin(k.z) - oWt
—twt

E, = Eyo - sin(kyx) - cos(kyy) - sin(k.z) - e
E. = B - sin(kyx) - sin(kyy) - cos(k.z) e ™"

with: Vx E = _aa_f;
B, = %(EyOkz — E.oky) - sin(k.x) - cos(kyy) - cos(k.z) - e """
By = é(Ezqu; — Eaok-) - cos(kyz) - sin(kyy) - cos(k.z) - oWt
B. = E(Ekay — Eyoks) - cos(kex) - cos(kyy) - sin(k.z) - e ™"



Consequences for RF cavities

No fields outside: field must be zero at conductor boundary !
Only possible under the condition:

2

K24 k2 k=2

2
and for k., k,, k. we can write:
My TT My T M
]{:w — 3 ky — 9 kz — Y
a b C

The integer numbers m,, m,, m, are called mode numbers

==» number of half-wave patterns across width and height

It means that a half wave length )\/2 must always fit exactly the size of

the cavity.



Allowed modes

'Modes’ in cavities

T
Allowed ---------
Allowed
Not allowed e

1 1 1 1
0 0.2 0.4 0.6 0.8 1
a

> Only modes which ’fit’ into the cavity are allowed

> A a A a A a

2 4’ 2 1’ 2 0.8

> No electric field at boundaries, wave must have ”"nodes”’ at the
boundaries



Similar considerations lead to (propagating) solutions in (rectangular)
wave guides:
Ey = Eq0 - cos(kgx) - sin(kyy) - pi(kzz—wt)
b, =1 EzO . Szn(kxa:) . S’Ln(kyy) . ei(kzz—wt)

1 - _
By = = (Eyok: — E.oky) - sin(kex) - cos(kyy) - e'F=770
w
1 . i(kyz—wt)
By = —(E.o0ks — Exokz) - cos(kzx) - sin(kyy) - e "7
w
1 i(kyz—wt)
B, = — (FExzoky — Eyoky) - cos(kzx) - cos(kyy) - e

7-W



Consequences for wave guides

Similar considerations as for cavities, no field at boundary.
We must satisfy again the condition:
2

2 2 2 w
ki +ky + k==

This leads to modes like (no boundaries in direction of propagation z):

My T My T
k, = : k, =

a b '’

The numbers m,, m, are called mode numbers for planar waves in wave

guides !



Re-writing the condition as:

w2 2

2 2 2 — _
K=" ki~ K > k=)= — k2 — k2

Propagation without losses requires k. to be real, i.e.:

w? My T My T

)+ (=)

which defines a cut-off frequency w.. For lowest order mode:

> ko + ky = (

c2 a

mw-C
We — —
a

> Above cut-off frequency: propagation without loss
> At cut-off frequency: standing wave

> Below cut-off frequency: attenuated wave (means it does not "really
fit” and k is complex).



Classification of wave guide modes:

TE: no E-field in z-direction
TM: no B-field in z-direction

TEM: no B-field nor E-field in z-direction
What is special:
TEM modes cannot propagate in a single conductor™ !

Need two concentric conducting " cylinders”: i.e. a coaxial cable ...

(for the field lines: see backup slides)

—

) curl E = 0, div E = 0, FE =0 at boundaries =% zero field



Circular cavities

Wave guides and cavities are more likely to be circular.

Derivation using the Laplace equation in cylindrical coordinates, example
for modes, for the derivation see e.g. [2, 3]:

E. = EOZ—ZJZL(kT) . cos(nB) - sin(k.z) - e "

nkz . . —twt
Ey = Eo 12 In(ky) - sin(nf) - sin(k.z) - e

2r

E. = EoJu(k.r)-cos(nb) - sin(k.z)-e "
B, = Z.E()C;Zﬁjn(krr) . sin(nf) - cos(k.z) - e "
By = iFEp c;l:rr J), (kr1) - cos(n@) - cos(k.z) - e ™"
B, = 0

Homework: write it down for wave guides ..



Accelerating circular cavities
For accelerating cavities we need longitudinal electric field component
E. # 0 and magnetic field purely transverse.

E, = 0
Ee = 0
E FoJo(poi—) - e
z = 0J0 p01R
B, = 0
E r —lw
Be = —2701]1(}?01E) - € t
B, = 0

(pnm is the mth zero of J,,, e.g. po1 ~ 2.405)

This would be a cavity with a TMo10 mode: woi0 = po1 - %



Other case: finite conductivity

Starting from Maxwell equation:

j
. - dD 3 dE
VX J T dt &#+edt

Ohm'’s law

Wave equations:

E — E’Oez‘(E-F—wt)7 H — H’Oei(E-F—wt)
We want to know k£, applying the calculus to the wave equations we
have:
E — ﬁ — — nd — — — —
Cil—t:—iw-E, Cil—t:—z'w-H, VxE=tkxE, VxH-=1kxH

Put together:

kxH = ic-E — we-E = (—ic+we)-E



Starting from:

Multiplication with k:

kx (kxE) = wulkx H) = wp(—io + we) -

After some calculusand E | H 1 k:

k* = wu(—ioc + we)



Skin Depth
Using k? = wu(—ioc + we):

For a good conductor o > we:

k? ~ —iwpoc =k~ %(14—2') =

5 (1+74)

S|

is the Skin Depth

High frequency currents "avoid” penetrating into a conductor,
flow near the surface

(Note: Vi = e™/4 = [(141)/2]V2)



" Explanation” - inside a conductor (very schematic)

eddy currents from changing H-field:
Cancel current flow in the centre of the conductor
Enforce current flow at the skin (surface)

Q: Why are high frequency cables thin ??



Attenuated waves - penetration depth

> Waves incident on conducting material are attenuated
» |s basically Skin depth, (attenuation to 1/e)

Wave form:

ei(kz—wt) ei((l—i—i)z/é—wt) _ e_TZ .ei(g_""t)



Examples and applications

Skin Depth versus frequency

,,,,,,,,,,,,,,, Stainless steel STTITITTTI
,,,,,,,,,,,, Carbon (amorphous)

0.0001

skin depth (m)

le-06 |-

le-08 |-

le-10 L L L L L L L
1 100 10000 le+06 le+08 le+10 le+12 le+14 le+16

Frequency (Hz)

> Skin depth Copper:
1 GHz: V) =~ 2.1 um, 50 Hz: 4 =~ 10 mm

(there is an easy way to waste your money ...)

> Penetration depth Seawater:
toget ) ~ 25 m you need = =~ 76 Hz

inefficient (107° — 107°) and very low bandwidth (0.03 bps)



Skin Depth - beam dynamics

For metal walls thicker than /:

Resistive Wall Impedances, see later on collective effects.

Currents penetrate into the wall, depending on the frequency and
conductivity.
For the transverse impedance we get the dependence:

Zi(w) x 6 x w /3
> Largest impedance at low frequencies

> Cause instabilities (see later)



We are done ...
Review of basics and Maxwell’s equations
Lorentz force
Motion of particles in electromagnetic fields
Electromagnetic waves in vacuum

Electromagnetic waves in media
> Waves in RF cavities
> Waves in wave guides

> Penetration of waves in material



However ...

I Have to deal with moving charges

Electromagnetic "wave” concept fuzzy: no medium

Lorentz force depends on frame of reference

Mutual interactions between charges and fields

I Cannot explain details of Cherenkov and Transition Radiation

To sort it out in a systematic framework (but ignoring Quantum
Effects):
=» " Special Relativity” ...



- BACKUP SLIDES -



Boundary conditions in the presence of surface charges
and currents

Assuming surface charges o, and currents j,, we get the
boundary conditions:

Mlﬁqg,l) = Mzﬁg) 6157(11) — 6257(12) = Os
D’il) B l—ng) B’t(l) B’t(Z) .
€1 €9 H1 2 Js

Another assumption: both media are linear and isotropic, i.e.

—



Coaxial cable:

H - field

Poynting vector

Field lines and Poynting vector in a coaxial cable



Side notes:

Remark 1:

- often written - or - (mostly Europe)

Remark 2:

On very few occasions one can see it written as: _

Sometimes used in France, but usually it refers to a different
algebra. If interested, see backup slides for the meaning and

relevance, happy reading ..



Vector calculus ...

We can define a special vector V (sometimes written as ﬁ)

o 0 0 )
ox’ Oy’ 0z
It is called the "gradient” and invokes " partial derivatives”.

V=

It can operate on a scalar function ¢(z,y, 2):

96 96 96, _ a_
5 9y 5.) = 0=(GGGy)

Vo = (

and we get a vector G. It is a kind of ”slope” (steepness ..) in
the 3 directions.

Example: ¢(2,y,2) = C-In(r?) with r = /22 + y2 + 22
2C -z 2C -y 2C -z

2 7 r2 2 )

—> VQS — (GocaGyan) — (

T T



Gradient (slope) of a scalar field

Lines of pressure (isobars)

Gradient is large (steep) where lines are close (fast change of
pressure)



Vector calculus ...

The gradient V can be used as scalar or vector product with a
vector ', sometimes written as V
Used as:

V.-F or VxF

Same definition for products as before, V treated like a " normal”
vector, but results depends on how they are applied:

V& is a vector

V - F is a scalar

V x Fisa pseudo-vector

VAFis not a vector



What about the A operation ?

e In general dimensions:

- No analogue of a cross product to yield a vector

- The A product is not a "normal” vector, but a
2-vector (or bi-vector)

- Can be interpreted as a "normal”’ cross product by
mapping 2-vectors to "normal”’ vectors by using the
Hodge dual:

axb = x(anb) (aha ...)



Operations on vector fields ...

Two operations of V have special names:

Divergence (scalar product of gradient with a vector):

div(F) = v-ﬁ=%§1+aaz2+%

Physical significance: ”amount of density”, (see later)

Curl (vector product of gradient with a vector):

= OFs O0Fy, OF1 O0Fs OF;

curl(F) - = VXF:(@y_ dz 0z  Ox O

Physical significance: ”amount of rotation”, (see later)



Meaning of Divergence of fields ...

Field lines of a vector field F' seen from some origin:

NANNNNN VNV F N
ALYy Yy /f,f'/,/‘/
RSN RRE R R R AN
SOV Ny F A s
S S SR R R R
I S N R N A o o
e e o e SRR P e o e e o
e . =

e v ¥ A | % O e W e
VA /4 \ * v e v w oW
A AAA SRR =
//'f/{/‘( /‘ /‘ f L"l \ ‘\\‘\.“'\‘\
A AALAA LR RN
A RN
AAAATTEEERRNORY

VF <0

(sink)

The divergence (scalar, a
(or goes to) the origin

XX AR AAAAAAL AAAAAAAAAAAAA
NN a7 i
N\
s e S S S Y ;‘ ///’;-"'—-‘" /4//(//(/( / //:

e L L : o - ; / ! «

e, s e

SIS

; AR s
A}

NN
AR
SRR

\

= INSEY

KXY Ny ; AR
NN
KXV TRENIN I N

A A R DN 2772227277227
VE >0 VE =0

(source) (fluid)

single number) characterizes what comes from



How much comes out ?

Surface integrals: integrate field vectors passing (perpendicular) through
a surface S (or area A), we obtain the Flux:

- //ﬁ.d,z
A

Density of field lines through the surface

(e.g. amount of heat passing through a surface)



Surface integrals made easier ...

Gauss’ Theorem:
Integral through a closed surface (flux) is integral of divergence

in the enclosed volume

Psed volume (V)

Relates surface integral to divergence



Meaning of curl of fields

The curl quantifies a rotation of vectors:

2D vector field 2D vector field

PRERREN C
NN ’

/T TSN TS
722N N
'f:';@x,\mx = =
| oy /4 o~ ~ _

AN / s N
AN ’ //1\\ ~

\ - / 7/ N\
\\\\\ﬁ»' P I

- - 7 / \

~ T |

Line integrals: integrate field vectors along a line C:

=l j[ﬁ.df
C

”sum up” vectors (length) in direction of line C

(e.g. work performed along a path ...)



Line integrals made easier ...

Stokes’ Theorem:
Integral along a closed line is integral of curl in the enclosed area

jqfﬁ.dgz //vXﬁ-de
C A

closed curve (C)

Relates line integral to curl



Integration of (vector-) fields

Two vector fields:

2D vector field 2D vector field
8 T T T 6 T
5
-— = N !
s “ PR ™~ \ ! '
T N ’
, //‘“ 'x#n‘\\\\ \ 2 N ;//
/) N SN\
/ TN
>0 ( Lo Vo ! T >0 - = - -
l 1 \ 7 // A _ 4‘// \\3 -
N VN Ry v/ Y
2 \ N -7 / /A \
\\ ST S / 2 /oy
R ;o
N\ 7
e 4
5
3 . 6 . .
8 5 2 0 2 6 8 5 2 0 2
X X
— —

Line integral for second vector field vanishes ...



Scalar products

Define a scalar product for (usual) vectors like: @ - b,

i = (TasYa, 2a) b = (v, s, 2b)
i-b = (TarYarza) - @0, U 20) = (Ta-To +Ya U + Za-2)

This product of two vectors is a scalar (nhumber) not a vector.

(on that account: Scalar Product)

Example:
(—=2,2,1) - (2,4,3) = —2-24+2-441-3 =7



Vector products (sometimes cross product)

Define a vector product for (usual) vectors like: @ x b,

a = (waayaaza) [; — (ijﬁylﬂzb)
a X g — (xaayaa ZCL) X (xbaybv Zb)
:(ya‘zb_za'yﬁa Za Tb = La " Zb; gca-yb—ya-xg)

N/ N~ Ve

Lab Yabd Zab

This product of two vectors is a vector, not a scalar (number),
(on that account: Vector Product)

Example 1:

(—2,2,1) x (2,4,3) = (2,8,—12)

Example 2 (two components only in the x — y plane):
(—2,2,0) x (2,4,0) = (0,0,—12)



Is that the full truth ?

Magnetic field (B)

s e e e e

—

electron

If we have a circulating E-field along the circle of radius R ?
== should get acceleration !
Remember Maxwell’s third equation:

%E-d? _ _i/gdg
C dt A
dd



Motion in magnetic fields

This is the principle of a Betatron
> Time varying magnetic field creates circular electric field !

> Time varying magnetic field deflects the charge !

For a constant radius we need:
2

m - v p

R €y ¢ R
0 1 dp
EB(rt) ~ e -Rdt

= B(r,t) = ZWRZ//BdS

B-field on orbit must be half the average over the circle = Betatron
condition



Fields from Gaussian distribution - 2D

oc2 2 )

202 +t 202 +t

47T€0 \/202—I-t 202 + 1)

E, = Q Im T+ 1y _6—%+%w x“—y-|-z'y0_:c
x 2¢0y/2m(0F — o) V2(0F = 03) V2(02 — o)

T + 1y —Eyriy (et
w —e 7 Ty —
V2(02 — 02) V2(02 —02)

here w(z) is the complex error function

O(x,y,05,0y) dt

b, = ¢ Re
2¢0+/2m(02 — 02)

From: M. Basetti and G. Erskine, CERN-ISR-TH/80-06



