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• What & Why?

• Interaction of Beams with Matter

• Damage to Permanent Magnets
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Overview

Photo: Wikimedia Commons, CC BY-SA 3.0

https://commons.wikimedia.org/w/index.php?curid=134686



What & Why?
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What is Machine Protection?

Machine protection is the sum of all measures

that protect an accelerator and its infrastructure from the beam.
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• Machine Protection System

– Interlock on components (magnets, screens, ...)

– Monitoring of the beam (beam loss monitors, charge 

monitors, BPMs, ...)

– Mitigation (inform the operator, reduce repetition rate, fire 

abort kickers, stop beam production immediately, ...)

beam loss 

detected

MPS
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Case Study: European XFEL (Early Design)

accelerator length: 3 km

bunch frequency: 4.5 MHz

45 bunches in the accelerator

68 injected during signal

propagation (2/3 c)

113 bunches lost



What is Machine Protection?

Machine protection is the sum of all measures

that protect an accelerator and its infrastructure from the beam.
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• Machine Protection System

– Interlock on components (magnets, screens, ...)

– Monitoring of the beam (beam loss monitors, charge 

monitors, BPMs, ...)

– Mitigation (inform the operator, reduce repetition rate, fire 

abort kickers, stop beam production immediately, ...)

• Collimators, absorbers

• Shielding

• Physics (matching, collective effects, ...)

• Robust systems+software (feedbacks, LLRF, controls, ...)

• Safe procedures (switch on, change beam energy, ramp to full 

power, ...)



Average Electron Beam Powers

Normal conducting

• FERMI@Elettra 1.4 GeV 10 Hz 14 W

• SACLA 7 GeV 10–60 Hz 18–140 W

• LCLS 15 GeV 120 Hz 36–360 W
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Photo: Michael J. Linden

Superconducting

• FLASH 1.3 GeV 1–3 MHz pulsed 10 W – 22 kW

• European XFEL 17.5 GeV 4.5 MHz pulsed >500 kW

• LCLS-II 4 GeV 0.1–1 MHz CW 120 kW

Photo: DESY

Energy recovery linacs

• NovoFEL 12 MeV 5.6–22 MHz CW 15–60 kW

• Jlab FEL 200 MeV 75 MHz CW >1 MW

• Future ERLs? 5 GeV 1.3 GHz CW 500 MW



“Power = Energy ∙ Current”

Normal conducting

• FERMI@Elettra 1.4 GeV 10 Hz 14 W

• SACLA 7 GeV 10–60 Hz 18–140 W

• LCLS 15 GeV 120 Hz 36–360 W
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Superconducting

• FLASH 1.3 GeV 1–3 MHz pulsed 10 W – 22 kW

• European XFEL 17.5 GeV 4.5 MHz pulsed >500 kW

• LCLS-II 4 GeV 0.1–1 MHz CW 120 kW
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Energy recovery linacs

• NovoFEL 12 MeV 5.6–22 MHz CW 15–60 kW

• Jlab FEL 200 MeV 75 MHz CW >1 MW

• Future ERLs? 5 GeV 1.3 GHz CW 500 MW



Hazards

Local loss power (W) Effects

100 — 1000 Thermal/mechanical damage

10 — 100 Mechanical failure of flange connections

01 — 100 Activation of components

01 — 100
Radiation damage to electronics, optical 

components, &c.

1 — 10 Excessive cryogenic load, quenches

0.01 — 0.100 Demagnetization of permanent magnets
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10−7

10−3

For an accelerator with P = 1 MW:



Interaction of Beams with Matter
Photo: Wikimedia Commons, CC BY-SA 3.0

https://commons.wikimedia.org/w/index.php?curid=11085
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Energy Loss of Electrons in Matter

inelastic scattering

total

Example:

Copper

stopping power (energy loss per path length)

Radiative Losses:Critical Energy:

Ecrit(Cu) 

≈

25 MeV



• At high energies, the energy loss by 

bremsstrahlung scales like:

• Therefore, the remaining particle 

energy can be written as:

• After one radiation length, the 

energy of a high energy electron 

has decreased to 1/e of its initial 

value.

• The radiation length is often 

normalized to a standard density:

Lrad (cm) X0 (g/cm²)

Aluminum 8.9 24.01

Titanium 3.56 16.17

Iron    1.76 13.84

Copper  1.43 12.86

Tungsten 0.35 6.76

Lead    0.56 6.37
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Bremsstrahlung: Radiation Length

Bremsstrahlung
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Photonic Interactions with Matter

total

pair production

photonuclear 

reactions

Example:

Copper

Atomic

excitation



• Minimum energy for pair production:

2∙511 keV ≈ 1.02 MeV (e+/e−)

2∙106 MeV ≈ 211 MeV (µ+/µ−)

• Cross section for muon production is 

small, but muons are of concern for 

personnel protection!

• Cross section scales roughly as Z2:

Heavy elements shield well against 

photon beams

• Mean free photon path at high 

energies:

The typical path length a photon can 

travel in matter until it is consumed 

in a pair production event is ~30% 

higher than the radiation length of 

the material.
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Pair Production

Pair Production
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Electromagnetic Cascades

Bremsstrahlung Pair Production

Electromagnetic Shower

one particle of

high energy
many particles of

lower energy



Particle energy after N radiation 

lengths:

E(N) = E0/2N

The critical energy is reached after 

Ncrit radiation lengths:

Ecrit = E(Ncrit) = E0/2Ncrit

Number of radiation lengths to reach 

the critical energy: 

Ncrit = ln(E0/Ecrit) / ln(2)

This is only a qualitative model!

Better: Monte Carlo (Fluka, Geant, …)
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A Veeery Simple Shower Model

≈Lrad

E0/2

≈Lrad

E0/4

≈Lrad

E0/8E0

≈Lrad

Assumptions:

• An electron emits half of its energy 

as a single photon after Lrad.

• A photon is converted to an e+/e−

pair, each carrying half of its 

energy, after Lrad.

• The shower stops when particle 

energies drop below the critical 

energy.
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1 GeV Electrons on Copper
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1 GeV Electrons on Copper
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Electron Beam Hitting a Copper Target

Ncrit ≈ ln(1 GeV/25 MeV) / ln(2) ≈ 5.3

Ncrit ≈ ln(100 MeV/25 MeV) / ln(2) = 2
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Electron Beam Hitting a Copper Target

Ncrit ≈ ln(10 GeV/25 MeV) / ln(2)

≈ 8.6



Damage to Permanent Magnets

Photo: Karduelis, Wikimedia Commons

https://commons.wikimedia.org/w/index.php?curid=3971959



Demagnetization of Permanent Magnets
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(Nd2Fe14B magnets, 2 GeV electrons)

Teruhiko Bizen – “Brief Review of the 

Approaches to Elucidate the Mechanism of 

the Radiation-induced Demagnetization”

(ERL workshop 2011, Tsukuba, Japan)

• FELs rely on precision magnetic 

fields

• Permanent magnets lose magnetic 

field under irradiation with high 

energy electron beams

• Various magnetic materials behave 

differently

Skupin et al., “Undulator
demagnetization due to radiation 
losses at FLASH”, Proc. EPAC 2008, 
pp. 2308–2310



Demagnetization of Permanent Magnets

• FELs rely on precision magnetic 

fields

• Permanent magnets lose magnetic 

field under irradiation with high 

energy electron beams

• Various magnetic materials behave 

differently
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Skupin et al., “Undulator
demagnetization due to radiation 
losses at FLASH”, Proc. EPAC 2008, 
pp. 2308–2310
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FLUKA beam loss simulation

(FLASH, 1 bunch, 10 Hz)

Can demagnetization be 

compensated by undulator

tuning (opening gaps)?
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FLASH: Longitudinal Dose Distribution

Approximate parameters:

7200 bunches at 1 nC, 10 Hz, ~1 GeV



Field Loss of a PETRA-II Undulator
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P. Vagin et al., “Commissioning experience with 

insertion devices at PETRA III”, SR2010, Novosibirsk, 

Russia.



Demagnetization and Phase Error

Example: FERMI@Elettra FEL-2, second stage radiator

66 periods of 3.48 cm

26

Undulator Field

∆B/B = 5%

2%

1%

Phase Error

(Electrons—FEL radiation)



Final Remarks

Photo: Sémhur, Wikimedia Commons, CC BY-SA 3.0

https://commons.wikimedia.org/w/index.php?curid=2436548



• Balance:

– Protect the machine

– Protect the beam

– With as little resources as 

possible

• Variety:

– Beam dynamics, particle 

physics, instrumentation, 

controls, reliability theory, 

systems design
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The End. Photo: Stefan Wernli, Wikimedia Commons, CC BY-SA 2.5

https://commons.wikimedia.org/w/index.php?curid=824272


