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Trace space of a laminar beam 
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Trace space of non laminar beam 



Twiss parameters:
 12 =−αβγ

Ellipse equation:

Geometric emittance:


€ 

εg

€ 

γx2 + 2αx $ x + β $ x 2 = εg

Ellipse area:
 A = πεg

!β = −2α





Trace space evolution

With space charge => no cross over





No space charge => cross over
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rms emittance 
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rms beam envelope: 
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γx2 + 2αx $ x + β $ x 2 = εrms

σ x = x2 = βεrms    

σ x ' = !x 2 = γεrms

Define rms emittance: 

such that: 
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It holds also the relation: 

Substituting             we get 

€ 

α,β ,γ

εrms = σ x
2σ x '

2 −σ xx '
2 = x2 "x 2 − x "x 2( )

We end up with the definition of rms emittance in terms  of the 
second moments of the distribution: 

σ x = x2 = βεrms

σ x ' = x '2 = γεrms

σ xx ' = x !x = −αεrms



Which distribution has no correlations?
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σ xx ' = x !x = −αεrms = 0?
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εrms
2 = x2 # x 2 − x # x 2

!x =Cxn

εrms
2 =C2 x2 x2n − xn+1

2( )
When n = 1   ==>   εrms = 0

When n = 1    ==>   εrms = 0
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What does rms emittance tell us about phase space distributions 
under linear or non-linear forces acting on the beam? 

Assuming a generic            correlation of the type: 
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x, " x 



Constant under linear transformation only


And without acceleration:


€ 

" x =
px

pz



εn,rms =
1
moc

σ x
2σ px

2 −σ xpx
2 =

1
moc

x2 px
2 − xpx

2( ) ≈ βγ εrms

Normalized rms emittance:


px = pz !x =mocβγ !xCanonical transverse momentum: 

Liouville theorem: the density of particles n, or the volume V 
occupied by a given number of particles in phase space 
(x,px,y,py,z,pz) remains invariant under conservative forces. 

It hold also in the projected phase spaces (x,px),(y,py)(,z,pz) 
provided that there are no couplings  
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pz ≈ p
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εn,rms



εn,rms =
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Limits of single particle emittance

Limits are set by Quantum Mechanics on the knowledge of the two 
conjugate variables (x,px). According to Heisenberg:  

This limitation can be expressed by saying that the state of a particle 
is not exactly represented by a point, but by a small uncertainty 
volume of the order of      in the 6D phase space 
. 
In 2D it holds: 

σ xσ px
≥
!
2

!3
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Envelope Equation without Acceleration


Now take the derivatives: 

!!σ x =
σ x
2σ x '

2 −σ xx '
2

σ x
3 +

x !!x
σ x

=
εrms
2

σ x
3 +

x !!x
σ x

And simplify: 

!!σ x −
x !!x
σ x

=
εrms
2

σ x
3

We obtain the rms envelope equation in which the rms emittance 
enters as defocusing pressure like term. 



Assuming that each particle is subject only to a linear focusing  

force, without acceleration: 
 
take the average over the entire particle ensemble  

!!x + kx
2x = 0

€ 

" " σ x + kx
2σ x =

εrms
2

σ x
3

x !!x = −kx
2 x2

We obtain the rms envelope equation with a linear focusing force 
in which the rms emittance enters as defocusing pressure like 
term. 

!!σ x −
x !!x
σ x

=
εrms
2

σ x
3

εrms
2

σ x
3 ≈

T
V
≈ P



kBTx =m vx
2             T = 1

3
Tx +Ty +Tz( )           Ek =

1
2
m v2 =

3
2
kBT

Beam Thermodynamics


Kinetic theory of gases defines temperatures in each directions and 
global  as:   

Definition of beam temperature in analogy:  

kBTbeam,x =mo vx
2 vx

2 = βγc( )2 !x 2 = βγc( )2 γ xεx,rms( )

We get: kBTbeam,x =moc
2 βγ( )2 γ xεx,rms( )



S = kN log πε( )

kBTbeam,x =moc
2 βγ( )2 γ xεx,rms( )
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Space	
  Charge: what does it mean?

The net effect of the Coulomb interactions in a multi-particle system can be 

classified  into two regimes:

1)   Collisional Regime ==> dominated by binary collisions caused by close 
particle encounters ==> Single Particle Effects

2) Space Charge Regime ==> dominated by the self field produced by the 
particle distribution, which varies appreciably only over large distances 
compare to the average separation of the particles ==> Collective Effects



Continuous Uniform Cylindrical Beam Model


J = I
πR2

ρ =
I

πR2v
R

€ 

εoE ⋅ dS = ρdV∫∫
Gauss’s law

€ 

Bϑ =
β
c
Er

Er =
I

2πεoR
2v
r     for   r ≤ R

Er =
I

2πεov
1
r

     for   r > R

Ampere’s law

€ 

B ⋅ dl = µo J ⋅ dS∫∫ Bϑ = µo
Ir

2πR2    for    r ≤ R

Bϑ = µo
I

2πr
   for    r > R



Bunched Uniform Cylindrical Beam Model

Longitudinal Space Charge field in the bunch moving frame:
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Radial Space Charge field in the bunch moving frame 

by series representation of axisymmetric field:
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It is still a linear field with r but with a longitudinal correlation s
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Lorentz Transformation to the Lab frame
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Ez = ˜ E z
Er = γ ˜ E r

€ 

˜ L = γL  ⇒   ˜ ρ =
ρ
γ

˜ s = γs



γ= 1 γ = 5 γ = 10

L(t)
Rs(t) Δt

€ 

Er(r,s,γ ) =
Ir

2πε0R
2βc

g s,γ( )

€ 

Ez(0,s,γ ) =
I

2πγε0R
2βc

h s,γ( )

Bunched Uniform Cylindrical Beam Model




Fr = e Er −βcBϑ( ) = e 1−β 2( )Er =
eEr

γ 2

The attractive magnetic force , which becomes significant at high velocities, tends to 
compensate for the repulsive electric force. Therefore space charge defocusing is 
primarily a non-relativistic effect.

is a linear function of the transverse coordinate

€ 

dpr
dt

= Fr =
eEr
γ 2

=
eIr

2πγ 2ε0R
2βc

g s,γ( )

Fx =
eIx

2πγ 2ε0σ x
2βc

g s,γ( )

Lorentz Force




Envelope Equation with Space Charge


!!x =
ksc s,γ( )
σ x
2 x

Single particle transverse motion: 

dpx
dt

= Fx              px= p !x = βγmoc !x

d
dt

p !x( ) = βc d
dz

p !x( ) = Fx

!!x =
Fx
βcp Fx =

eIx
2πγ 2ε0σ x

2βc
g s,γ( )

ksc =
2I
IA
g s,γ( )

IA =
4πεomoc

3

e



x !!x =
ksc
σ x
2 x2 =ksc

!!σ x + k
2σ x =

εn
2

βγ( )2σ x
3
+
ksc
σ x

External Focusing Forces

Space Charge De-focusing Force

Emittance Pressure

Now we can calculate the term        that enters in the envelope equation

€ 

x " " x 

!!σ x =
εrms
2

σ x
3 +

x !!x
σ x

Including all the other terms the envelope equation reads:

€ 

ρ =
βγ( )2 kscσ x

2

εn
2Laminarity Parameter: 

!!x =
ksc
σ x
2 x
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" " σ x + k2σ x =
εn
2

βγ( )2σ x
3

+
ksc
σ x

€ 

" " σ x + k2σ x =
εn
2

βγ( )2σ x
3

+
ksc
σ x

ρ>>1

ρ<<1

Laminar Beam

Thermal Beam

The beam undergoes two regimes  along the accelerator 
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Surface charge density Surface electric field

Restoring force

Plasma frequency

Plasma oscillations



Neutral Plasma


Magnetic focusing


Magnetic focusing


Single Component       
Cold Relativistic Plasma


• Oscillations


• Instabilities


• EM Wave propagation




Single Component 
Relativistic Plasma


€ 

" " σ + ks
2σ =

ksc s,γ( )
σ

ks =
qB

2mcβγ

€ 

δ # # σ s( ) + 2ks
2δσ s( ) = 0

€ 

σ eq s,γ( ) =
ksc s,γ( )
ks

Equilibrium solution:

€ 

σ ζ( ) =σ eq s( ) +δσ s( )

Small perturbation:

€ 

σ s( ) =σ eq s( ) +δσ o s( )cos 2ksz( )

Perturbed trajectories oscillate around the equilibrium with the same frequency 
but with different amplitudes:

€ 

δσ s( ) = δσ o s( )cos 2ksz( )



σ s( ) =σ eq s( )+δσ o s( )cos 2ksz( )

Perturbed trajectories oscillate around the equilibrium with the same frequency 
but with different amplitudes:

σ eq s( )



σ(z)

ε(z)

Envelope oscillations drive Emittance oscillations
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εrms = σ x
2σ x'

2 −σ xx'
2 = x2 % x 2 − x % x 2( ) ≈ sin 2ksz( )



σ(z)

ε(z)

Energy spread induces decoherence




Emittance Oscillations are driven by space charge differential 
defocusing in core and tails of the beam 

x

px

Projected Phase Space Slice Phase 
Spaces



X

X
’

Perturbed trajectories oscillate around the 
equilibrium with the  

same frequency but with different amplitudes 
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High Brightness Photo-Injector 



p = βγmoc
dpx
dt

=
d
dt

p !x( ) = βc d
dz

p !x( ) = 0

!!x +
!p
p

!x = 0 !!x = −
βγ( )!

βγ
!x

Envelope Equation with Longitudinal Acceleration

x !!x = −
βγ( )!

βγ
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βγ
σ xx ' = −
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βγ
σ x !σ x

!!σ x +
βγ( )!

βγ
!σ x + k

2σ x =
εn
2

βγ( )2σ x
3
+
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σ x

Other External Focusing Forces

Space Charge De-focusing Force

Adiabatic Damping Emittance Pressure
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εn = βγεrms
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2

σ x
3 +

x !!x
σ x



Beam subject to strong acceleration  

!!σ x +
!γ
γ

!σ x +
kRF
2

γ 2
σ x =

εn
2

γ 2σ x
3 +

ksc
o

γ 3σ x
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ksc
o =

2I
IA

g s,γ( )

We must include also the RF focusing force: kRF
2 =

!γ 2

2



€ 

σ inv =σ oγ
nLooking for an “equilibrium” solution 

==> all terms must have the same dependence on γ 
€ 

γ = 1+αz
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" " γ = 0==> 
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" " σ x +
" γ 
γ

" σ x +
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2
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o

γ 3σ x
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€ 

n n − 1( )σ oγ
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2 σ oγ
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o
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γ −3−n
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n − 2 = −3− n⇒ n = −
1
2
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σ inv =σ oγ
n

€ 

ρ >> 1⇒ n = −
1
2

Looking for an “equilibrium” solution 
==> all terms must have the same dependence on γ 
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σ q =
σ o

γ
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ρ << 1⇒ n = 0

€ 

σε =σ o

€ 

γ = 1+αz

€ 

" " γ = 0==> 

Laminar beam 

Thermal beam 
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3 +
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σ q =
1
# γ 

2I
IAγ

€ 

σε =
2εn
$ γ 

Space charge dominated beam (Laminar) 

Emittance dominated beam (Thermal) 



This solution represents a beam equilibrium mode that 
turns out to be the transport mode for achieving minimum 
emittance at the end of the emittance correction process 
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σ q =
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# γ 

2I
IAγ



Constant phase space angle:

An important property of the laminar beam 

X X
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δ δ
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σ q
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IAγ

3
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δ =
γσ q
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σ q

= −
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ρ =
2Iσ 2

γIAεn
2 ≡

2Iσ q
2

γIAεn
2 =

4I 2

' γ 2IA
2εn

2γ 2

€ 

γ tr =
2I
# γ IAεn

Laminarity parameter 

Transition Energy (ρ=1) 

I=100 A

I=1 kA

I=4 kA

ρ

Potential space charge emittance growth 

ρ = 1 

εth = 0.6 µm

Eacc = 25 MV/m



€ 

σ '  =  0

Matching Conditions with a TW Linac  

25 MV/m

150 MeV

€ 

γ tr =
2I
# γ IAεn

€ 

σ q =
1
# γ 

2I
IAγ
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σ(z)

ε(z)

Energy spread induces decoherence






Emittance Compensation for a SC dominated beam:  
Controlled Damping of Plasma Oscillations 

 
•  εn oscillations are driven by Space Charge 

• propagation close to the laminar solution allows control of 
εn oscillation “phase” 

• εn sensitive to SC up to the transition energy 
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