Injection and extraction

- Kickers and septa
- Injection methods
 - Single-turn hadron injection
 - Injection errors, filamentation and blow-up
 - Multi-turn hadron injection
 - Charge-exchange H- injection
 - Lepton injection
- Extraction methods
 - Single-turn (fast) extraction
 - Non-resonant multi-turn extraction
 - Resonant multi-turn (slow) extraction

Brennan Goddard (presented by Malika Meddahi)
CERN

Injection, extraction and transfer

- An accelerator has limited dynamic range.
- Chain of stages needed to reach high energy
- Periodic re-filling of storage rings, like LHC
- External experiments, like CNGS

Beam transfer (into, out of, and between machines) is necessary.

LHC: Large Hadron Collider
SPS: Super Proton Synchrotron
AD: Antiproton Decelerator

ISOLDE: Isotope Separator Online Device

PSB: Proton Synchrotron Booster PS: Proton Synchrotron

LINAC: LINear Accelerator LEIR: Low Energy Ring

CNGS: CERN Neutrino to Gran Sasso

Kicker magnet

Pulsed magnet with very fast rise time (100ns – few μ s)

Magnetic septum

Pulsed or DC magnet with thin (2-20mm) septum between zero field and high field region

Septum coil

$$B_o = \mu_0 I / g$$

Typically I 5-25 kA

Yoke

Electrostatic septum

DC electrostatic device with very thin (~0.1mm) septum between zero field and high field region

Normalised phase space

Transform real transverse coordinates x, x' by

$$\begin{bmatrix} \overline{\mathbf{X}} \\ \overline{\mathbf{X}'} \end{bmatrix} = \mathbf{N} \cdot \begin{bmatrix} x \\ x' \end{bmatrix} = \sqrt{\frac{1}{\beta_S}} \cdot \begin{bmatrix} 1 & 0 \\ \alpha_S & \beta_S \end{bmatrix} \cdot \begin{bmatrix} x \\ x' \end{bmatrix}$$

$$\overline{\mathbf{X}} = \sqrt{\frac{1}{\beta_S}} \cdot x$$

$$\overline{\mathbf{X}'} = \sqrt{\frac{1}{\beta_S}} \cdot \alpha_S x + \sqrt{\beta_S} x'$$

Normalised phase space

Single-turn injection – same plane

- Septum deflects the beam onto the closed orbit at the centre of the kicker
- Kicker compensates for the remaining angle
- Septum and kicker either side of D quad to minimise kicker strength

Single-turn injection

Normalised phase space at centre of idealised septum

Large deflection by septum

Single-turn injection

 $\pi/2$ phase advance to kicker location

Single-turn injection

Normalised phase space at centre of idealised kicker Kicker deflection places beam on central orbit

Betatron oscillations with respect to the Closed Orbit

Injection errors

$$\delta_{1} = \Delta \theta_{s} \sqrt{(\beta_{s}\beta_{1})} \sin (\mu_{1} - \mu_{s}) + \Delta \theta_{k} \sqrt{(\beta_{k}\beta_{1})} \sin (\mu_{1} - \mu_{k})$$

$$\approx \Delta \theta_{k} \sqrt{(\beta_{k}\beta_{1})}$$

$$\delta_{2} = \Delta \theta_{s} \sqrt{(\beta_{s}\beta_{2})} \sin (\mu_{2} - \mu_{s}) + \Delta \theta_{k} \sqrt{(\beta_{k}\beta_{2})} \sin (\mu_{2} - \mu_{k})$$

$$\approx -\Delta \theta_{s} \sqrt{(\beta_{s}\beta_{2})}$$

- Non-linear effects (e.g. magnetic field multipoles) present which introduce amplitude dependent effects into particle motion.
- Over many turns, a phase-space oscillation is transformed into an emittance increase.
- So any residual transverse oscillation will lead to an emittance blowup through filamentation
 - "Transverse damper" systems used to damp injection oscillations bunch position measured by a pick-up, which is linked to a kicker

Damping of injection oscillations

- Residual transverse oscillations lead to an emittance blow-up through filamentation
- "Transverse damper" systems used to damp injection oscillations bunch position measured by a pick-up, which is linked to a kicker
- Damper measures offset of bunch on one turn, then kicks the bunch on a subsequent turn to reduce the oscillation amplitude

Optical Mismatch at Injection

- Can also have an emittance blow-up through optical mismatch
- Individual particles oscillate with conserved CS invariant:

$$a_x = \gamma x^2 + 2\alpha xx' + \beta x'^2$$

Optical Mismatch at Injection

• Filamentation fills larger ellipse with same shape as matched ellipse

Multi-turn injection

- For hadrons the beam density at injection can be limited either by space charge effects or by the injector capacity
- If we cannot increase charge density, we can sometimes fill the horizontal phase space to increase overall injected intensity.
 - Condition that the acceptance of receiving machine is larger than the delivered beam emittance

- No kicker
- Bump amplitude decreases and inject a new bunch at each turn
- Phase-space "painting"

Example: CERN PSB injection, fractional tune Qh = 0.25 Beam rotates $\pi/2$ per turn in phase space

Turn 1

Phase space has been "painted"

Turn 15

In reality filamentation occurs to produce a quasi-uniform beam

Injection mismatch

For multiturn injection over *n* turns, injected beam ellipse is deliberately <u>mismatched</u> to circulating beam ellipse to reduce losses

- Multiturn injection is essential to accumulate high intensity
- Disadvantages inherent in using an injection septum
 - Width of several mm reduces aperture
 - Beam losses from circulating beam hitting septum
 - Limits number of injected turns to 10-20
- Charge-exchange injection provides elegant alternative
 - Possible to "beat" Liouville's theorem, which says that emittance is conserved....
 - Convert H⁻ to p⁺ using a thin stripping foil, allowing injection <u>into the</u>
 same phase space area

Start of injection process

End of injection process

- Paint uniform transverse phase space density by modifying closed orbit bump and steering injected beam
- Foil thickness calculated to double-strip most ions (>99%)
 - 50 MeV 50 μg.cm-2
 - 800 MeV 200 μg.cm-2 (~1μm of C!)
- Carbon foils generally used very fragile
- Injection chicane reduced or switched off after injection, to avoid excessive foil heating and beam blow up

H- injection - painting

Lepton injection

- Single-turn injection can be used as for hadrons; however, lepton motion is <u>strongly damped</u> (different with respect to proton or ion injection).
 - Synchrotron radiation
- Can use transverse or longitudinal damping:
 - Transverse Betatron accumulation
 - Longitudinal Synchrotron accumulation

Betatron lepton injection

- Beam is injected with an angle with respect to the closed orbit
- Injected beam performs damped betatron oscillations about the closed orbit

Betatron lepton injection

Injected bunch performs damped betatron oscillations

In LEP at 20 GeV, the damping time was about 6'000 turns (0.6 seconds)

Synchrotron lepton injection

Inject an off-momentum beam

- Beam injected parallel to circulating beam, onto dispersion orbit of a particle having the same momentum offset ∆p/p.
- Injected beam makes damped *synchrotron oscillations* at Q_s but does not perform betatron oscillations.

Synchrotron lepton injection

Double batch injection possible....

Longitudinal damping time in LEP was ~ 3'000 turns (2 x faster than transverse)

Synchrotron lepton injection in LEP

Optimized Horizontal First Turn Trajectory for Betatron Injection of Positrons into LEP.

Optimized Horizontal First Turn Trajectory for Synchrotron Injection of Positrons with $\Delta P/P$ at -0.6%

Synchrotron Injection in LEP gave improved background for LEP experiments due to small orbit offsets in <u>zero dispersion straight sections</u>

Injection - summary

- Several different techniques
 - Single-turn injection for hadrons
 - Boxcar stacking: transfer between machines in accelerator chain
 - Angle / position errors ⇒ injection oscillations
 - Optics errors ⇒ betatron mismatch oscillations
 - Oscillations ⇒ filamentation ⇒ emittance increase
 - Multi-turn injection for hadrons
 - Phase space painting to increase intensity
 - · H- injection allows injection into same phase space area
 - Lepton injection: take advantage of damping
 - · Less concerned about injection precision and matching

Extraction

- Different extraction techniques exist, depending on requirements
 - Fast extraction: ≤1 turn
 - Non-resonant multi-turn extraction: few turns
 - Resonant multi-turn extraction: many thousands of turns
 - Resonant low-loss multi-turn extraction: few turns
- Usually higher energy than injection ⇒ stronger elements (∫B.dl)
 - At high energies many kicker and septum modules may be required
 - To reduce kicker and septum strength, beam can be moved near to septum by closed orbit bump

Fast single turn extraction

Whole beam kicked into septum gap and extracted.

- Kicker deflects the entire beam into the septum in a single turn
- Septum deflects the beam entire into the transfer line
- Most efficient (lowest deflection angles required) for $\pi/2$ phase advance between kicker and septum

Fast single turn extraction

- For transfer of beams between accelerators in an injector chain.
- For secondary particle production (e.g. neutrinos)
- Septum deflection may be in the other plane to the kicker deflection.
- Losses from transverse scraping or from particles in extraction gap

Multi-turn extraction

- Some filling schemes require a beam to be injected in several turns to a larger machine...
- And very commonly Fixed Target physics experiments and medical accelerators often need a quasi-continuous flux of particles...
- Multi-turn extraction...
 - Non-Resonant multi-turn ejection (few turns) for filling e.g. PS to SPS at CERN for high intensity proton beams (>2.5 10¹³ protons)
 - Resonant extraction (ms to hours) for experiments

Beam bumped to septum; part of beam 'shaved' off each turn.

Fast closed orbit bumpers

- Fast bumper deflects the whole beam onto the septum
- Beam extracted in a few turns, with the machine tune rotating the beam
- Intrinsically a high-loss process thin septum essential

- Example system: CERN PS to SPS Fixed-Target 'continuous transfer'.
 - Accelerate beam in PS to 14 GeV/c
 - Empty PS machine (2.1 μs long) in 5 turns into SPS
 - Do it again
 - Fill SPS machine (23 μs long)
 - Quasi-continuous beam in SPS (2 x 1 μs gaps)
 - Total intensity per PS extraction ≈ 3×10^{13} p+
 - Total intensity in SPS ≈ 5×10^{13} p+

CERN PS to SPS: 5-turn continuous transfer

CERN PS to SPS: 5-turn continuous transfer – 5th turn

- CERN PS to SPS: 5-turn continuous transfer
 - Losses impose thin (ES) septum... second septum needed
 - Still about 15 % of beam lost in PS-SPS CT
 - Difficult to get equal intensities per turn
 - Different trajectories for each turn

Non-linear fields excite resonances which drive the beam slowly across the septum.

- Slow bumpers move the beam near the septum
- Tune adjusted close to nth order betatron resonance
- Multipole magnets excited to define stable area in phase space, size depends on $\Delta Q = Q Q_r$

- 3rd order resonances Lecture from O.B.
 - Sextupole fields distort the circular normalised phase space particle trajectories.
 - Stable area defined, delimited by unstable Fixed Points.

- Sextupoles families arranged to produce suitable phase space orientation of the stable triangle at thin electrostatic septum
- Stable area can be reduced by increasing the sextupole strength, or (easier) by approaching machine tune Q_h to resonant 1/3 integer tune
- Reducing ΔQ with main machine quadrupoles can be augmented with a 'servo' quadrupole, which can modulate ΔQ in a servo loop, acting on a measurement of the spill intensity

- Particles distributed on emittance contours
- ∆Q large no phase space distortion

- Dedicated sextupole magnets produce a triangular stable area in phase space
- ∆Q decreasing phase space distortion for largest amplitudes

- ΔQ small enough that largest amplitude particles are close to the separatrices
- Fixed points locations discernable at extremities of phase space triangle

- ∆Q now small enough that largest amplitude particles are unstable
- Unstable particles follow separatrix branches as they increase in amplitude

• Stable phase area shrinks as ΔQ gets smaller

• Separatrix position in phase space shifts as the stable area shrinks

 As the stable area shrinks, the beam intensity drops since particles are being continuously extracted

• As ΔQ approaches zero, the particles with very small amplitude are extracted.

Example – SPS slow extraction at 450 GeV/c. ~3 x 10¹³ p+ extracted in a 2-4 second long spill (~200,000 turns)

Intensity vs time: ~108 p+ extracted per turn

Second-order resonant extraction

- An extraction can also be made over a few hundred turns.
- 2nd and 4th order resonances
 - Octupole fields distort the regular phase space particle trajectories.
 - Stable area defined, delimited by two unstable Fixed Points.
 - Beam tune brought across a 2^{nd} order resonance (Q \rightarrow 0.5)
 - Particle amplitudes quickly grow and beam is extracted in a few hundred turns.

Resonant extraction separatrices

- Amplitude growth for 2nd order resonance much faster than 3rd shorter spill
- Used where intense pulses are required on target e.g. neutrino production

Resonant low-loss multi-turn extraction

- Adiabatic capture of beam in stable "islands"
 - Use non-linear fields (sextupoles and octupoles) to create islands of stability in phase space
 - A slow (adiabatic) tune variation to cross a resonance and to drive particles into the islands (capture)
 - Variation of field strengths to separate the islands in phase space
- Several big advantages
 - Losses reduced virtually to zero (no particles at the septum)
 - Phase space matching improved with respect to existing nonresonant multi-turn extraction - all 'beamlets' have same emittance and optical parameters

Resonant low-loss multi-turn extraction

Extraction - summary

- Several different techniques:
 - Single-turn fast extraction:
 - for Boxcar stacking (transfer between machines in accelerator chain), beam abort
 - Non-resonant multi-turn extraction
 - slice beam into equal parts for transfer between machine over a few turns.
 - Resonant multi-turn extraction
 - create stable area in phase space ⇒ slowly drive particles into resonance ⇒ long spill over many thousand turns.
 - Resonant low-loss multi-turn extraction
 - create stable islands in phase space: slice off over a few turns.