

13.) Liouville during Acceleration

$$\varepsilon = \gamma(s) x^{2}(s) + 2\alpha(s)x(s)x'(s) + \beta(s) x'^{2}(s)$$

Beam Emittance corresponds to the area covered in the x, x' Phase Space Ellipse

Liouville: Area in phase space is constant.

$$\begin{array}{c}
-\alpha \sqrt{\frac{\varepsilon}{\gamma}} \\
\sqrt{\varepsilon\gamma} \\
-\alpha \sqrt{\frac{\varepsilon}{\beta}} \\
-\alpha \sqrt{\frac{\varepsilon}{\beta}} \\
\sqrt{\varepsilon\beta} \\
x
\end{array}$$

But so sorry ... $\varepsilon \neq const !$

Classical Mechanics:

phase space = diagram of the two canonical variables
position & momentum

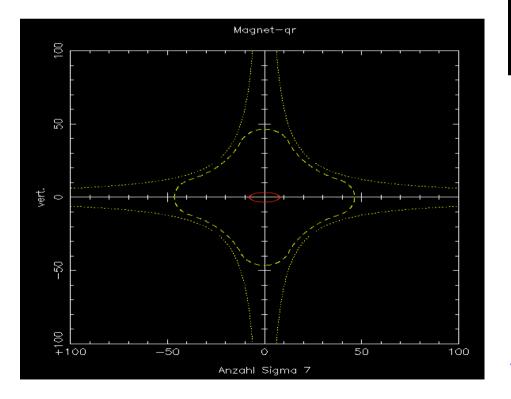
 $x \qquad p_x$

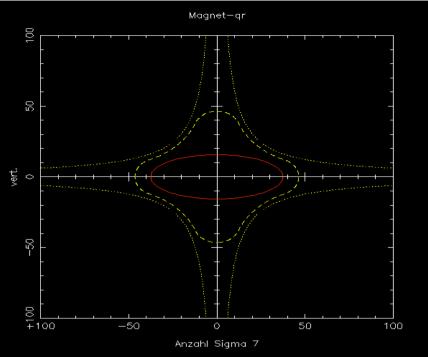
$$p_j = \frac{\partial L}{\partial \dot{q}_j}$$
; $L = T - V = kin. Energy - pot. Energy$

Example: HERA proton ring

injection energy: 40 GeV $\gamma = 43$ flat top energy: 920 GeV $\gamma = 980$

emittance ε (40GeV) = 1.2 * 10⁻⁷ ε (920GeV) = 5.1 * 10⁻⁹





7 σ beam envelope at $E = 40 \ GeV$

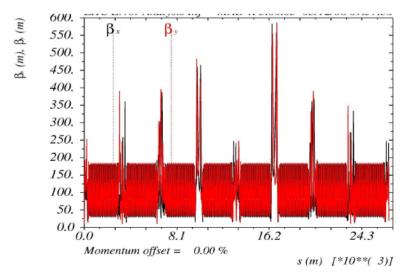
... and at $E = 920 \ GeV$

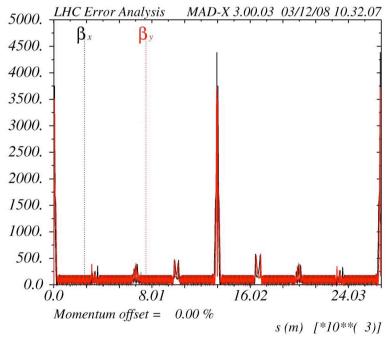
Nota bene:

1.) A proton machine ... or an electron linac ... needs the highest aperture at injection energy !!! as soon as we start to accelerate the beam size shrinks as $\gamma^{-1/2}$ in both planes.

 $\sigma = \sqrt{\varepsilon\beta}$

- 2.) At lowest energy the machine will have the major aperture problems, \rightarrow here we have to minimise $\hat{\beta}$
- 3.) we need different beam optics adopted to the energy: A Mini Beta concept will only be adequate at flat top.



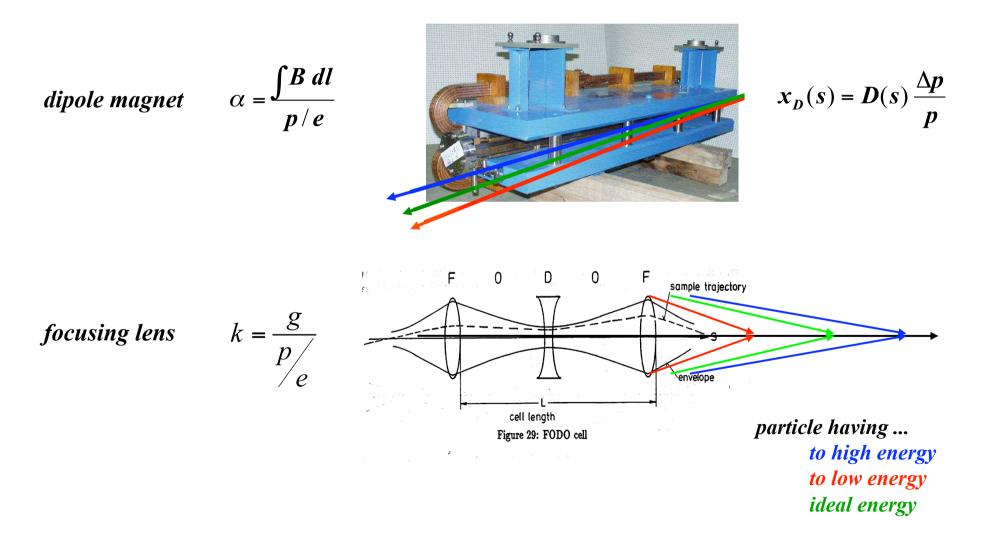


LHC mini beta optics at 7000 GeV

LHC injection optics at 450 GeV

19.) Chromaticity: A Quadrupole Error for $\Delta p/p \neq 0$

Influence of external fields on the beam: prop. to magn. field & prop. zu 1/p



Chromaticity: Q'

$$k = \frac{g}{\frac{p}{e}} \qquad \qquad p = p_0 + \Delta p$$

in case of a momentum spread:

$$k = \frac{eg}{p_0 + \Delta p} \approx \frac{e}{p_0} (1 - \frac{\Delta p}{p_0}) g = k_0 + \Delta k$$
$$\Delta k = -\frac{\Delta p}{p_0} k_0$$

... which acts like a quadrupole error in the machine and leads to a tune spread:

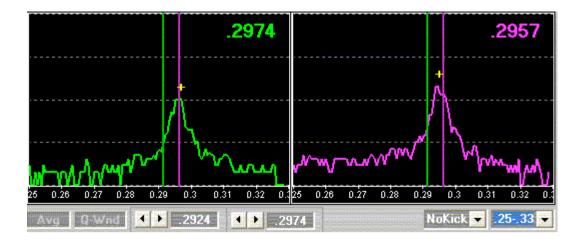
$$\Delta \boldsymbol{Q} = -\frac{1}{4\pi} \frac{\Delta \boldsymbol{p}}{\boldsymbol{p}_0} \boldsymbol{k}_0 \boldsymbol{\beta}(\boldsymbol{s}) \boldsymbol{ds}$$

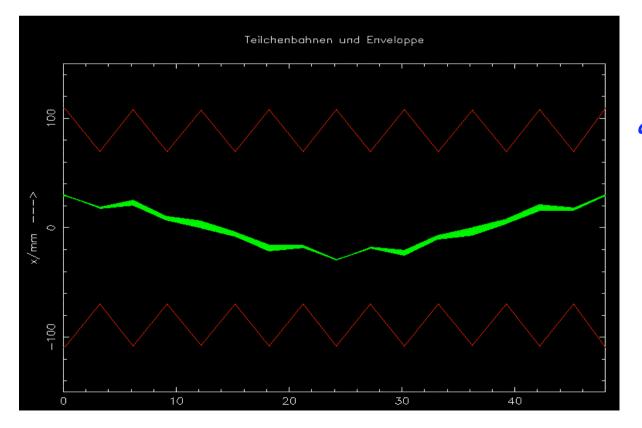
definition of chromaticity:

$$\Delta Q = Q' \quad \frac{\Delta p}{p} \quad ; \qquad Q' = -\frac{1}{4\pi} \oint k(s)\beta(s)ds$$

Where is the Problem ?

Tunes and Resonances





avoid resonance conditions:

 $m Q_x + n Q_y + l Q_s = integer$

... for example: $1 Q_x = 1$

... and now again about Chromaticity:

Problem: chromaticity is generated by the lattice itself !!

Q' is a number indicating the size of the tune spot in the working diagram, Q' is always created if the beam is focussed

 \rightarrow it is determined by the focusing strength k of all quadrupoles

$$Q' = -\frac{1}{4\pi} \oint k(s)\beta(s)ds$$

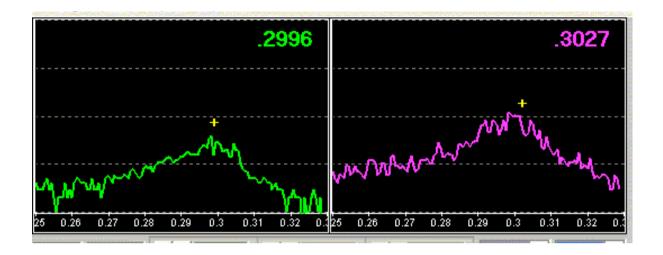
k = quadrupole strength $\beta = beta function indicates the beam size ... and even more the sensitivity of the beam to external fields$

Example: LHC

Q' = 250 $\Delta p/p = +/- 0.2 * 10^{-3}$ $\Delta Q = 0.256 \dots 0.36$

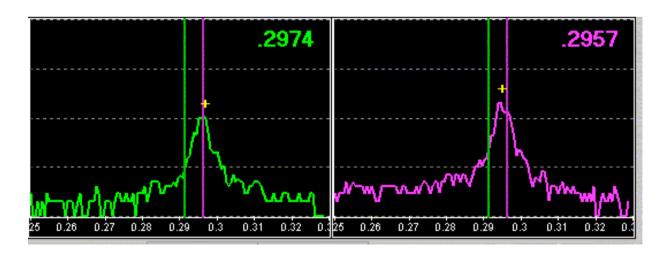
→Some particles get very close to resonances and are lost

in other words: the tune is not a point it is a pancake



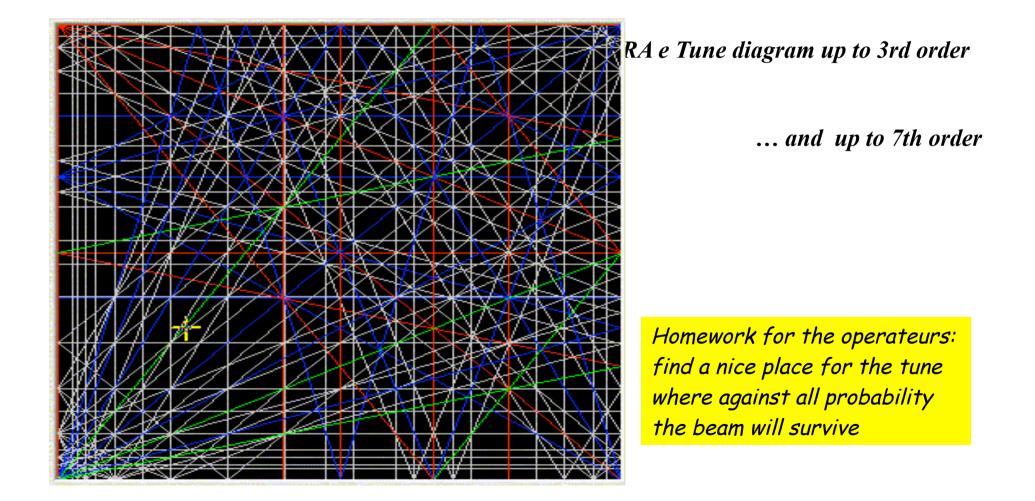
Tune signal for a nearly uncompensated cromaticity (Q' ≈ 20)

Ideal situation: cromaticity well corrected, ($Q' \approx 1$)



Tune and Resonances

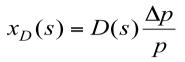
 $m * Q_x + n * Q_y + l * Q_s = integer$



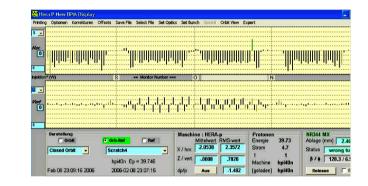
Correction of Q':

Need: additional quadrupole strength for each momentum deviation $\Delta p/p$

1.) sort the particles acording to their momentum



... using the dispersion function



2.) apply a magnetic field that rises quadratically with x (sextupole field)

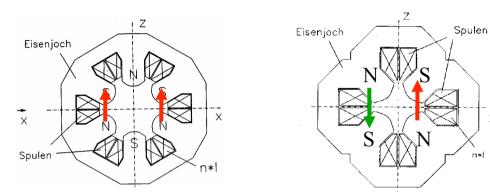
$$B_{x} = \tilde{g}xz$$

$$B_{z} = \frac{1}{2}\tilde{g}(x^{2} - z^{2})$$

$$\frac{\partial B_{x}}{\partial z} = \frac{\partial B_{z}}{\partial x} = \tilde{g}x$$
linear rising "gradient":

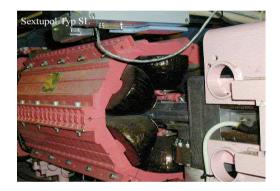
Correction of Q':

Sextupole Magnets:



k₁ normalised quadrupole strength k₂ normalised sextupole strength

$$k_{1}(sext) = \frac{\widetilde{g} x}{p/e} = k_{2} * x$$
$$k_{1}(sext) = k_{2} * D * \frac{\Delta p}{p}$$



Combined effect of "natural chromaticity" and Sextupole Magnets:

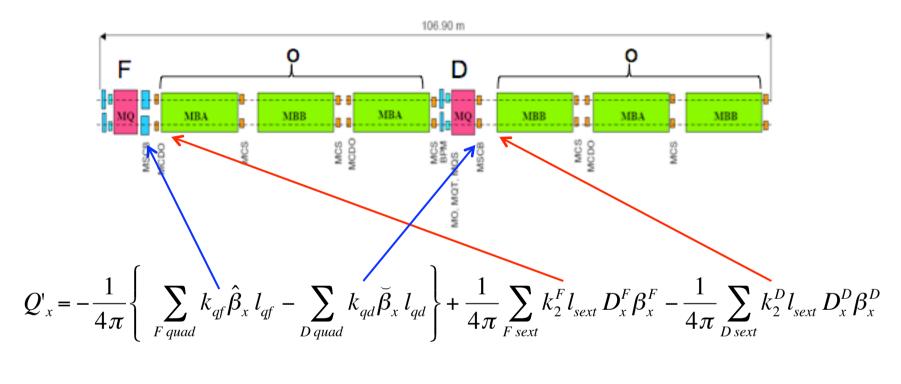
$$Q' = -\frac{1}{4\pi} \left\{ \int k_1(s)\beta(s)ds + \int k_2 * D(s)\beta(s)ds \right\}$$

You only should not forget to correct Q' in both planes ... and take into account the contribution from quadrupoles of both polarities.

Х

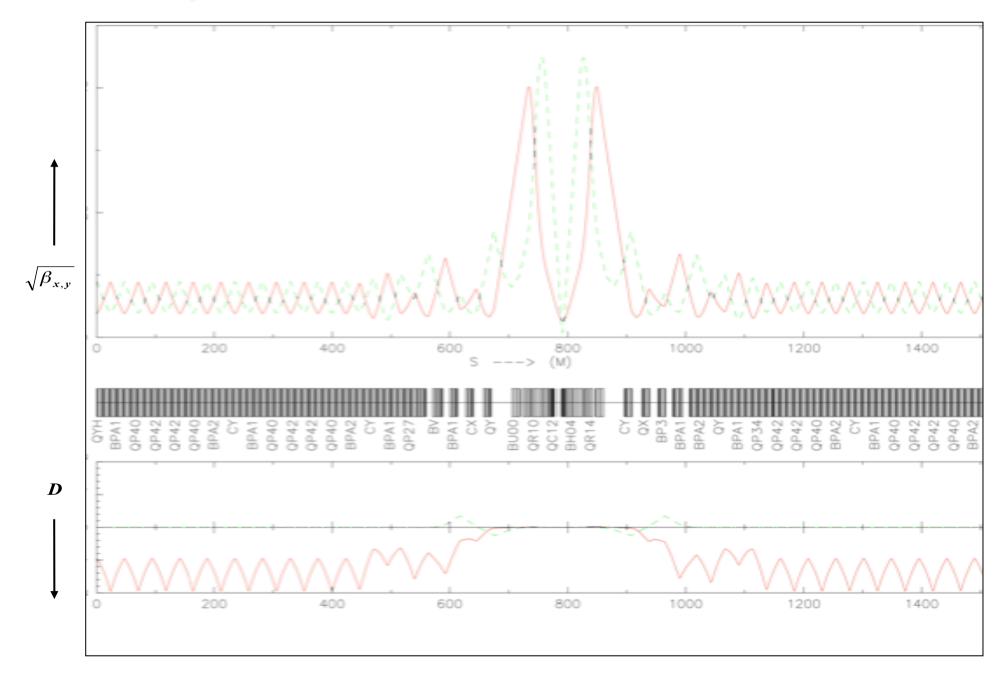
corrected chromaticity

considering an arc built out of single cells:



$$Q'_{y} = -\frac{1}{4\pi} \left\{ -\sum_{F \text{ quad}} k_{qf} \tilde{\beta}_{y} l_{qf} + \sum_{D \text{ quad}} k_{qd} \hat{\beta}_{y} l_{qd} \right\} - \frac{1}{4\pi} \sum_{F \text{ sext}} k_{2}^{F} l_{sext} D_{x}^{F} \beta_{x}^{F} + \frac{1}{4\pi} \sum_{D \text{ sext}} k_{2}^{D} l_{sext} D_{x}^{D} \beta_{x}^{D}$$

20.) Insertions



Insertions

... the most complicated one: the drift space

Question to the audience: what will happen to the beam parameters α , β , γ if we stop focusing for a while ...?

$$\begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{S} = \begin{pmatrix} C^{2} & -2SC & S^{2} \\ -CC' & SC' + S'C & -SS' \\ C'^{2} & -2S'C' & S'^{2} \end{pmatrix} * \begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{0}$$

transfer matrix for a drift:

$$M = \begin{pmatrix} C & S \\ C' & S' \end{pmatrix} = \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix} \longrightarrow$$

$$\beta(s) = \beta_0 - 2\alpha_0 s + \gamma_0 s^2$$
$$\alpha(s) = \alpha_0 - \gamma_0 s$$
$$\gamma(s) = \gamma_0$$

β-*Function in a Drift*:

let's assume we are at a symmetry point in the center of a drift.

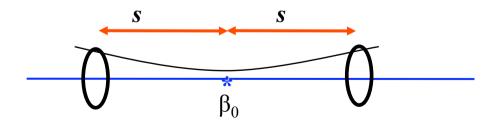
$$\beta(s) = \beta_0 - 2\alpha_0 s + \gamma_0 s^2$$

as
$$\alpha_0 = 0$$
, $\rightarrow \gamma_0 = \frac{1 + \alpha_0^2}{\beta_0} = \frac{1}{\beta_0}$

and we get for the β function in the neighborhood of the symmetry point

$$\beta(s) = \beta_0 + \frac{s^2}{\beta_0} \qquad \qquad ! !$$

At the end of a long symmetric drift space the beta function reaches its maximum value in the complete lattice. -> here we get the largest beam dimension.

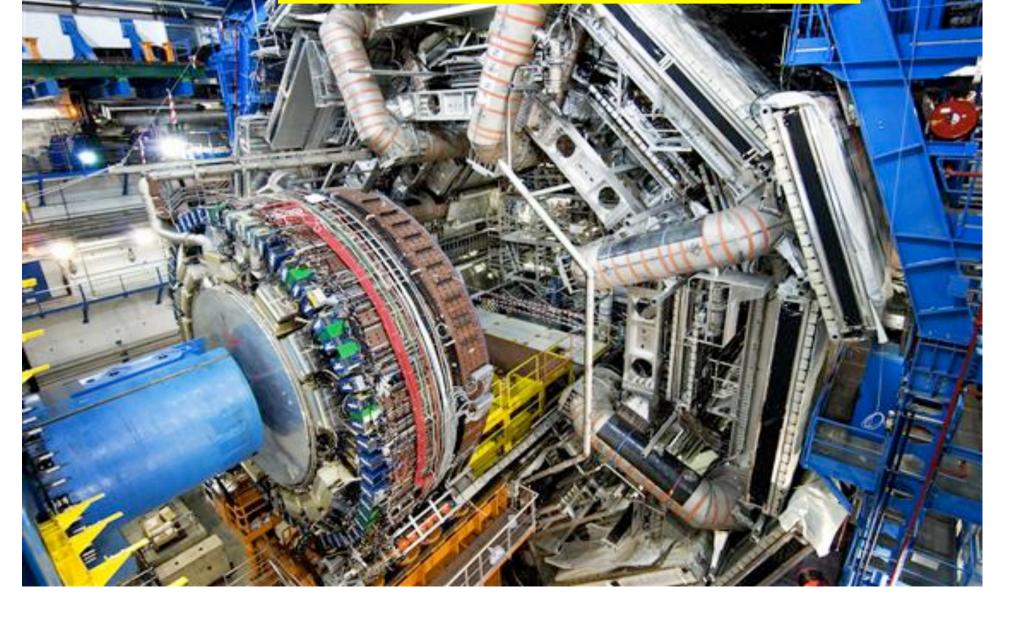


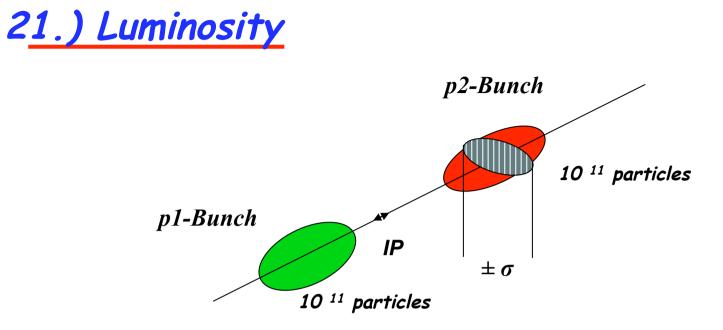
-> keep l as small as possible

... clearly there is an

But: ... unfortunately ... in general high energy detectors that are installed in that drift spaces

are a little bit bigger than a few centimeters ...





Example: Luminosity run at LHC

$$\beta_{x,y} = 0.55 m \qquad f_0 = 11.245 \, kHz$$

$$\varepsilon_{x,y} = 5*10^{-10} \, rad \, m \qquad n_b = 2808$$

$$\sigma_{x,y} = 17 \, \mu m \qquad L = \frac{1}{4\pi e^2 f_0 n_b} * \frac{I_{p1} I_{p2}}{\sigma_x \sigma_y}$$

 $I_{p} = 584 \, mA$

$$L = 1.0 * 10^{34} / cm^2 s$$

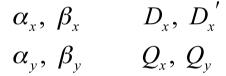
Mini- β *Insertions: some guide lines*

* calculate the periodic solution in the arc

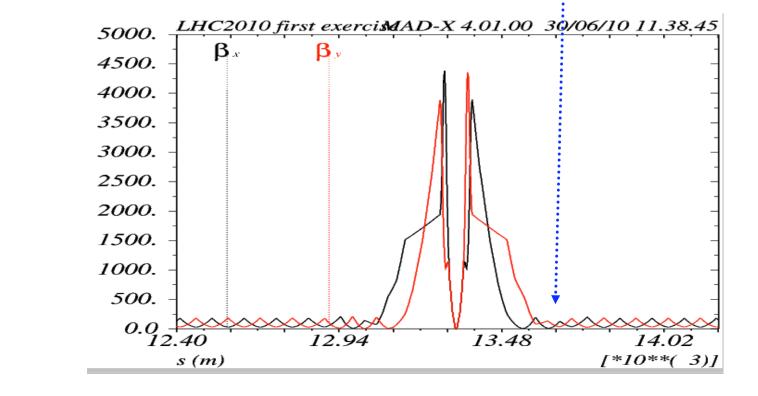
* *introduce the drift space needed for the insertion device (detector ...)*

* put a quadrupole doublet (triplet ?) as close as possible

* introduce additional quadrupole lenses to match the beam parameters to the values at the beginning of the arc structure

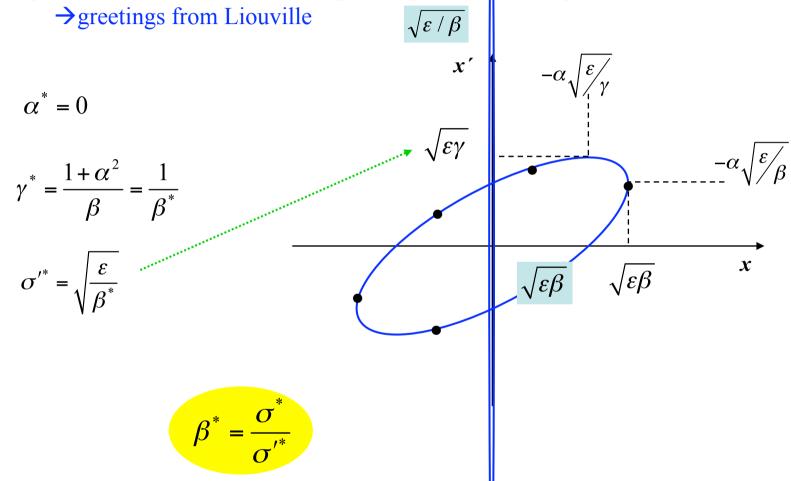


8 individually powered quad magnets are needed to match the insertion (... at least)



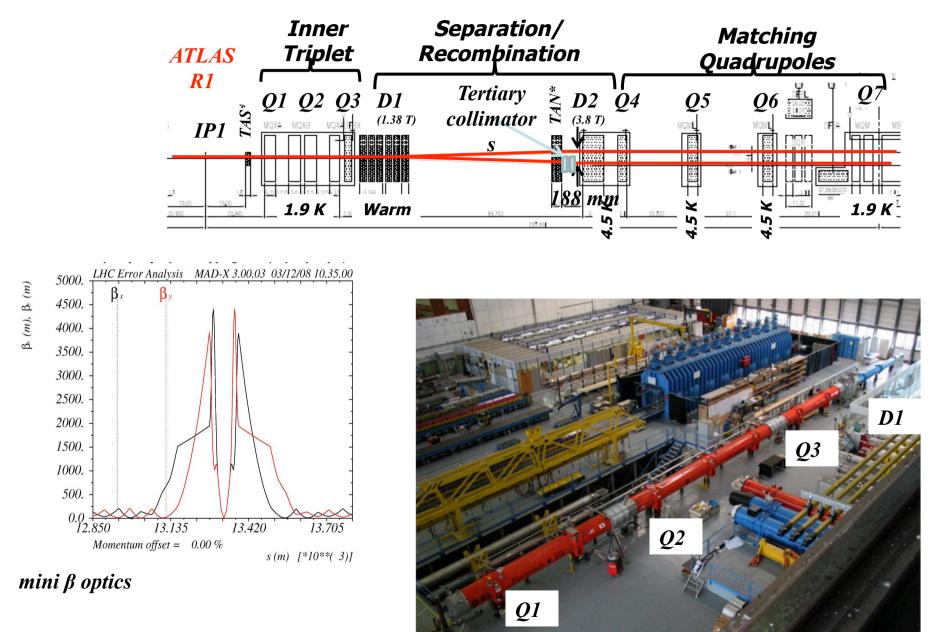
Mini-*β Insertions*: *Betafunctions*

A mini- β insertion is always a kind of special symmetric drift space.

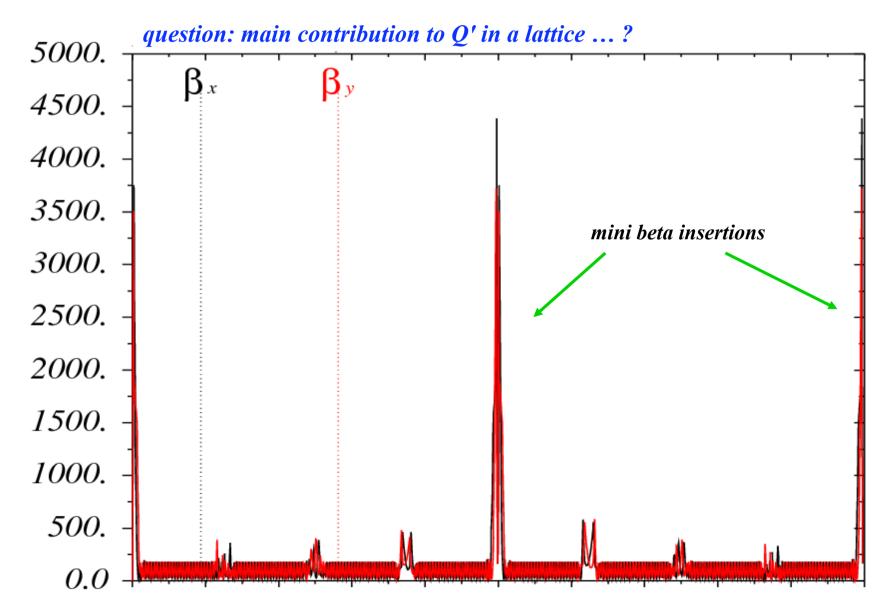


at a symmetry point β is just the ratio of beam dimension and beam divergence.

The LHC Insertions



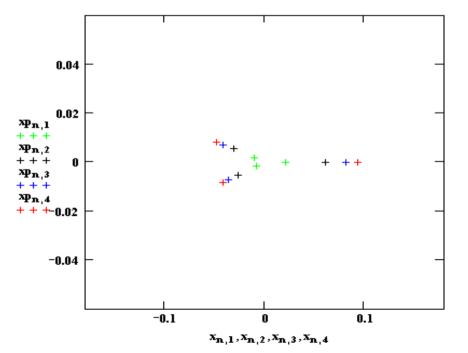
... and now back to the Chromaticity

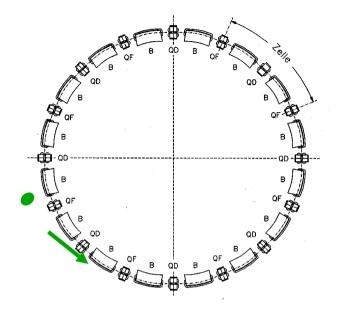


Clearly there is another problem if it were easy everybody could do it

Again: the phase space ellipse

for each turn write down - at a given position "s" in the ring - the single partile amplitude xand the angle $x' \dots$ and plot it. $\begin{pmatrix} x \\ x' \end{pmatrix}_{s_1} = M_{turn} * \begin{pmatrix} x \\ x' \end{pmatrix}_{s_1}$





A beam of 4 particles – each having a slightly different emittance:

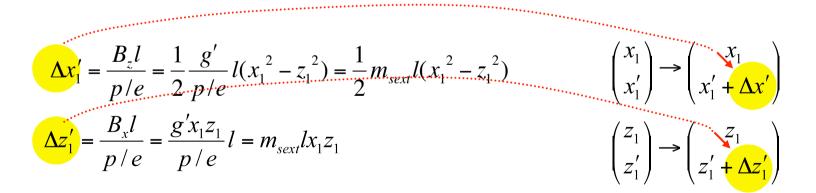
25.) Particle Tracking Calculations

particle vector: $\begin{pmatrix} x \\ x' \end{pmatrix}$

Idea: calculate the particle coordiantes x, x' through the linear lattice ... using the matrix formalism. if you encounter a nonlinear element (e.g. sextupole): stop calculate explicitly the magnetic field at the particles coordinate

$$B = \begin{pmatrix} g'xz \\ \frac{1}{2}g'(x^2 - z^2) \end{pmatrix}$$

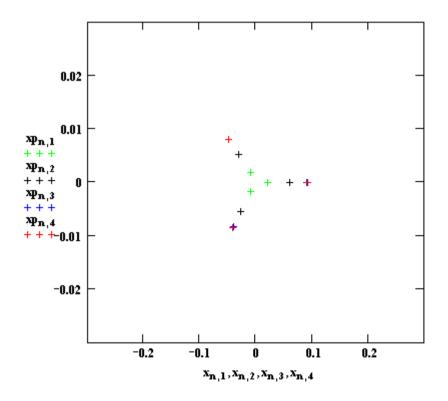
calculate kick on the particle

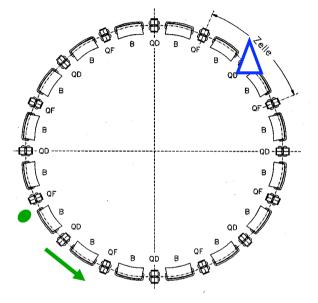


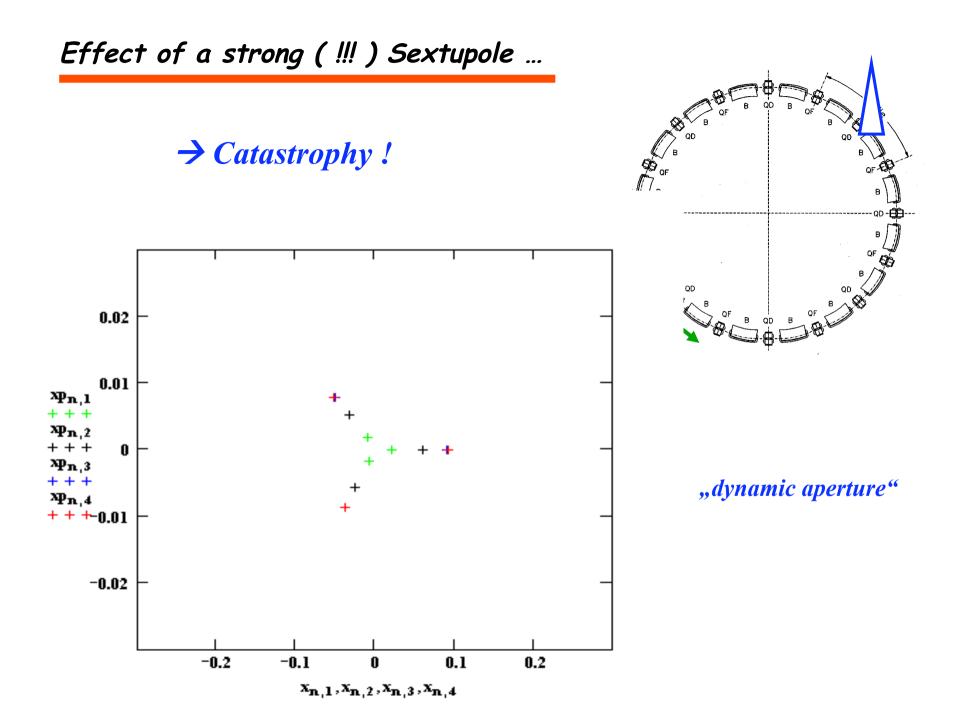
and continue with the linear matrix transformations

Installation of a weak (!!!) sextupole magnet

The good news: sextupole fields in accelerators cannot be treated analytically anymore. → no equatiuons; instead: Computer simulation " particle tracking"







Resume':

quadrupole error: tune shift

$$\Delta \mathbf{Q} \approx \int_{s_0}^{s_0+l} \frac{\Delta \mathbf{k}(s)\,\beta(s)}{4\pi} ds \approx \frac{\Delta \mathbf{k}(s)\,l_{quad}\,\overline{\beta}}{4\pi}$$

beta bea

$$\Delta\beta(s_0) = \frac{\beta_0}{2\sin 2\pi Q} \int_{s_1}^{s_1+l} \beta(s_1) \Delta k \cos(2(\psi_{s_1} - \psi_{s_0}) - 2\pi Q) ds$$

chromaticity

$$\Delta Q = Q' \frac{\Delta p}{p}$$

$$Q' = -\frac{1}{4\pi} \oint k(s)\beta(s)ds$$

momentum compaction

$$\frac{\delta l_{\varepsilon}}{L} = \alpha_p \frac{\Delta p}{p}$$

$$\alpha_{p} \approx \frac{2\pi}{L} \left\langle \boldsymbol{D} \right\rangle \approx \frac{\left\langle \boldsymbol{D} \right\rangle}{R}$$

beta function in a symmateric drift

$$\beta(s) = \beta_0 + \frac{s^2}{\beta_0}$$

Appendix I:

Dispersion: Solution of the inhomogenious equation of motion

Ansatz:

$$D(s) = S(s) \int_{s0}^{s1} \frac{1}{\rho} C(\tilde{s}) d\tilde{s} - C(s) \int_{s0}^{s1} \frac{1}{\rho} S(\tilde{s}) d\tilde{s}$$

$$D'(s) = S'^* \int \frac{1}{\rho} C \, dt + S \frac{1}{\rho} C - C'^* \int \frac{1}{\rho} S \, dt - C \frac{1}{\rho} S$$
$$D'(s) = S'^* \int \frac{C}{\rho} \, dt - C'^* \int \frac{S}{\rho} \, dt$$

$$D''(s) = S'' * \int \frac{C}{\rho} d\widetilde{s} + S' \frac{C}{\rho} - C'' * \int \frac{S}{\rho} d\widetilde{s} - C' \frac{S}{\rho}$$
$$= S'' * \int \frac{C}{\rho} d\widetilde{s} - C'' * \int \frac{S}{\rho} d\widetilde{s} + \frac{1}{\rho} (CS' - SC')$$
$$= \det M = 1$$

remember: for Cs) and S(s) to be independent solutions the Wronski determinant has to meet the condition

$$W = \begin{vmatrix} C & S \\ C' & S' \end{vmatrix} \neq 0$$

and as it is independent
of the variable ",s"
$$\frac{dW}{ds} = \frac{d}{ds}(CS' - SC') = CS'' - SC'' = -K(CS - SC) = 0$$
we get for the initial
conditions that we had chosen ...
$$C_0 = 1, \quad C'_0 = 0$$

$$S_0 = 0, \quad S'_0 = 1$$

$$W = \begin{vmatrix} C & S \\ C' & S' \end{vmatrix} = 1$$

$$D'' = S'' * \int \frac{C}{\rho} d\tilde{s} - C'' * \int \frac{S}{\rho} d\tilde{s} + \frac{1}{\rho}$$

remember: S & C are solutions of the homog. equation of motion:

S'' + K * S = 0C'' + K * C = 0

qed

$$D'' = -K * S * \int \frac{C}{\rho} d\tilde{s} + K * C * \int \frac{S}{\rho} d\tilde{s} + \frac{1}{\rho}$$

$$D'' = -K * \left\{ S \int \frac{C}{\rho} d\tilde{s} + C \int \frac{S}{\rho} d\tilde{s} \right\} + \frac{1}{\rho}$$

$$=D(s)$$

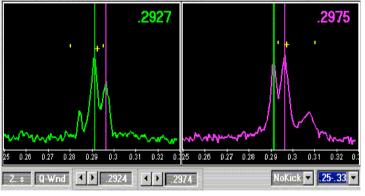
$$D'' = -K * D + \frac{1}{\rho} \qquad \dots \text{ or } \qquad D'' + K * D = \frac{1}{\rho}$$

Appendix II:

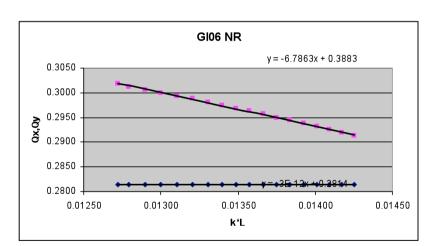
Quadrupole Error and Beta Function

a change of quadrupole strength in a synchrotron leads to tune sift:

$$\Delta Q \approx \int_{s_0}^{s_0+l} \frac{\Delta k(s)\,\beta(s)}{4\pi} ds \approx \frac{\Delta k(s)^* l_{quad}^* \overline{\beta}}{4\pi}$$



tune spectrum ...



tune shift as a function of a gradient change

But we should expect an error in the β-function as well shouldn't we ???

Quadrupole Errors and Beta Function

a quadrupole error will not only influence the oscillation frequency ... "tune" ... but also the amplitude ... "beta function"

split the ring into 2 parts, described by two matrices A and B

$$M_{turn} = B * A \qquad A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \\ B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

matrix of a quad error
$$M_{dist} = \begin{pmatrix} m_{11}^* & m_{12}^* \\ m_{21}^* & m_{22}^* \end{pmatrix} = B \begin{pmatrix} 1 & 0 \\ -\Delta k ds & 1 \end{pmatrix} A$$

between A and B

$$M_{dist} = B \begin{pmatrix} a_{11} & a_{12} \\ -\Delta k ds a_{11} + a_{12} & -\Delta k ds a_{12} + a_{22} \end{pmatrix}$$

â

B

S₀

A

S₁

$$M_{dist} = \begin{pmatrix} \sim & b_{11}a_{12} + b_{12}(-\Delta k ds a_{12} + a_{22}) \\ \sim & \sim \end{pmatrix}$$

the beta function is usually obtained via the matrix element "m12", which is in Twiss form for the undistorted case

$$m_{12} = \beta_0 \sin 2\pi Q$$

and including the error:

$$m_{12}^{*} = b_{11}a_{12} + b_{12}a_{22} - b_{12}a_{12}\Delta kds$$

$$m_{12} = \beta_{0}\sin 2\pi Q$$
(1)
$$m_{12}^{*} = \beta_{0}\sin 2\pi Q - a_{12}b_{12}\Delta kds$$

As M^* is still a matrix for one complete turn we still can express the element m_{12} in twiss form:

(2)
$$m_{12}^* = (\beta_0 + d\beta) * \sin 2\pi (Q + dQ)$$

Equalising (1) and (2) and assuming a small error

$$\beta_0 \sin 2\pi Q - a_{12} b_{12} \Delta k ds = (\beta_0 + d\beta)^* \sin 2\pi (Q + dQ)$$

$$\beta_0 \sin 2\pi Q - a_{12} b_{12} \Delta k ds = (\beta_0 + d\beta)^* \sin 2\pi Q \cos 2\pi dQ + \cos 2\pi Q \sin 2\pi dQ$$

$$\approx 1$$

$$\approx 1$$

$$\approx 2\pi dQ$$

$$\beta_0 \sin 2\pi Q - a_{12} b_{12} \Delta k ds = \beta_0 \sin 2\pi Q + \beta_0 2\pi dQ \cos 2\pi Q + d\beta_0 \sin 2\pi Q + d\beta_0 2\pi dQ \cos 2\pi Q$$

ignoring second order terms

$$-a_{12}b_{12}\Delta kds = \beta_0 2\pi dQ\cos 2\pi Q + d\beta_0 \sin 2\pi Q$$

remember: tune shift dQ due to quadrupole error: $dQ = \frac{\Delta k \beta_1 ds}{4\pi}$ (index "1" refers to location of the error)

$$-a_{12}b_{12}\Delta kds = \frac{\beta_0\Delta k\beta_1ds}{2}\cos 2\pi Q + d\beta_0\sin 2\pi Q$$

solve for $d\beta$

$$d\beta_0 = \frac{-1}{2\sin 2\pi Q} \{ 2a_{12}b_{12} + \beta_0\beta_1\cos 2\pi Q \} \Delta k ds$$

express the matrix elements a_{12} , b_{12} in Twiss form

$$M = \begin{pmatrix} \sqrt{\frac{\beta_s}{\beta_0}} \left(\cos\psi_s + \alpha_0 \sin\psi_s \right) & \sqrt{\beta_s \beta_0} \sin\psi_s \\ \frac{(\alpha_0 - \alpha_s) \cos\psi_s - (1 + \alpha_0 \alpha_s) \sin\psi_s}{\sqrt{\beta_s \beta_0}} & \sqrt{\frac{\beta_0}{\beta s}} \left(\cos\psi_s - \alpha_s \sin\psi_s \right) \end{pmatrix}$$

$$d\beta_{0} = \frac{-1}{2\sin 2\pi Q} \left\{ 2a_{12}b_{12} + \beta_{0}\beta_{1}\cos 2\pi Q \right\} \Delta k ds$$
$$a_{12} = \sqrt{\beta_{0}\beta_{1}}\sin \Delta \psi_{0 \to 1}$$
$$b_{12} = \sqrt{\beta_{1}\beta_{0}}\sin(2\pi Q - \Delta \psi_{0 \to 1})$$

$$d\beta_0 = \frac{-\beta_0 \beta_1}{2\sin 2\pi Q} \left\{ 2\sin \Delta \psi_{12} \sin(2\pi Q - \Delta \psi_{12}) + \cos 2\pi Q \right\} \Delta k ds$$

... after some TLC transformations ... = $cos(2\Delta\psi_{01} - 2\pi Q)$

$$\Delta\beta(s_{0}) = \frac{-\beta_{0}}{2\sin 2\pi Q} \int_{s_{1}}^{s_{1}+l} \beta(s_{1})\Delta k \cos(2(\psi_{s_{1}} - \psi_{s_{0}}) - 2\pi Q) ds$$
Nota bene: ! the beta beat is proportional to the strength of the error Δk
!! and to the β function at the place of the error ,
!!! and to the β function at the observation point,
(... remember orbit distortion !!!)
!!!! there is a resonance denominator