Controlling Particulates and Dust in Vacuum Systems Lutz Lilje DESY, 14.6.2017

Before we start: Definition of the Problem

- > Cleaning has been discussed by Mauro
- Some cleaning techniques are of course dual use and remove both problems - hydrocarbons and particulates – efficiently i.e. ultrasonic cleaning
- > Dust is composed of particulates.
 - A particle accelerator accelerates particles: electrons, protons, ions

- When people aim for "particle-free" vacuum systems, they mean a vacuum system with the lowest possible count of particulates
 - A truly particulate-free accelerator is difficult if not impossible to achieve.

Outline

- Dust and Particulates
- Problems caused in Particle Accelerators by Dust Particulates
- > Properties of Particulates
- > Cleaning and Keeping Components clean
- Mechanical Design and Particulates
- Particulate Production in Accelerators
- > Building a "Particle-free" accelerator
 - Example: European XFEL
- > Segmentation

Outline

> Dust and Particulates

Problems caused in Particle Accelerators by Dust Particulates

- > Properties of Particulates
- > Cleaning and Keeping Components clean
- Mechanical Design and Particulates
- Particulate Production in Accelerators
- > Building a "Particle-free" accelerator
 - Example: European XFEL
- > Segmentation

Dust and Particulates

- "Dust" is known by everybody
- It is so mundane...
- > But it needs continuous attention:
- 6,2 mg per m² per day in a typical german household (according "Quarks & Co")

More Dust

> Dust on a german car ...

Süddeutsche Zeitung 19. Februar 2014

- > No we are not talking Diesel engine problems...
- machine vacuum systems
- ... but what is this, then?

A lot of Dust!

 Sahara Dust near Canarian Isles and Azores

Public Domain https://commons.wikimedia.org/w/index.php?curid=149889

Sun in Hamburg – but with Sahara Dust

And for the Night Owls: Moon with Sahara Dust

Lutz Lilje | Controlling Particles and Dust in Vacuum Systems | 14.6.2017 | Seite 9

What are Particulates?

- Particulates can both be airborne e.g. dust or being generated during the assembly processes e.g. while bolting down screw connections.
- > Which dust source is missing?

H. Padamsee, Supercond. Sci. Technol., 14 (2001), R28 –R51

Lutz Lilje | Controlling Particles and Dust in Vacuum Systems | 14.6.2017 | Seite 10

Outline

> Dust and Particulates

> Problems caused in Particle Accelerators by Dust Particulates

- > Properties of Particulates
- > Cleaning and Keeping Components clean
- Mechanical Design and Particulates
- Particulate Production in Accelerators
- > Building a "Particle-free" accelerator
 - Example: European XFEL
- > Segmentation

Why is "Particle-Free" important? Dust and Particulates in Particle Accelerators

- Dust and Particulates are not just a nuisance
- Several components in accelerators are sensitive to contaminations with particulates
- > Severe, permanent performance deterioration might occur in components
- RF or pulsed magnetic fields
 - Superconducting accelerating structures
 - Field emission, thermal breakdown
 - Electron guns
 - Field emission leading to dark current
 - Pulsed kicker magnets
- > Mirrors
 - E.g. in photon beam lines
- Complete accelerators
 - Capture of particulates by electron beams
 - Beam life-time reduces drastically
 - Beam aborts due to falling particles

Superconducting Accelerating Cavity Performance

- High quality factor and high accelerating gradient at T=2K >
- Very efficient tool to accelerate particle beams even when cryogenic efficiencies are included
- European XFEL uses ~800 of these

Particulate-related Degradations: Field Emission in Superconducting Accelerating Caviites

Particle causing field emission

Temperature map of a field emitter

Simulation of electron trajectories in a cavity

Pictures taken from: H. Padamsee, Supercond. Sci. Technol., 14 (2001), R28 –R51

Possible Cures for Field Emission: High Pressure Water Rinsing

- Particle removal
- Samples show modification of surfaces due to the water jet forces
- > Not an In-situ method

After HPWR

Before HPWR

Possible Cures for Field Emission: High Power RF Conditioning

machine vacuum sustem

SEM Pictures taken from: H. Padamsee, Supercond. Sci. Technol., 14 (2001), R28 - R51

Particulate-related Degradations: Beam Lifetime in HERA and DORIS

Daren Kelly, Many-Event Lifetime Disruption in HERA and DORIS, DESY HERA 95-02

- When the accelerators where operated with electrons (TOP) beam lifetime showed unexpected degradations.
- > Operation with positrons does not show this phenomenon (BOTTOM).

Particulate-related Degradations: Beam Lifetime in HERA and DORIS

Alexander Kling, Dust particles in HERA und DORIS, EPAC 2006

- Events have been traced to positively charged particulates which have been emitted by the sputter-ion pumps integrated in the vacuum chamber.
- > Titanium particles have been identified as primary suspect.
- Even after exchange of the chambers to a system with integrated NEG strips the effect could be observed albeit less pronounced
- > HERA and DORIS have been operated with positrons most of the time after this discovery.
- > Colleagues at KEK's photon factory observed it, too.

Particulate-related Degradations: KEK Photon Factory

- Dedicated experiment to demonstrate the effect of dust particles
- Movable electrodes on and off the beam axis
- Picture of a captured particle which evaporates

Experimental demonstration and visual observation of dust trapping in an electron storage ring, Yasunori Tanimoto, PRST-AB 12, 110707 (2009)

Particulate-related Degradations: LHC Beam Losses

- > 2010 and 2011 beam losses leading to 35 protection beam dumps were observed
- With improved diagnostics information of about 7800 suspicious events detected

> UFOs !

- Unidentified Falling Objects
- > 6% of these events could be attributed to the injection kickers which are only 0,06% of the LHC length
- Other kickers were not showing is anomaly
- Clear correlation to kickers being pulsed

TRANSIENT BEAM LOSSES IN THE LHC INJECTION KICKERS FROM MICRON SCALE DUST PARTICLES

B. Goddard et al., IPAC2012, TUPPR092

Time after MKI pulse [ms]

25-350

Lutz Lilje | Controlling

Particulate-related Degradations:

- > Added beam loss monitors confirm location
- > Kicker vibrates when pulsed
- > Aluminum oxide particles were found in abundance after one item removed from the accelerator
 - Other kickers have metallic coating

Particulate-related degradations: X-ray Monochromator

- Photon beam at PETRA III
- Particles on the monochromator can be clearly identified.
- This area cannot be used anymore

monochromator crystal @ P10 PETRA III

M. Hesse, Clean Vacuum Systems, OLAV V

Lutz Lilje | Controlling Particles and Dust in Vacuum Systems | 14.6.2017 | Seite 22

Outline

- Dust and Particulates
- Problems caused in Particle Accelerators by Dust Particulates
- > Properties of Particulates
- Cleaning and Keeping Components clean
- Mechanical Design and Particulates
- Particulate Production in Accelerators
- > Building a "Particle-free" accelerator
 - Example: European XFEL
- > Segmentation

Origin of Particulates: Know your enemy....

- Particulates are from several origins
 - Air pollution
 - Sahara, Diesel engines etc.
 - Fabrication
 - Machining, Drilling etc.
 - Assembly
 - Humans, friction
 - Operations
 - Friction, Charging, Aging
- Particle Properties

machine vacuum systems

- Size, Mass and Forces are very diverse
- Nonetheless these help to develop countermeasures

Size of Particulates

- > Typical particulates are of micrometer size
- > Countermeasures:
- > Filter media like air and process fluids appropriately
- > Depth and membrane filters
 - 0,3 µm filters are readily available and standard nowadays
 - Air filters i.e. cleanroom environment
 - Filter liquid media
 - Water for rinsing e.g. HPR for superconducting cavities

High efficiency particulate air (HEPA) filters , Spring8

Membrane filter 0,4 µm, Merck/Millipore

ISO 14644-1 Cleanroom Standards

Class	maximum particles/m ³						
	≥0.1 µm	≥0.2 µm	≥0.3 µm	≥0.5 µm	≥1 µm	≥5 µm	FED STD 209E equivalent
ISO 1	10	2.37	1.02	0.35	0.083	0.0029	
ISO 2	100	23.7	10.2	3.5	0.83	0.029	
ISO 3	1,000	237	102	35	8.3	0.29	Class 1
ISO 4	10,000	2,370	1,020	352	83	2.9	Class 10
ISO 5	100,000	23,700	10,200	3,520	832	29	Class 100
ISO 6	1.0×10 ⁶	237,000	102,000	35,200	8,320	293	Class 1,000
ISO 7	1.0×10 ⁷	2.37×10 ⁶	1,020,000	352,000	83,200	2,930	Class 10,000
ISO 8	1.0×10 ⁸	2.37×10 ⁷	1.02×10 ⁷	3,520,000	832,000	29,300	Class 100,000
ISO 9	1.0×10 ⁹	2.37×10 ⁸	1.02×10 ⁸	35,200,000	8,320,000	293,000	Room air

Accelerator Installation at Spring8

6

100

Partition

LILS

Entrance of the undulator section

Separation of the accelerator tunnel

Separations of plastic film sheets were set to decrease the dust from outside.

Entrance of the accelerator section

Accelerator Installation at Spring8

Assembly

IHI Inspection & Instrumentation Co.,Ltd.

KURIHALANT CO., LTD.

Mass of Particulates

- They have mass
 - 6,2 mg per m² per day …
- In vacuum they fall down
 - A particle needs a few ten milliseconds to traverse a typical beam pipe (if only accelerated by gravity)
- BUT: They have only a small mass

By Original uploader was Sullivan.t.j at English Wikipedia. - The description as originally from Wikipedia., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2249027

- Partikel durch zu frühes öffnen des E-P Ventils 10 9 E-P Ventil bei 10mbar geöffnet 8 7 ◆ 0.17 -0,25 6 Anzahl 0.3 5 -0,5 4 Total 3 2 8:25 8.26 8:28 8.20 8:31 8:32 8:34 8:35 8:36 8:38 Zeit [h : min] Evakuiervorgang gestartet
- They will be transported in gaseous media at pressures above 1 mbar.
 - Opening an angle valve at 10 mbar while pumping a system

Lutz Lilje

Transport of Particulates

- Particulates can be dislodged from the surface if subjected to …
 - Mechanical vibrations
 - E.g. valve opened too quickly
 - Turbulent gas flow e.g. during pump down
 - Charging up
- Particles can be transported for significant distances in gaseous media even when the gas does not move itself
 - E.g. observation of Brownian motion using dust particles
 - It takes several hours in vented vacuum systems for all particles to settle on the surface
- In vacuum things are very different
 - Particles will fall down and do not move further unless severe vibrations or charge up occur
 - Van der Waals force helps

Avoiding Particulate Transport during Pumpdown and Vent

- Particle transport will be avoided by careful operation of the vacuum system
- > Avoiding vibrations is mandatory in general
 - When there is no vacuum, this is even more important
- > Use laminar gas flow while venting and pumping vacuum systems
 - Avoid turbulences
 - Even with laminar gas flow mechanical vibrations can lead to long distance particle transport

K. Zapfe, J. Wojtkiewicz SRF2007, WEP74

Venting and Pump Down of "Particle Free" Sections

- There are and always will be particles in the vacuum system!
- Developments of pumping / venting procedures by means on in-vacuum particle counter. No particles are transported if either:
- > Flow \leq 3 I_n/min, or
- > Pressure < 1 mbar</p>
- Automatic pumping / venting units developed
- Constant flow of 3 I_n/min of nitrogen or argon, by means of mass flow controllers.
- Units have been widely used for XFEL

Forces on Particulates

- > They stick to the surface: Van der Vaals
- BUT: They can be detached easily by mechanical vibration already
- > A vented vacuum system needs more care
 - Particles can be dislodged and moved too places where they might really hurt
- Countermeasures using forces for cleaning:
 - Ionized nitrogen blowing
 - Ultrasonic cleaning
 - High pressure water rinsing
 - Dry-ice cleaning

Dry-Ice Cleaning for Normalconducting RF Structures

Alternative particle free cleaning – esp. applied for normal-conducting RF-structures: dry ice (CO₂) cleaning

TDS dimensions: 1700mm long, 40mm beam pipe Ø

Sketch of 2 coupled lances inside TDS

Brinkmann, J. Ziegler, LINAC2016, MOPRC032

Frontview of TDS with lance inside (no bending)

Storage and Transport of Cleaned Vacuum Components

Inside

- Vacuum
 - Pro: Particulates will not move
 - Con: More effort e.g. additional valves, gauges, pumpdown and venting
 - Justified for the most critical components (cavities and modules)
- Filtered Nitrogen backfill
 - Pro: Less effort
 - Con: Components more sensitive to particulate transport which have been dislodged by vibration
 - Use for simpler components like bellows
 - Or even not so simple ones....
- Outside
 - Double bagged in antistatic foil

Outline

- > Dust and Particulates
- Problems caused in Particle Accelerators by Dust Particulates
- > Properties of Particulates
- > Cleaning and Keeping Components clean
- Mechanical Design and Particulates
- Particulate Production in Accelerators
- > Building a "Particle-free" accelerator
 - Example: European XFEL
- > Segmentation

Avoiding Particulates by Better Mechanical Design

Components have to be compatible with cleaning procedures

- Using fluids for cleaning
- Blowing with ionized nitrogen
- Installation environment allows setup of a local cleanroom
 - Reliable, efficient cleanroom setup improves quality and needs less time

- > A lot of details to be considered
 - Incomplete penetration welds
 - Welded bellows vs. hydroformed bellows

Mechanical Design and Particulates

- > Broadband RF absorber for XFEL
- > Ceramic ring soldered to copper piece
- Difficult to access with ionized nitrogen blowing

In addition: Fissures in the brazing

machine vacuum sustems

SLAC, January 25th, 2005. Presented by J. Sekutowicz

Outline

- > Dust and Particulates
- Problems caused in Particle Accelerators by Dust Particulates
- > Properties of Particulates
- > Cleaning and Keeping Components clean
- Mechanical Design and Particulates
- > Particulate Production in Accelerators
- > Building a "Particle-free" accelerator
 - Example: European XFEL
- > Segmentation

Particulate Sources in Accelerator Operation

- Accelerator operation inevitably leads to the production of particulates
- Moving components generate dozens to hundreds of particles
 - Diagnostic components e.g. screens
 - Valves
- Movements of valves should be minimised in critical areas
 - Only in emergency
 - Persons entering the area
- > RF fingers and sliding contacts
 - Electrical contact required
 - Movements generate particulates
 - Experiences?
- (Beam hitting material)
- > Pumps

Pumps and Particulates: Mechanical Pumps

- Particle Production is certainly possible
- E.g. Scroll Pumps
- Photo is probably an exaggeration
- With regular maintenance and quality control, scroll pumps have not shown to be an issue (yet)
- Design of the pumping stations is crucial
 - Additional valve for protection mandatory
- DESY has experience during XFEL assembly and installation

Mechanical Vacuum Pumps H. Barfuss (Pfeiffer Vacuum)

Pumps and Particulates: Sputter Ion Pumps

- Have shown problems when integrated into vacuum chambers e.g. HERA
- Standard ion pumps have shown particle production
 - Initial start-up
 - At high pressures
- Measures exist to reduce particle transport e.g. optical shields

Pumps and Particulates: NEG cartridges

- > Tests on CapaciTorr pumps for several conditioning and activation cycles
- > Number of particulates generated is at acceptable levels after 4 repetitions

Outline

- > Dust and Particulates
- Problems caused in Particle Accelerators by Dust Particulates
- > Properties of Particulates
- > Cleaning and Keeping Components clean
- Mechanical Design and Particulates
- Particulate Production in Accelerators
- > Building a "Particle-free" accelerator
 - Example: European XFEL
- > Segmentation

- > Avoid particulates at every stage and include it in the mechanical design
- Remove particulates at every stage possible
- Do not produce particulates especially during installation and operation
- Never transport particulates

> ... be prepared for reasonable compromises!

How to built an "Particle-free" Accelerator?

- Layout and segmentation
- Design and manufacturing
- > Cleaning of components is mandatory
- > Handling of components in clean environments is necessary
 - Clean rooms
- > Even after clean assembly particulates can be produced in the system
 - Movement of valves, fast shutters, view screens, sliding contacts
- A macroscopic vacuum system of several kilometers will not be completely free of particulates – even when maximum care is being taken.
 - Transport of these particulates must be avoided
- Procedures during operation have to reflect this
 - Controlled slow venting with filtered gas

Example XFEL: Overview

I1, I1D		Injector, Injector dump				
BC0, BC1, BC2		Bunch compressor 0, 1, and 2		T5D T6		
BC1D, BC2D		Bunch compressor 1 and 2 dumps		T5 U2 T7		
L1, L2, L3		Superconducting linacs (4, 12, and 80 accelerator modules)		U1 T3 T8		
II L1	L2	L3	TI	Т9		
BC0 BC I1D BC		BC2 CL TI BC2D	T2 81	T4 53 T4D T10		
CL	Collimation		T1, T3, U1, T5, U2, T5D	Electron transfer lines of the southern branch up the XSDU1 dump		
TL, TLD	Switch-Yard, electron transfer line to XS1 dump		S2	SASE section of the southern branch		
T2,T4, T4D	Electron transfer lines of the northern branch up the XSDU2 dump		T6, T7, T8	Photon transfer lines of the southern branch *		
S1, S3	SASE sections of the northern branch					
T9, T10	Photo branc	on transfer lines of the northern ch *]	European XFEL		

Example XFEL: What are critical components and regions?

- RF gun in the Injector
- Superconducting cavities
- > Kickers?
- > Screen monitors?
- > How many meters do we keep clean aside from the critical parts?
- > One possible answer: 30 m
 - Reaction time of a fast shutter to intercept a pressure wave (in a catastrophic event) is a few tens of milliseconds
 - (You might want to measure that for your system)
 - Speed of sound: 340 m/s
 - Include safety factor

Example XFEL: Overview of "Particle-Free" sections

I1, I1D	Injector, Injector du	ітр				
BC0, BC1, BC2	Bunch compressor	[.] 0, 1, and 2			T5D	T6
BC1D, BC2D	Bunch compressor	Bunch compressor 1 and 2 dumps		T5	U2	T 7
L1, L2, L3	L1, L2, L3 Superconducting linacs (4, 12, and 80 accelerator modules)			U1 T3		T 8
			TI			Т9
		CL TL	T2 51	T4 \$3	T4D	T10
CL C	ollimation		T1, T3, U1, T5, U2, T5D	Electron transfer lin branch up the XSDI		n

CL	Commation	T5, U2, T5D			
TL, TLD	Switch-Yard, electron transfer line to XS1 dump	S2	oranch		
T2,T4, T4D	Electron transfer lines of the northern branch up the XSDU2 dump	T6, T7, T8	Photon transfer lines of the southern branch *		
S1, S3	SASE sections of the northern branch	And th	e X-ray optics areas, too.		
T9, T10	Photon transfer lines of the northern branch *		Better call Raúl		
		Villa	nueva-Guerrero from European XFEL	XFEL	

Vacuum systems of the XFEL accelerator Warm beam line vacuum

Requirements from beam dynamics Except μ_r and RF-shielding absolutely new requirements on an accelerator vacuum system

	Material properties			alignment		RF shielding	**)
	conductivity	rel. magnetic permeability µ _r	R + 50*O	max. step at flanges	max. Iongitudinal gap	Flanges, bellows, pumps, valves	Average pressure
	μΩcm		nm	mm	mm		mbar
RF-gun (up to L0)	75	<1.01					< 10 ⁻¹⁰
I1, BC0, BC1-, BC2- chicane	3	1.01	1250	0.2	0.5	YES	< 2 10 ⁻⁸ *
I1, BC1, BC2 dump	3	1.05	2000	0.2	0.5	NO	< 2 10 ⁻⁸
BC1,2	3	1.05	1250	0.2	0.5	YES	< 2 10 ⁻⁸ *
CL, TL, T1, T2, T3. T4, T4D, T5, T5D, U1, U2	3	1.05	1250	0.2	0.5	YES	< 2 10 ⁻⁸ *
S1, S2, S3	3	1.01	550	0.1	0.5	YES	< 2 10 ⁻⁷
Right in front of main dumps	3	1.05	2000	0.2	0.5	NO	< 2 10 ⁻⁸

(*) close to SRF modules 10⁻¹⁰ mbar

(**) In addition all components have to be in accordance to the DESY vacuum specification

European XFFI

Outline

- > Dust and Particulates
- Problems caused in Particle Accelerators by Dust Particulates
- > Properties of Particulates
- > Cleaning and Keeping Components clean
- Mechanical Design and Particulates
- Particulate Production in Accelerators
- > Building a "Particle-free" accelerator
 - Example: European XFEL
- > Segmentation

Particle Cleanliness: Segmentation

- > Segmentation is important
 - Pumpdown time needs to be acceptable
 - Efficient leak searches
 - Cleaning of subsections in an optimised environment i.e. normal clean room
 - Steel flanges , plastic caps
- > Reduction of types and number of flange connections to be made in the tunnel
 - Better reproducibility
 - Time saving

Particle Cleanliness: Segmentation of Accelerator Modules

Outline

- > Dust and Particulates
- Problems caused in Particle Accelerators by Dust Particulates
- > Properties of Particulates
- > Cleaning and Keeping Components clean
- Mechanical Design and Particulates
- Particulate Production in Accelerators
- > Building a "Particle-free" accelerator
 - Example: European XFEL
- > Segmentation

Particle Cleanliness: Cleaning Procedures

- ALL components mounted in these areas have to be particle free cleaned in addition the UHV-cleaning
 - Superconducting accelerator structures: ISO 4 or better
 - Normal conducting vacuum systems: ISO 5 or better
- > Standard wet particle free cleaning process:
 - Ultrasonic bath in ultra-pure water and suitable detergent
 - Ultrasound e.g. 3 to 6 times for 5 min. by short rinsing (at least 1 min)
 - Rinsing with ultra-pure water until a residual bath resistance of > 12 MΩm is reached.
 - Drying in particle-free (better than class ISO 5) air.
 - Alternatively: laboratory washing machine with ultra-pure water and suitable detergents; unloading in a room with class ISO 5 or better.
- Wet cleaning is very efficient and fast
 - Components need to be designed for being compatible with wet cleaning
- Particle Cleanliness: Special Cleaning
 - Components that cannot be cleaned using ultrasonic and rinsing bath (e.g. mirrors, detectors etc.) have to be placed in a clean room in particle-free air flow (better than class ISO 5) for several hours before assembly.
 - Blowing with ionized nitrogen
 - Potentially very time consuming

Particle Cleanliness: Clean Room Facility

Clean room facility used by MVS in collaboration with photon vacuum group

- Mounting area
- > Pump carts for QA
- Lock system for big items

Seite 59

Particle Cleanliness: Quality Checks

- The absence of particles has to be controlled in a clean room class ISO 5 or better. Therefore the components will be cleaned with particle free ionized nitrogen. After 5 minutes using a gas throughput of 28 I/min there should be at maximum 10 particles/minute ≥ 0.3 µm be detected.
- The assembly of components and the joining of vacuum parts has to be performed in a environment according to the specified clean room class. Control with standard particle counters.
- Gaps in flange connections need to be masked on the outside with clean room compatible adhesive tape to avoid particle contamination in the flange area.

Particle Cleanliness: Installation of "Particle-free" Sections inside the Accelerator

- Installation to be done under local clean room environments
- Direction of clean air flow can be adapted to the needs in the specific location
- Pre-configured local clean rooms are useful
 - E.g. module connection is needed about 100 times
 - Good reproducibility and efficiency
- Flexible clean rooms needed too
 - Good experience with separation of filter unit and ventilation
 - Very high flexibility
- Concept and Size depends on the task
 - Glove-box-like e.g. module connection
 - Sufficient size for people standing inside e.g. bunch compressor chicanes or injector version
 - Space for tools, fixtures etc. not to be forgotten
 - Lighting
- Supporting personnel on the outside always needed

Mobile Clean Rooms: Example XFEL HOM-Absorber

- > Air flow from below
- > Access from both sides
- Handling system for the component

Stairs can be removed for transports

Dust in Vacuum Systems | 14.6.2017 | Seite 62

Mobile Clean Rooms: Example XFEL HOM-Absorber

Mobile Clean Rooms: Injector Version

Filter system attached to blower unit and can be tilted
Access with two people possible

tz Lilje | Controlling Particles and Dust in Vacuum Systems | 14.6.2017 | Seite 64

Mobile Clean Rooms: Injector Version

Lutz Lilje | Controlling Particles and Dust in Vacuum Systems | 14.6.2017 | Seite 65

Mobile Clean Rooms: Filter and Blower separated

Filter unit is light

- Could be suspended from cryogenic bypass tubes (while still warm)
- Long hose
- Blower can be put to the side enabling transports

Lutz Lilje | Controlling Particles a

Mobile Clean Rooms: Filter and Blower separated

Lu

- > Tent needs to be adapted
- More time-consuming
- Size needed for this assembly (bunch compressor chicanes) interfered with transports

Mobile Clean Rooms: Filter and Blower separated

- Filter unit tilted by about 45 degrees
- Slove-box like tent for bellow assembly

Accelerator tunnels are too crowded – always …

XFEL "Particle-free" Highlights in Numbers

- > 1 RF Gun including cathode handling system
 - Very delicate components, very little space, very demanding requirements
- > 38 girders with 5 m each
 - More than 500 different pieces
 - Tubes, pumps, compensators, diagnostics incl. transverse deflecting structure,
- Laser heater chicane
- > 3 Bunch Compressor Chicanes
 - Long chambers
 - Large flanges
- > 6 pressure stages at warm cold transition
- > 3 dump lines
- > 60 m warm beam line at the end of the cold linac as a buffer zone
- > For the 100 accelerator modules
 - 200 all metal date valves
 - 800 cavity and 800 coupler bellows
 - 200 coupler pump lines with TSP, sputter ion pump
 - 100 HOM Absorbers
 - Plus testing, installation etc.

More than 1,5 km of vacuum chambers have been cleaned (without the cavities

European

First Lasing at European XFEL – 2nd of May 2017

Remember: Basic Rules for a "Particle-free" Accelerator

- > Avoid particulates at every stage and include it in the mechanical design
- Remove particulates at every stage possible
- Do not produce particulates especially during installation and operation
- Never transport particulates

> ... be prepared for reasonable compromises!

- Remember the basic rules
- Layout and mechanical design need to take into account cleaning and installation
- Transport of particulates must be avoided
 - Methods to avoid turbulent flows during pump-down and venting are available
- Large-scale infrastructures can be built "particle-free"
 - A large part of the European XFEL accelerator vacuum system is "particlefree"
 - ... and it works!

