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Basic Notions of Material Strength

Initial
section:
S0

Initial Ie‘mA
LO

L=Llo+A

Stress = Force/Section

o[MPa] = FIN/S[mm2]

—>

Force F

Strain = Displacement/length

€ = Almm])/L[mm]

Basic mechanical properties from tensile tests

Nominal or engineering stress:

F
Oeng = S_O

. . AL L—-L
Nominal strain: eg,y = — = — >
0 0

gtrans

Poisson coefficient: v = —

Eaxial
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E: Young modulus (linear
elastic behavior)

o, (Rp): Yield strength

o, (Ry): Tensile
strength
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True Strain/Stress vs Engineering Strain/Stress

dl
de = - ) c = In(1+c.,)

F
o= 5= Oeng (1 + eeng)
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Stress in Continuum Mechanics

dS=dS-n
dE
T(M = li ak
TM.n) = Jim 75
Stress tensor f
Stress vector

T(M,n) =g(M) n

Normal stress: g, = n - g(M) 'n 0,>0: tensile; 0,,<0: compression

Shear stress: t=g(M) -n—o0, n

op 0 0
The stress tensor is symmetric: g = gT > 3 (21,22,23) ,o=0 o5 O
B 0 0 o

11 (21,22,23)

o = opl + aP with g}, = %tr [g] the hydrostatic stress, and o the deviatoric stress tensor.
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Strain in Continuum Mechanics

® 9

|

»
»

= ®(Mo)

0D (M,)

dM =
o M

- dMy = F(M,) - dM, g IS the deformation gradient.

1
Green Lagrange deformation: E(M,) = 5 [ET(MO) - F(My) - é]

T
Considering the displacements:  p(jy,) = 1 |ou(M,) N <02(M0)> N <6u(Mo) 0u(M,)
m = MO + E(Mo)) - 2 aMO aMO aMO a1\40

T
For small perturbations (||u| « ||Mo||): g(u) :% [51(;(1\14"10) (6%(]\%0)> ]
N Mo

Energy variation: dE = [, o:de
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How material behaves? How atoms interact?

CERN
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Linear Elasticity

The interatomic potential is the sum of 2 contributions:

UA It presents a minimum, corresponding
to the free equilibrium of the atoms. UO
is the bonding energy.

The interactomic force is defined by
F = Z—Z and can be written: F =k -r

L A

Interactomic Potential
o

Interatomic distance

This can be generalized in the form (Hooke’s law): o = C: £® with C the stiffness tensor.
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Linear Isotropic Elasticity

g = : o0 with S the compliance tensor

: £° am) <=

T
111
IIIICf)

In the worst case, C has 21 independent parameters!

For homogeneous isotropic material, they can be reduced to two independent parameters !

g =Atrfec] i+ 2 ¢ =g gl

I

A and u are the Lamé coefficients. u, sometimes denoted G, is the shear modulus.

vE E
A= = — Bond type Typical range Young modulus
-7 "2y C o

3A+2u A Covalent 1000
=¥ V=300
(A+w 1+ w lonic 50
2u E Metallic 30-400
k =/1+?= m Van der Waals 2
I N T Y T
E [GPa]
v 0.34 0.34 0.3 0.32

Elastic parameters at room temperature of materials commonly used for UHV applications
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Thermal Linear Isotropic Elasticity

(e—¢™)

£ is the thermal strain tensor.

g =

IIIIC\
e
I
Iie

—— Aluminium

—Stainless steel
——Copper

——Titanium

deth = a(T) - dT - 1

gthza'(T_Tref)'i

Thermal contraction [mm/m)]
]

1.5
: . : 1
a is the coefficient of thermal expansion (CTE).
0.5
. . - O
In simplified 1D, o =E - (8 — eth) 05 0 50 100 150 200 250 300

—E- (8 —q- AT) Temperature [K]

a [106 -K1]
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Material in free state

Gl

Elasticity

i
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Brittle failure
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Strength of Brittle Material

Damage mechanism: Cleavage, intergranular fracture

Material is very sensitive to stress concentration and therefore the material strength
strongly dependent of the initial defects.

The strength of the material is represented by the Weibull’s law, defining the survival
probability:

Mag= 100Kx ({7
Anite Perez Forterla

Fracture surface of heavy tungsten alloy at 77K

m: shape parameter

m 0.9 —pmes
1

dQ)

Ocq 0.8 —p=10

0o

07 ——m=20
0.6
0.5
0.4
0.3
0.2
0.1

0 U/Uo

] 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Ocq = max(ay, oy, 0yyy, 0)

Survival probability

Example on glassy carbon:

—FE
——Analytical

* Tests

Average

strength

206

4 points bending test on rods

Standard Weibull scale

deviation

Weibull shape
parameter

5.6-6.3

parameter

375-416

g
o

Survival probability
=)
=

Flexure

e o o
(=T S )

Compression
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Material in free state

Elasticity
f
CA I
\E > &
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Plasticity
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Plasticity

Material with plasticity: irreversible plastic deformation before rupture

s,

The plastic deformation is associated to the dislocation motions (slip under shear stress).
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Plasticity

1200 - 450
__ 1000 - 4
£ . e ol /
Iy =
% B 250
% 600 g -
o 400 g 150 -
P 200 T 100 -
0 50
4] T i
4] 0.01 0.02
True strain True strain
GA
R Rpo0.2: 0,2 % proof strength
pl
Rp0.2
Ryt 1 % proof strength
(¢
y
e=¢c%+¢€P
. o < gy, (0 — 0y, <0): Elasticity
0.2 1% -
" gP g€

In practice, we consider usually that g,= R ,
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Plasticity — Yield Surface

. g,0y,..) <0 :elasticit
Yield surfaces are defined by: f (: Y ) y

e f (g, 0y, ) = 0 : plasticity

Isotropic criteria:

e Tresca

the maximum shear stress, as a function of the principal stresses, is given by: T4 = Max(ai - aj)

Tresca’s yield surface: f (g, oy ) = Max(ai — aj) — 0y
Initial Tresca’s criteria: Max(o; —0;) — R, = 0

 Von Mises
Based on the distortional elastic energy « tr [gD -gD] =gP:gP

Floo)= [5(ea?) -0

. . 1
In principal stress space: ﬁ\/(a1 —03)% + (01 — 03)* + (0, — 03)%* — 0y

1
|n StreSS Space ﬁ\/(o-ll - 0-22)2 + (0-11 - 0-33)2 + (0-22 - 0-33)2 + 6(0-122 + 0-123 + 0-223) - O-y
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Plasticity — Yield Surface

Comparison of the Tresca’s and Von Mises'’s yield surface for plane stress state:

o 0 0 o T 0
g — 0 O'” 0 g - T O O
— \0 0 0 - N0 0 O
O-” T
1.5 /Gy /Jy
Tresca ‘ Tresca 1.5
Von Mises Von Mises
1 1
0.5

o)
Q
~—
q

-1.5 -1 -0.5 0 0.5 1 1.5 Y -1.5
-0.5

'__\
1
=

15 -1.5

Fig. 15. Frontiére de la
limite d'é¢lasticite.
O Alliage Alu. 195 (d'a-

pres lIvey).
® Alliage Alu. 24 $-T4 ELMAN.DRUCKER ¢ = 0,32
CERN _ (d'aprés Naghdi et al.).
\ Vacuum, Surfaces & Coatings Group
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Plasticity - Hardening

Plastic strain tensor: P = ¢ — ¢°

2
Accumulated plastic strain, p: dp = §d§p: deP > 0

Plastic strain are induced by dislocation motions

—> no volumic change = tr [gp] =0 oy
B 1.5 /G
O] Elastic
4 Plastic perfect 1

Kinematic hardening
Isotropic hardening

Oy
) 0.5 1 1.5 /O'y
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Plasticity — Kinematic Hardening

), Fg o) = J;((g’) -x):(e” - %)) -4,

2
d)_( = §Hd§p

0 o, _
» 05 /1 / 1s /O'y Normality rule:

D _
dgpzd/la_fzdllﬁ (g é)

2 2 B -2 (- p)

Consistency equation: df =0

0y — Rpo.2

As a first estimation, the hardening modulus H is estimated by: H~
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Plasticity — Isotropic Hardening

f(g,O'y,R) = \/g(ngD) — 0y — R

Oq1
1.5 /O-y
1
dR =g -dp
0.5
b os /1 1_501/gy Normality rule:
_ 3 2
dgP = di=— = dA>
= g \/% (gD:gD)

Consistency equation: df =0

The isotropic hardening is non linear and reaches a saturation level.
Isotropic and kinematic hardening can be mixed.
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Continuum Damage Mechanics

Material representative element Continuum damaged element
* _ ® D The degradation is
— characterized by a damage
- A ‘ variable D (a scalar for
—_ P isotropic damage)
20ecmy ; - / —
Damaged state:

microvoids and/or microcracks (dislocation  \ricrodefect size << Element size << Structure size
stack, decohesion or cleavage of

precipitates or inclusions, ...) Micro << Meso << Macro scale

Effective stress and damage variable

dr dF
n n
ds dSy: ds
Su?face of @
defects ,
dF = g ndS dF = o'n(dS —dS)
. . as
The damage parameter is defined by D = d—Sd
- D=0 : Virgin structure; D=1: crack initiation
: g
o': effective stress tensor g = —5
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Continuum Damage Mechanics

Strain equivalence principle:

E'=E-(1-D)

6mm

Fig. 1.16. Mcasurement of ductile damage on 99.9% copper at room temperature (after J. Dufailly)
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Continuum Damage Mechanics

Damage evolution oy 1
¥ Strain energy density release rate Y = aD = Ege: g: ge
For ductile material: dD = %dp
2
Y = 1+v)+3(1—-2v
2EX1=D)2)3 ( )+ 3( )

Effective Von Mises stress Triaxiality ratio

This relation can be generalized to:

(; —
Ae = Ae® + AeP = 2N 1/’/2+ClN 1/n D
E T 2 =l
g)o 0.1 N
Leading to the Manson-Coffin law used in Low cycle & \
fatigue: £ 001 \‘\
P8 — o
N¢(AgP) Cst = —~— |
0.001
Universal slope equation: 1E+1 1.E+2 1E+3 1E+4 1.E+5 1.E+6 1.E+7
0.
Ae = 3.5 _me—0.12 + D3'6Nf_0'6 N cycles
E Typical curve for stainless steel
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Fracture Mechanics

K: Stress intensity factor

Mode I: Opening Mode II: In plane shear Mode IlI: Out-of-plane shear

(after J. Lemaitre, J.L. Chaboche, Mécanique des matériaux solides, Dunod)

K(0w, a)

For elastic material, the stress singularity reads: g X o

r: Distance from the crack tip
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Fracture Mechanics

For elastic material, the stress singularity reads: g X _K(U“" a)
27T
Kisinthe form K = f - o,\/ma .
| a O o

K; = oe\/Ta cos? a

K; = 1122 o,1a K;; = o\/macosa sina

In a more global approach [Griffith], the energy release rate is defined as: G = — g;‘z

Criterion: G = G, : crack propagation

2

. . K
For elastic material, G = -
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Fracture Mechanics

Fatigue crack propagation:

Paris’ law, used for stable crack propagation:

Ly
k; = C,AK™
ot 3 an__ :
& e =
E = i
& 4« More general law:
F Ao = §
E = = 48
Bl 5o's 1-R
% = EW% da c Kﬁaxlﬁ_rnR Kin
% 107 % ;10_3 dN KIC Kmax
F & g K., K.y, fracture parameters

g

STRESS INTENSITY RANGE, AK (WParfr) Kmin
Mc Kelvey, 1999 R =
Kmax

m: average load parameter; usually 0.5

Material may exhibit ductile to brittle transition

A

Toughness

da/dN [m/cycle]

1.E-04

1.E-05

1.E-06

1.E-07

1.E-08

1.E-09

1.E-10

1.E-11

=46 10 /10

C, =3.107" m/cycle /rf

/

/

Ko =ttoMPatVm
/Kth = SMPa\/-'T_l

7 n=28
C =2.10"®m/qycle

AK [MPa.m"?]
Extrapolated curves for 316

FCC, HCP

materials
BCC materials

»

https:/mtI.Iurgyadmaerials.files.wordpress.co
m/2015/12/liberty-ship-failure.jpg?w=640
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e. Continuum damage mechanics
f. Failure mechanics
2. Structural mechanical analysis
a. Vacuum chamber
i. Loads on achamber
ii. Equilibrium equations
iii. Stress on tube
iv. Instability (buckling)
b. Vacuum system as mechanical system
i. Support—unbalanced force
ii. Stability (column buckling)
3. Selection criteria of materials
a. Figures of merit of materials
b. Some material properties
c. Some comparisons based on FoM

4. Conclusion

CE/RW
\ Vacuum, Surfaces & Coatings Group

~7 )
Technology Department C. Garion, CAS Vacuum, Lund, 7t June 2017




Loads on a Vacuum Chamber

0. Gravity: specific force: f, = pg

1. Vacuum/pressure n "
At the interface dF = g ndS = —pndS
gn=-pn
Rk #1: if p is uniform: ¢ pndS =0 -
>[5, pndS = — f[; pndS = —p¥; So.n; Sop P
Rk #2 : For a simple tube (radius R, thickness t): < ~ oz

PR -

Hoop stress: ggg = - ,k\ T/Zv

R |
Longitudinal stress (for a close tube): o0,, = Z;—t 1 P 1 o
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Loads on a Vacuum Chamber

2. Electro magnetic forces

Foucault’s currents are governed by Maxwell's equation:
B: magnetic field

rot E=-0B/ot E: electric field

j: current density

j=Elp

p: electrical resistivity

In a long structure, subjected to the magnetic field B:

B(X,y,t) T ,
— Maxwell’'s equation

I ) E,(x,y!) ~B’
| 8oy 4D

Ohm’s law | T f\/:j AB

) j,=E,/p

\ / ) (1~ BB
I i, Laplace’s law !
CE/RW
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Orders of magnitude for cryogenic applications (beam screen)

For a given magnetic configuration, force intensity ~ t/p

For a (colaminated) copper/stainless steel beam screen at cryogenic temperature:
(t/p)gt st | (t/p)cy ~ (L/5E-7)/(0.1/1E-9) ~ 0.02

—> Lorentz’ force are driven by copper

In a copper tube, 0.1 mm thick, radius of 25 mm, subjected to a magnetic
field of 10 T with a decay of 100 T/s: ?

50 0 50
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Mechanical Problem Formulation:

S

Equilibrium equations in static conditions: N
33
~a

diva+f,=0InQ

'

on = F on s

Kinematic:

boundary conditions: u = U;mpeseqa ON Sy

e(w) =3 [M(z) + MT(E)] inQ

Constitutive model:

« Constitutive law: o

|
T

cgwith e =g —gth — P — .,

» Plasticity or other

- Mechanical solution: u , o
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Design Criteria

- Material criterion:
e Maximum stress,
« Elastic regime,
o fatigue, ...

- Structural criterion:
e Maximum deformation,
o Stability

\With imperfections

, A

Tube under external pressure
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Structural Stability

|. For an infinite elastic tube subjected to external pressure:

Safety factor of 3 is
usually applied.

E £\3 D
P.. = — » Design rule for stainless steel;| t > —
T4 (1-v2) (R) J

ll. For beam subjected to axial force:

2
T
Euler’s critical load: | F¢r = (L_> EIl

Equilibrium equation: M = —Fy Boundary conditions
.

Bending equation: M = Ely"

I: Area moment of inertia W L, = V2L

~nd3t/8 for a tube

wh?3/12 for a rectangular cross section a L B L. = 0.5-L
- Differential equation: EIy" + Fy = 0 \ L,=2-1
Solution depends on boundary conditions. L
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Mechanical System - Supports

Kinematic (longitudinally):

1 fixed support / N

» Only 1 longitudinally-fixed support has to be used.

Sliding supports

Static: Beam pipe simply supported at its extremities

<«———Distributed forces (tube weight, bake out jacket): g (N/mm)

Uil

: 5qL*
mm)> Deflection: §, = 3861“31

)

< >

Beam pipe deflection can be minimized by supporting
at Gaussian points:

Deflection: 5—5"
eriection. —50
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Mechanical System - Supports

Static : Pressure thrust force

E—>supports =D Z Soiﬂi P=0.1 MPa
[

A Be careful to the moment and support anchoring
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Mechanical System — Global stability

Global stability: the bellows and adjacent lines are unstable

This phenomenon can occur for a line under internal pressure (not necessary with a bellows).

Deformed tube with internal The resultant of the pressure forces tend to increase the initial
pressure defect - instability

CE’RW
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Mechanical System — Global stability

—pSy”dx
B TR — @

R k Deformed tube with internal pressure

I

Equilibrium equation (for a tube slice): M — f = 0 - Differential equation: EIy™ + pSy" = 0

Bending equation: M = Ely" Solutions depends on boundary conditions
TN REVY =L

Buckling pressure can read, in a general TSR i 3 -
formulation (similar to Euler’s formula): : \

Bending
/ stiffness
p T[ZCb
cr L%an _)

/ \Radius

Reduced length (depends on
boundary conditions)

Mode |1

v

cﬁiy
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Plan

1. Material modelling

a. Basic notions of material behaviours and strength
b Stress/strain in continuum mechanics
C. Linear elasticity
d Plasticity
i Yield surface

ii. Hardening
e. Continuum damage mechanics
f. Failure mechanics

2. Structural mechanical analysis

a. Vacuum chamber
i Loads on a chamber
ii. Equilibrium equations
iii. Stresson tube
iv. Instability (buckling)

b.  Vacuum system as mechanical system
i Support — unbalanced force
ii.  Stability (column buckling)

3. Selection criteria of materials

a. Figures of merit of materials
b. Some material properties
c. Some comparisons based on FoM

4. Conclusion

CE/RW
\ Vacuum, Surfaces & Coatings Group

> Technology Department

C. Garion, CAS Vacuum, Lund, 7t June 2017



A few Selection Criteria

Figures of merit:

Several figures of merit, characterizing the material, can be used depending on
the final application.

« Mechanical Stability for transparent vacuum chamber: Xogl/g

* Mechanical Stability for vacuum chamber subjected to pE1/3
fast magnetic field variation:

For beam-material interaction induced heating:

« Temperature rise in transient regime: Xo.p-C. Ty
« Thermal fatigue: Xo-p-C.0y

E.a
e Temperature rise in steady state: Xo- )\.Tf
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Some Material Properties

Density g-cm~ 1.85

Heat capacity JK kg™ 1830 870 560 500 385 435
Thermal I

S W-K "'m 200 217 16.7 26 400 11.4
Coefficient of -6 .1

e T 10 K 12 22 8.9 16 17 13
Radiation length cm 35 9 3.7 1.8 1.47 1.7
Melting temperature K 1560 930 1820 1650 1360 1530
Yield strength MPa 345 275 830 300 200 1100
Young modulus GPa 230 73 115 195 115 208
Electrical resistivity ~ 107°-Q-m 36 28 1700 750 17 1250

Indicative values at room temperature
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Some Material Properties

Some properties depend strongly on temperature or grade or delivery state
(annealed, hard,...).

Just two examples:

| R [ | [ ] i
® REF. 3-855
300 TR e 10— 4 REF. 3-272 e
- — 0 REF. 3-151 e
250 \ —6082 76| | S e REF. 8-1530 ‘.
—5083 0 € © REF. 8-1450 3
= 5754 O )_" - O REF. 8-400 of0 —
S 200 = ‘
= > > »» » e —
n
o 150 I 04— v v vv voveg —
-E ; | — v vw —
= o — 100 —
o 100 ~ ol R
P Al o —
\\ S 3002 aa0*% -
50 < 0.04[ o o : RRR 7
= B s REF. 9-274 |
0 | 1000 o« & e REF.10-214
‘ ' ' © / v REF.11-49 _
0 100 200 300 400 & 0.0 "/ v REF.12-39
Temperature [°C] —3000 — > REF.12-19 —
P 0004 | | | | 1! | 111 4d 1
Yield strength of aluminium alloys as a function of temperature 1 2 4 10 20 40 100 200

TEMPERATURE, K

Properties of copper and copper alloys at cryogenic temperatures,
Simon et al.
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Conclusion

Most of the time, the mechanical design of a vacuum system is not really
complex.

The choice and the knowledge the materials are important to get a robust and
reliable mechanical system at the right price.
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