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Prologue

Intrabeam Scattering (IBS) is a multiple Coulomb scattering of charged particle beams
(alternatively IBS is a diffusion process in all 3 transverse & longitudinal beam dimensions)

IBS in charged particle beams causes small changes of the colliding particles momenta by addition of
multiple random small-angle scattering events leading to :
1. Arelaxation to a thermal (energy) equilibrium via reallocation of the whole beam phase volume
between the 3 transverse and longitudinal beam phase volumes (emittances).
2. A continuous diffusion growth of the global beam phase volume without equilibrium, and
reduction of the beam lifetime when the particles hit the aperture.
Touschek effect is the particle /osses due to single collision events at large scattering angles for which
only the energy transfer from transverse to longitudinal planes is examined.
IBS simulation consists to compute the particle momentum variation by coulomb scattering with the
other particles of the beam and get the growth rates for the 3 degrees of freedom.
IBS theory was later extended to include :
 Amplitude & dispersion derivatives and lattice parameter variations around the /lattice
* Horizontal-vertical betatron linear coupling.
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Prologue

IBS in week focusing or smooth ring lattices can be related with scattering of gas molecules in a
closed box where the walls mimics the quadrupole focusing forces and the RF voltage keep the
particles together. The scattering of the molecules leads to the Maxwell-Boltzmann distribution of
the 3 velocity components (vy, vy, Us) in which m is the molecule mass, T the temperature, k the
Boltzmann's constant (f dv is normalized to 1) :

1
(2mkT /m)372 €

—m(vy?+vy%+vs%)/(2KT)

f(va Dy, vs) —

The difference between /BS and gaz molecule scattering in a box is due to the ring orbit curvature :

O

O

o O

Curvature yields a dispersion so that a sudden change of energy will change the betatron amplitudes
and initiate a synchro-betatron oscillation coupling.

Curvature also leads to the negative mass instability i.e. if a particle accelerates above transition it
becomes slower and behaves as a particle with negative mass and thus an equilibrium of particles

" , . s 2 2__.,2__1__dp/p af/f — 1 1 _
above transition energy can’t exist (transition energy yemc© is got once y“=y; ~ay dR/R or aoiv 7 2—0).

Above transition the IBS effect is to increase the three bunch dimensions.
Below transition an equilibrium particle distribution can exists (week focusing/smooth lattices).
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The Intrabeam scattering effect

Small angle multiple Coulomb scattering effect
*  Redistribution of beam momenta

*  Beam diffusion with impact on the beam quality (Brightness,
luminosity, etc)

Different approaches for the probability of scattering
Classical Rutherford cross section
Quantum approach
Relativistic “Golden Rule” for the 2-body scattering process

Several theoretical models and their approximations developed

over the years OO Q

. o . . o &

Classical models of Piwinski (P) and Bjorken-Mtingwa (BM) ?"\‘ \)‘C
O (o)
High energy approximations Bane, CIMP, etc > "&9\ .\\-\QQ
: : : O Q
Integrals with analytic solutions ({)\ QGQ%
: 4
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Lagrangian and Hamiltonian (briefly)

O We restrict to systems of N particles with 3N degrees of freedom described via Cartesian
coordinatesr = (ry{ - 1ry), r; = (x,y,z);,andv =r = (i - Ty), 17 = (X,9,2);

0 Assume the system exists in a conservative force field F€¢ (1) with kinetic energy T (r, 1) and
potential V(r) such as F¢(r)=—V,.V(r)= — dV(r)/0r. The Lagrangian is defined as :

L(r,v,t) € T(r,7,t)—V(r) Lagrange’s equations stem from the variational principle:

t2 : :
, d 0L 0L L is then recast in an
o = jtl T E)EE =6 :> dtor or O Hamittonian form H

Hr,pt) €r-p—L(r,1r,t) pEJL/or p:conjugate momentumtor

Ay
Zf(t)T' = %54—=f(t)

. . ) . . . Lt __:__,i,:Z__
From which Hamilton’s equations are derived :  eg LG 7.1) < 5 theory (realistic?)

each Lagrangian define
dr 0H dp_ _OH
At op g~ gy H=0ifH=H(@p)— H=T+V =E = constant energy
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Lagrangian and Hamiltonian (briefly)

If the total force F acting on a system contains a conservative (Hamiltonian) part F¢(r) and
a non-conservative (non-strictly-Hamiltonian) part F"*“(r, r, t) representing friction, inelastic
processes... (F = =V,.V(r) + F"¢). The Lagrangian of the system is then written as :

: . d 0L OJL 7 ~
L(r,7,t) =T(r,7,t)—V(r) |:> el Fn¢  since F'*¢ # —Z—Z =-V,V

From H(r,p,t) =1 -p — L(r,1,t) the (non-Hamiltonian) equations follow :

oH . oL
$=r—@=r dr OH dp aH+FnC
oH oL _ daL dp | dt 0p dt  or

—_—_— = ___=FTLC__

or  or dt o7 dt |
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Liouville equation

I'-space : 6N-dim phase space coordinates, a single point (microstate) represents N
particles labelled by 3N positions 7 = (r; ---ry) and momenta p = (p; --- py) With

r; = (x,y,z); and p; = (px» Py, pz)i

Ensemble : NV copies of a specific microstate (/N particles) each copy described by a
different representative point in I'-space (W # N)

dN (r,p,t) : number of microstates in the volume element dI" = [[I_, dr;dp; about any
coordinate values (7, p) attime t

p(r,p, t) : density of representative microstates (“coarse-graining” density p(r,p,t) is obtained
by disregarding variation of p below small resolution in I'-space)

dN (r,p,t)
N

Formal density definition p(r,p,t)dl = lim
N —o0

AN (r,p,t)
N

06/11/2015 CAS 2015 Intensity Limitations in Particle Beams : M. Martini, Intrabeam Scattering
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Liouville equation

O A microstate of N particles with coordinates (1, p) = (r;, p;);=1...y at time t will be
found at t + &t with new coordinates (1}, p});=1..y= (r;+7; 6t, p; +P; 5t+0(5t?))

O The microstate density p(r, p, t) at time t will become p(r’, p’, t + 6t) at t + 6t

O The phase space volume dI'(t) at t will change into dI"'(t + 6t) att + 6t

o dN({',p’,t+ 6t) =dN(r,p,t) because (r(t), p(t)) follow Hamilton’s equations for
(conservative forces) and thus no trajectories cross (do not escape the 6/ V-1 dim
surface C(t) enclosing the microstates, C (t) being itself a microstate !)

AN (r,p, t + 6t) .

_ ) p(r, p', t+6t) dI'(t +6t) = p(r,p, t) dr(t)
= AN(r,p,t) in C(t+6¢t) in C(t)

The relation between dI'" & dI'(t + 6t) with border C' & C(t + 6t) and dI" & dI'(t), border C & C(t) is

o(ri, pi) ri = (x%,2) } 1N
| = ces

dI'’ = | |f dl’ ] =———= (3N x 3N Jacobian)
jin c’ / in C I(ri, P pi = (Px Py, pZ)i
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Liouville equation

Using (1}, p;) = (r;+7; 6t, p; +p; 6t) and the Hamilton’s equations the determinant |J|
of the Jacobian matrix writes (1%t order)

57‘1 57‘1 apN apN 07‘1
o, + o, ot - o, + or, ot 1+ o, ot - 0
ory o1y dpsy = O0P3n 0PN

+ ot - + ot 0 e 14+ ——6t
aﬁN dpn opy dpn dpn

ar;  0p; ,

= =1+ 0(6t>
1+Zl<ari+api>5t+0(5t) = Ul (6t2) | )
1=
: Liouville’s theorem stems from the conservation
j Z(E 68 = j ar(e) of the phase space volume in I'-space
in C(t+6t) in C(t) P P p
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Liouville equation

Liouville’s theorem
The microstate density p(r, p, t) in '—space behaves like an incompressible fluid

P dp(r,p,t
p(r’, p’, t +6t) = p(r,p, t) <:> p(d:) ):

Equivalently p writes in differential form using the Hamilton’s equations and Poisson bracket :
dp . .
- tr-Vep+p-Vyp=0

do 90 <N/
dp_9p N0 90\
dt Ot 4 arl (’)pl ot

3N
» dp O0H 0dp OH dp
tp, HY = Z <6ri dp; Op; an> |:> dr +{p,H} =0

i=1

— Liouville’s formula
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Liouville equation

Consider the (non-strictly-Hamiltonian) equations of motion for non-conservative forces F™¢ :

N
OH oH dor; 0p; OF/ z oF*c
T.'i:__ }ﬁi:—ﬁﬁ'Finc |:> aTl--l_ pl: : |:> |]|:1+ : ot
' ' i=1

op; dp;  Op; op;
- OF]
j dl(t+6t) =1+ 6tz j dl’ (t)
in C(t+68¢) = dp; in C(t)

Liouville’s theorem “violated” !? : incompressibility condition of p(r, p, t) not satisfied i.e.

p(r', p', t + 6t) = (1 +4tV, - F"C)p(r, p, t) |:> p(r’, p', t + 6t) — p(r,p, t)

=V, F
St
written in differential form this lead to the equivalent results:
dp ap _ dp . -
=V, FT < = +{p, H} =V, F"¢ <> -+ Vep P Vyp =V F€
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Liouville equation

i
pi(t) = (Pxi' Py;» pzi)

1 dN(r,p,t) dr’(t +6t)
microstates

C(t +6t)

Xi
¥ yi |=r; ()
_}<Zi> l

6N-dim I'—space

 —

)

Microstate subset dNV (7, p, t) inside the
6N-dim volume dI'(t) of border C(t) at
t in '—space will occupy a distorted

volume dI'(t+48t) of border C(t+45t) at

t+ot

Liouville (also called collisionless Boltzmann) equation

O Detailed account of the density p(r(t), p(t),t) would

require knowledge of 6N particle trajectories with initial
conditions for all microstates of the sub-ensemble dJV
(~102%3?1) in the (C-space) volume element dTI".
Practically it would be more suitable to place the phase
trajectories of the N particles in the same 6-dim phase
space (u-space) : a single point represents one particle
labelled by 3 positions r = (x,y,z) and 3 momenta p
- (px' Py, pz)-

To reach this objective the 6/ N-dim microstate density
p(ry, 1Ty, P, Py, t) must be reduced a 6—-dim particle
density f; (r,p, t) in (u—space).

This should be done via the BBGKY hierarchy framework
to go from the N-particles (in '—space) to the N-times
1-particle (in u—space) description.
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Liouville equation

0 The full phase space density p(r, p, t) contains too much information than needed to describe the
equilibrium properties of particles (e.g. 1-particle density is enough to compute a gas pressure).

0 The N-particle density p(r{,p1, " Ty, Py, t) in 6N-dim I'-space is to be reduced to a single particle
density f;(r,p, t) in 6-dim u-space : the state of each particle being represented by a single point.

o f,(r,p,t)/N refers to the expectancy of finding any one of the N particles at time t with location
and momentum p, computed from p(ry, p4, - Ty, Py, t) by means of the formulae :

N N
AGOE <Z(5 (r = T)8(P - pi>> = [arp@.p0) ). 8Gr=r)8® ~p)

with for any function O(r,p) : (O) = [ dI' p(r, p,t)O(r, p). Using the first pair of delta

functions to compute one set of integrals we get, assuming a symmetric density when
permuting particles :

N
fl(r:p; t) = Nfl_[dridpip(ertrZJpz .“IrNIpNI t)
=2

-x2)}
= (x1,Xx ){6(x—x1)+6(x X2 | |
fl(x)gfj{lzz;?;fjx,x;i[ oo f1 is normalized to N and p to 1

06/11/2015
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Boltzmann collision equation

p(t) = (px Py P2)

T dN(r,p,t) particles : :
#/ leaving particle

ar(e) entering pa‘rti/cglce
—_——— _;_‘:-\y>=r(t)
6-dim u—space

e

Particle subset dN (7, p, t) inside u—space
at t + ot due to collisions in the time t

06/11/2015
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Liouville formula needs then to be adapted to Boltzmann
collision equation when considering particle interactions

O As a result of collisions during the time interval §t particles
that were inside the volume dI'= drdp in the 6-dim u
— space may be removed from it and particles outside dI’
may end up inside it.

O The net gain or loss of particles as a result of collisions during
Ot inside dI" is denoted :

6f1(ry,p1,t)
ot

drdpdt

coll
where (§f;/8t).on1 means the rate of change of f;. Hence the
Liouville equation turns into the collision Boltzmann equation

dp : 0f1 0
E+T-Vr,0+p'Vpp= Y EVp'FnC=—-FnC
coll

ot /\ or

[ non conservative force field
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Boltzmann collision equation

Heuristic assumptions are made to « derive » the Boltzmann collision equation :

O f; does not vary visibly over the distance of interparticle force range and over
the time scale of the interaction.

O Disregard external force effects on the collision cross-section size.
0 Consider only binary collisions.

0 “Molecular chaos” assumption : the interacting particle momenta (velocities),
before collision, are assumed to be uncorrelated, i.e.

* the joint probability of having, at position r and time t, particles 1 & 2 of momenta
p, and p, is equal to f; (r, p1,t) f1 (1, p,, t) (supposing that collisions are local in
space so that the 2 particles sit at the same point).

0 Generally the joint probability density would be equal to f, (7, p, t) f1 (r, P, ) [1+K, (1, p1, P2, t) ]
where K, (1, p, p,, t) is a correlation function.
O To by-pass the molecular chaos approximation the alternative is to work with the equations of the

BBGKY hierarchy (Bogoliubov, Born, Green, Kirkwood, Yvon).
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Boltzmann collision equation

Let’s start with an Hamiltonian H (7, p) with no interacting collision potential between particle
pairs (e.g. Coulomb scattering potential). This Hamiltonian will just contain :

O Particle kinetic energy (for non relativistic charged particles)

O External potential ®(r) (e.g. electromagnetic field for charged particle beam)

N From Liouville’s formula in terms of Poisson bracket and
H(r,p) = z [;‘ + cb(rl)] replacing the 6N-dim density p in ['-space by the 6-dim
i1 density f;in u—-space we get :
(H f} = 0H 0f; . 0H 0f; =5CD 0f1 _P1 df1
T 9r,0p, Opyor, Or,0p; mor,
1 adfy, 0® df; padf; collisionless
f + U H} = :> 6_]; B or, a;l +* m 01{1 =0 Boltzmann equation

The external force F = ma (e.g. in a plasma) includes the Lorentz force p = e (E + 7 X B)
due to externally applied fields.
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Boltzmann collision equation

Collision terms :

The interaction result is characterized by the net rate at which collisions increase or decrease the particle

number entering the 6-dim phase-space slice dradp in time 6t (named 6R) defined as : 6 R=0R,—O6R_
where §R . are the particle number injected/ejected in drdp by collisions in §t

O For R_ : particles are shared in 2 groups, the 1t of momenta in b Ip, — py|dt

the interval dp about p; and the 2" of all other momenta

]

denoted p5,, the particles ejected from drdp are the number of
collisions that the p¢’s have with all other p,’s in §t. To compute
O R_ all collisions between pairs of particles that eject one of
them out of the interval dp about p4 are considered, i.e.

*  One particle is in drdp near (r4, p1) the other in dr,0p, near

(7'2, pZ)
 The py’sin dr, suffer a collision with the p4’s in dr in time 6t.

A

B
-":f_. —E—-__r@."
Sa Y\ :

do = bdbdg

b

3-dim volume element
d¢bdb|p, — p1|

O For &R, : consider all pair-particle collisions that send one
particle into the momentum interval dp about p4 in time 6t
which is the inverse of the original collision (p1,p3) 2 (P1,P2)
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Boltzmann collision equation

The number of particles injected/ejected into drdp by collisions in time &t are :
OR_ = j fir, P, Of1(r,py, t) drdpdp, SR, = j [, pL O, py,t) dr'dpidp;
(rz2, p2) (r3.r3)

All p, particles shown (see fig. above) in the cylinder of height |p, — p;|dt and base area bdbd ¢
suffer a collision with the p; particle in time 8t —, dr = |p, — p1|6tbdbdg (idem for p1, p3).
Also since d3rd3p = d3r'd3p’ @

) OR_= < j fidp: Ip, — pllbdbdqb) d*rd’p,6t R, = ( j fidp: |p, — pllbdbdqﬁ) d*rd3p, 6t

— OR = j[f1 (', p1, A0, pyt) — fi(r, 1, O f1(r, P2, O]|P2 — P1ldrdp,bdbd

From Liouville equation the net number of particles that enter the 6-dim phase element drdp keeping
on a particle trajectory during 6t is zero. Likewise the collisionless Boltzmann equation writes :
d0fy 09 d0fy pof

% Tran man|

6~RLiouville - drdp ot [
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Boltzmann collision equation

Hence the above term 6R can be cast into the form :

OR
drdp, 6t

6f1(r,py1,
j[fl(r p1, Of1(r,p2,t) — fi(r, 1, Of1(r, p2, )Pz — P1ldp,bdbdd = [ fl(gpl : ]

coll

0 The quantity bd¢db = do having dimensions of area can be written as do = (da/dQ)dQ in which
|do /dQ| is the differential cross-section (see below).
O Replacing |p, — p1|/m by the velocity |v, — v4| (non relativistic particles) the collision term writes:

(5f1> jdvzjdﬂ —

Putting (6f,/dt)op in the collisionless Boltzmann equation yields the Boltzmann collision equation :

0 9% 9 p fd fdﬂd
3t 9r,0p, mar1 fi= | dvy

Particle interactions modify the Liouvillian flow
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Boltzmann collision equation

Kinematics of collisions :
O A cylindrical polar coordinates is taken to do the above integral : the scattering angle 6 refers to the
x-axis parallel to p, — p, (before x;), the perpendicular plane is parametrized by the y-axis parallel

to the impact parameter b (unit vector) and by the angle ¢, 7;,, is the distance of closest approach.

O Non-relativistic collision of 2 particles of mass m
and momenta p; , = mv, , seen from a frame in
which one particle is at rest at x = 0.

O The out-going momenta p , are given from the
conditions :

, , p=(p2-p1)/2
1. Conserved momentum: p; + p1 = P2 + P1 —o——
2. Conserved energy : (m, e)
PL1% + Pl = Ipf* + Iy | ,
P2 — P1 = P2 — p1|Q(6, $)
|p5 — p1| = |p, — p1l (constant modulus)

where Q(6, ¢) is a solid angle unit vector
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Boltzmann collision equation

o Differential cross-section : |do/dQ| = |db/d6| [m?]

« This is the number of particles scattered per unit time, unit incident flux and oriented solid angle Q.(8, 0))

(the absolute value |-:- | comes because 6 usually decreases when b increases)
* Geometrically the next figures show a scattering process with dQQ = sin 8 d8d¢ and do = b dbd¢ where

6 depends on the interparticle force law, the relative momentum |p, — p1| and impact parameter b

: do me? ? 1 dé
O Rutherford scattering: |—| = < ) M
dQ 4reg|p, — p1l?) sin*(0/2) dQ) = sin 6 dd¢ fit ¢
* Small 8 yield large b (01;jn, = 0 = bpygyy = ©) " do = bdbdg e
b m N

Particles 4
3
bT ‘.i_‘ rmin (particle 4)
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Equilibrium particle density
0 Equilibrium : At equilibrium the 1-particle density f; (r, p) has no explicit time dependence :
0f1/0t =0 — {Hy, f1} = 0— fi = fi(Hy) with H,(r,p) = p*/2m + (1)
0 Maxwell-Boltzmann distribution: Similarly at equilibrium the collision integral vanishes :

fir,p)filr,py) = fi(r,pD)f1(r, p3) Infi(r,py) +Infi(r,p;) =Infi(r,p1) + Inf;(r,p3)

where the I.h.s. refers to momenta before collision the r.h.s. to the those after collision.
The equality is satisfied by any additive invariant quantities during the collision, e.g.

Infi(r,p) = — Blp?/2m + ®(@)] T—> f,(r,p) = ae BAlp*/2m+e®)]
a and (8 are constants, from which the Maxwell-Boltzmann velocity density (for ®(r) = 0) follows :

For a gaz of N particles in a box volume V for p = mw, u an overall drift, k the Boltzmann constant
(the integral of f; over the 3-dim box volume I/ is equal to N since f; dp must be normalized to N) :

N (Bm)\*? —1/KkT N 1
fiv) == (_m) e~ Bm@v-w?/2 <}'8_:/> fiv) =— o —mW—u)?/(2KT)
V

21 V (2rkT /m)3/2
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INTRABEAM SCATTERING

 Part 2 : Intrabeam scattering
» Core IBS model
> IBS analytical model
» Original Piwinski model
» Bjorken-Mtingwa model

O Part 3 : Applications

CAS 2015 Intensity Limitations in Particle Beams : M. Martini,
Intrabeam Scattering
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The Intrabeam scattering effect

* Theoretical models calculate the IBS growth rates:

iocL f (optics, 7, €

Ti Ve an gyn gsn

xn? gyn 1 Esn

* Complicated integrals averaged around the rings
* Depend on optics and beam properties

They have been well benchmarked for hadron machines

For lepton machines the work is in progress
Need to benchmark the IBS effect in the presence of SR and QE
Studies and publications from: ATF(2001), CesrTA, SLS, SPEAR3

Main drawbacks:
= Gaussian beams assumed
= Betatron coupling not trivial to be included
= |Impact on damping process (especially in strong IBS regimes)?

Tracking codes SIRE (A. Vivoli) and CMAD-IBStrack (M. Pivi, T. Demma)
Based on the classical Rutherford cross section

CAS 2015 Intensity Limitations in Particle Beams : M. Martini,

06/11/2015
11/ Intrabeam Scattering
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Core IBS model Continuation... from Part 1

Transverse & longitudinal beam growth rate estimate : A strategy in 7 steps

O Following Piwinski’s calculations of beam size growth/decrease rates due to IBS effect are sketched.
O The presented kinematics & dynamics of charge particle pair collisions refer to Piwinski 1974 & 1986.

1.

2.

3.

Transform the momenta of the colliding particles from the LAB to the centre of mass (CM) frame
Calculate the changes in momenta due to an elastic collision.

Transform of the momenta back to the LAB frame.

Relate the changes in momenta to changes in transverse & longitudinal emittances.

Average over the scattering angle distribution using the classical Rutherford cross-section.
Average over the particle momentum & position distributions in a bunch.

The averaged emittances allow to work out the growth or decrease rates of the bunch sizes.
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Strategy step 1-3:
momenta kinematics

Core IBS model

In line with Piwinski the relative longitudinal and transverse momentum changes after a collision between
two particles (labelled 1, 2) can be cast (after some hard-working task) into the form :

Oop1, = p’1,2 — P12 =

=

defining

Px1 — Px2 ’

p 1
P1 — D2
Yé =
p

(:pz:l_pZZ:Z,—Z,
D 2

1
2aEa1+a2=\/92+§'2

|
=
N~

L

[y
p

=2

op,
p

frame (8, X, Z)-axes (P1,2:|p1,2

2 X =

siny + O(cosyp — 1)

%z%zz[msingﬁsimﬁ+€(cos$—1)]
p p 2

i o ) o

& ,1+4TKZCOS¢_£SIH¢

- : ) )
= |¢ 1+Wcos¢—%81n¢

siny + 6(cosp — 1)

8P, » is the back momenta Lorentz transform from momenta in ad-hoc CM frame (i, U, W)-axes to the LAB
, P is the mean particle momentum, § =unit vector, y the Lorentz factor, 1/7 & cﬁ

the axial & azimuthal collision angles in CM, 2a = a4+a, is the angle between particle momenta in LAB)

and p; ,=p; ,(cos @y ,,0, £sin a ,) via (U, ¥, w)-coordinates in CM frame (cf. next Fig.)
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p1 , are the rotated momenta after collision with angles i & ¢ (expressed in LAB frame).
P12 are the momenta before collision written as p; ;= ps1 (1, x1 5, 21 5 ) via (8, X, Z)-coordinates in LAB frame
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Core IBS model

z A PrtPe _ o | | e _, "‘ v
Pl - P+ + P2l \
Ip1 X P2l P = e
B \ /
. w < p !
= % - t .
dé ‘\_x"‘,
bA % . ¢ o
5 oty pl =
—1 p S W
24 ‘\‘ Py
o~ = ~~ X ~ ,"",r‘: o — o B ‘l“
S LAB cM~ P1+P:=Pi1+P1=0 }

Particle momenta before collision (p4,p,) and after
(p}, P5) in the CM frame (U, ¥, w) (U being the Lorentz-
transformed longitudinal axis from LAB to CM frame)

O Particle momenta p, , before collision in LAB frames (S, X, Z)

O Relation between initial p; , and final p/ , is quite complex
O The overlaid (i, v, W) frame is aligned on CM particle motion

The change of particle momentum after collision leads to a parallel change of the particle invariants
(i.e. longitudinal & transverse emittances) which result supposing that transverse particle positions

are not altered during the interaction time (assumed to be short enough). Strategy step 1-3:
momenta kinematics
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Strategy step 4: Core IBS model

emittance changes

O The radial particle movement from the closed orbit is the sum of betatron & momentum deviation.
O The invariants are the beam emittances ¢, , & H (for bunched beams) in which @, ,, By » , Yy, are the
Twiss parameters, with B,y ,—a% ,=1, 2a, ,=—fy ,, L is the synchrotron frequency :

x = xg + DyAp/p Z=12Zg Ex = Vxxé + Zaxxﬁxé T ,Bxxéz
X' = px/p =g~ DxBp/p 7' =p2/P = 7 H = (8p/p)? + 0~ [&(0p/p)]

The change d¢, , of &, , works out as (swap x with z for d¢,) :
ey = Ve (2x56x5 + 6x5) + 20, (x56x5 + x56x5 + Sx56x5) + Br(2x56xp + x5

Assuming there is no vertical dispersion i.e. D,=D,=0 and that x; , & z; , stay constant during the short
collision time so that only x; , & z; , vary with the momentum change. Since §(Ap/p)=3p/p as the
mean momentum p=|p| is constant without acceleration, the variations 0xg, Sxé, 6zé can be written in
term of betatron amplitudes as follows :

(e.g. 6x=8xp+D,Ap/p=06x5+D,6(Ap/p)=8xp+D,bp/p = 0 = 6x3=—D,bp/p)
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Strategy step 5: Core IBS model

scattering angle averages

6xp = —Dybp/p 8xp = 6px/P — Dxbp/p 623 = 6p,/p

The changes 6¢, , & 6H of €, , & H after collision can be rewritten (in which D,.=a,D,+f,D, and by
disregarding the time variation of Q during the collision) as :

Se, 2 _ .6p D2+ D? <8p)2 a, \o6p, (6p,\° 2D,5pdp,
= —— |vxxgDyx + Dy + x43D + +2( x5 +—x Fl=—1 =
[axigD + s + 5D p PUBF)p T\ p B P P

B B p B
The beam phase space volume change

2 2
0 o) o) Ap 6 o) ) )
Cn (zé 0% ) L ( pz) sy =222% < p) can be found by averaging the particle
bz P P p b p invariant variation over the collisions.

Z
B, F

O For a scattering process Piwinski introduced the derivative d(ex,z)/df i.e. the mean emittance change
of a 1°t particle by averaging with all betatron angles (or momentum spread) of a 2"? particle.

O Further averages over positions, betatron angles (or momentum deviations) of the 1°' particle must
be done to get the total mean emittance change of all particles : i.e. integrate over the phase space
with the probability density law P (P) in the LAB & CM frames. In formula this writes as follows :
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Strategy step 5:

scattering angle averages COI'e IBS mOdel

d (&) o
<d_f ,Bx> ch,BPf dy ) dql)dQ ﬁx Zsiny dT

min

The outer (---) denotes an average round the optics parameters, da/dQ is the Rutherford differential
cross-section for the scattering into a solid angle element dQ.(¢, ) in the CM frame. The proper time
intervals in CM & LAB frames are dt & dt with dt=ydt, 2¢f is the relative velocity of two colliding

particles with v;+v,=0 in CM frame. P is defined as a probability density product using 12 variables
and can be expresses in LAB into the form (defining for short n, ,=Ap; 5 /p12) :

P = Pns(nlrsl) Pns(nzvgz) Pxﬁx'ﬁ (xﬂllxll?l)Pxﬁxk (xﬁz’x,éz)PZ[;Zé (Zﬁﬂzél)Pszé (Z,Bz’zll?z)

Among the 12 P variables 3 are dependent since during the short collision time the 2 particle positions
are assumed not to change i.e.:

$S1=52=S X1=Xg, +Dxm=x,=xp, +Dyn, 2z1=2Zp =7Z,=2p,
The distribution P will be examined in more details later.
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Strategy step 5:
scattering angle averages COI'e IBS mOdel

The scattering angle distribution is now considered. The Rutherford differential cross-section for a non-
relativistic Coulomb collision of 2 ions of charge Z and atomic mass A ina CM frame (i.e. f < 1) is:

da@p) [ Amz%* \* 1 (Zrome?\" 1 (72 ) 1
dQ  \dnelp, —P112) sin*(y/2) \ 2T sint(/2) \ A 4B2) sin*(y/2)
with T=|p, — P;|?/2Am=2AmpB?c? is the ion kinetic energy, 2Amfc is the relative momentum

between the hitting ions for which p; + p,=0 in CM, r,=e?/4msymc? is the classical proton radius.

To evaluate 3 the above expression |p, — P, |=2mpc in the CM frame must be Lorentz transformed
back to the LAB frame to link Sc with Sc. All calculations done it is found in first approximation :

_ 1 —1p,)?
p~t! [yz PP (o )+ (o zs>2] N Gy

N =

in which fc is the average particle velocity in the LAB frame. The two integrals over 1 & ¢ needed to

evaluate part of the average time-derivative of (¢)/B, are computed replacing 6p/p & 6p, ,/p by their
expressions given in terms of parameters a, &, 8, {, ¢, Y yielding after rather
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calculations :
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Strategy step 5: Core IBS model

scattering angle averages

; j” 07 n 5% da S, 7
T = ——Ssin
Y S Jo A By
Z*mrg (T _  siny 2xp . (DyyE
= =" = 1 - D 9 2 - 8
D2 + D’ 2D,
+—= > —y282 + 92 —
ﬂx X
D2 +D,” 1 3D,
+ sin? V2(02% + (% — 282) + = (§2 + ¢% — 20%) + — &6
"’( v 2 25,
The smallest angle 1,,,;,, is defined by the maximum impact parameter b, fixed by the beam height :
- Wity . Z* 1 To calculate anaIyticaIIy these 2 integrals it is assumed that
2 A 282D, 0 4A? B*DE sy ) Z e > (ie. Pmin<<1) then :
T 1-— Do 2 4 4A%3*b
J sml/J(4 C0$1/J) 4% = —8In sinlpmm z81n[_ ]=4ln[_2 ]=4ln[ .[i max]
Ymin SIn (l/)/Z) 2 l/)min l/)min A TO

06/11/2015 CAS 2015 Intensity Limitations in Particle Beams : M. Martini, Intrabeam Scattering 32



Stf'ategy step 5: COI'e IBS m()del

scattering angle averages

i in® i 7 = 4423452
j .sin _1/1 dy = —4(1 + cos Ypin) — 161n sml/)m1 ] ~ 16ln[_ ] = 81n[ P bmax ]
1._bmin SN (l/J/Z) 2

min

After reorganizing the integrals it follows :
Clog is the Coulomb logarithm in LAB frame (cf Bjorken Mtingwa)

m 2T dG 8¢, but C_'log is in CM. Its logarithmic dependence makes it slowly
L, D = f d l/) d¢ d_,B_ sin 1/3 change over a big range of the elements involved in its definition.
_mln 0 X
Z* 1y 4x3 5 3
+ V2(62+92) + =X yeatlin 21n _ _ B2b_
'39% .Bx mln log Clo = |n ero

Similarly the integrals I, 5 ;; and I 5 ;; for the vertical and longitudinal momenta can be worked
out assuming no vertical dispersion and then put together, yielding the transverse and longitudinal
scattering integrals :
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Strategy step 5:
scattering angle averages

~

g

~~ RN
S ol Bl
< - '
[l
I 2
S

N

.

X

\

4&( D !/ _ !
Vx xg + ax(nyf ‘9)) + 4xﬁ

(

Core IBS model

5\

_da | b, Z* 142

7/

4/
——p€+02 + ¢?

Bz

Dy§
B
da,zg

Yp

— — - l
da| B, | A24p*

{—4zp0 + &% + 7

D, +D 2D
—9>+€2+(2+ = y2(&2+0%) + —— &6

A 4B 4Er2nax]
X
T2

'

B

J

The computation of the mean change of the invariants ¢, , & H of all particles due to the multiple
particle collisions requires to average the above three integrals of the two colliding particles over
the 12 variables, reduced to 9 as (s; », ¥ 2, Z1 ») are dependent, via the probability densities P (P).

06/11/2015

CAS 2015 Intensity Limitations in Particle Beams : M. Martini, Intrabeam Scattering

34



Strategy step 6: Core IBS model

particle beam averages

Changing the 9 variables of the joint probability law P into the new ones 1, s, ¢, Xg, x[’g 0,z,z,(:

P(n1,12, 51, %p,, Xg., X, Z1, 21, z3) — P(n,s,¢,xp, xg,0,2,2’, {)

by means of the substitutions we get, via the Jacobian of the transformation the volume element drt
(the «variables» s,, xp , z, disappear as they depend upon s;, x3 , z; via their tight constraints) :

Xp,, =xg F Dx¥§/2 xp , =x5 (0 —Dyy§)/2 z1,=2"%£3/2 11, =1n%VyE/2

dt = dsdndédxpdxgdfdzdz'd{ = |J|dsdn dn,dxg, dxg dxg dz dz;,dz; with |]| =

Hence the formal expression for the mean change of (&) Is 39

the invariants &, , & H can be cast into the form where < “u > j 2cBP| Iygp |dT

(g,)/ By stands for and (H)/y?: dt By ey

P being now symmetrical with respect to &, 6, it follows that the integrals cancel for the linear terms in

¢, 0, ¢ of the integrand.
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Strategy step 6: Core IBS model

particle beam averages
/ (H)
7

d | (&) _Z“ncroz><
dt| B, | 4% 2
\(32)/
Bz
( 02+(2_2€2 )
s [A24B*bhex]) . D2+D, , . . 6D, _ |df
jpan4 2 |\ +{T—20°+ v ({°+6 —2€)+—V€9>§
0 ﬁx X
L E% + 0% —2(% J

O This formula for the mean change of the invariants ¢, , & H makes no assumption about the density
distribution P.

O To derive IBS analytical models (not in closed form!) it is usually assumed that betatron amplitudes,
angles, momentum deviations and synchrotron coordinates are Gaussian distributed for bunched
beams, the synchrotron coordinate being uniformly distributed for unbunched beam:s.
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Strategy step 6:
particle beam averages

IBS analytical model

Let’s define Gaussian distributions P gl & Pl (with zg=z & zz=z"and assuming D,=D,=0) for the
betatron amplitudes & angles and B, for momentum and bunch length deviations (bunched beams) :

V1+ agzc ’ / L+ a%' Xé ZXﬁXéax xéz
Pxﬁng = ; 242 [_Q(xBLz’xﬂLz)] Q(xﬁ’xﬁ) - 2 > T T

270 o o ,
XB12 xﬁ’1,2 B O-xﬁo-x;g 1+ 40'333 O-x;g

o,., 0.1, 0, are rms values of the related variables, o. the
xp’ “xp? UM S

rms bunch length, As = s —s, the synchrotron coordinate,

1 l nia (s—sﬂ
ex —
i.e. the position relative to the synchronous particle.

27-[0-771,2 051,2

Ditto in vertical plane Ppal:

Q=constant is a tilted ellipse with is correlation coefficient p,=a, //1 + aZ. The probability distribution
P must be well-matched to the Courant-Snyder invariant ex=y,xj3 + 2a,xgxg + Byxg* which is the

phase space area divided by m i.e. e, =area/m.
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Strategy step 6:
particle beam averages

IBS analytical model

The emittance describes the phase space area usedby the beam, i.e. for a phase space area covering a
fraction F of a Gaussian beam with rms value Oxg the emittance at F [%] of particles in phase space is :
e.g. the emittance at F=(39,86,95)% are £,=(1, 4, 6)0§B/Bx. Notice that
209?3 In[1 — F] the beam width containing a projected beam fraction F,.,;=95% onto the
o betatron horizontal amplitude axis is Zaxﬁ<\/€axﬁ yielding the “projected

emittance” &, = 4U§B/ﬁx (not the same as above !).

Ex=

Using the related betatron amplitude and angle rms values Oxg and
ng,=0xﬁw/)/x/ﬁx the probability Pxﬁx'ﬁ can be rewritten (also P

2c

Xp —« €/7 tan2p =

P

ZBZE’ n

being unchanged) as :

B

| ==
0 27-[0-’?31 2

2 !/ 12
exp | — (Vxx,[?Lz + ZaxxﬁszﬁLz T 'Bxxﬁl,Z)

2
2O-xﬁ12
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Strategy step b: IBS analytical model
particle beam averages

In the CM frame all derivatives d/ds are reduced by y because of the Lorentz contraction along s (e.g.
P=PJy, 5x;;=axk/y), the transverse sizes & relative momentum spread are unchanged (e.g. Oxp=0xg

0y =0p, bmax=bmax) and the bunch length turns into 7, = yos.

g IR S _
Z s % Particle trajectory | The refative velocity between 2 scattering ions being 25¢ the

- i 3 probability for a collision in ¢ and Y per unit time in the CV
%% deal beam path | 14 e i 2BcP[da/dQ]. Hence the scattering probability per

unit time in a storage ring is, with dt = ydt :

0‘%
° _ P dd
Pgcar = zﬁcﬁﬁ

Accelerator & storage ring moving coordinates
r(s) =ry(s) +dr(s dr(s) =x(s)x+ z(s)z

&)

Integrating in the CM frame the mean invariant changes over the variables s, n,xﬁ,x[’;,zﬁ, x['; (integrals
over £,0,7 & 23~=Py/E2+ 02 +(2 is still to be done).
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Strategy step 6-7: beam
averages & IBS rise times

IBS analytical model

O Now the P’s must be inserted into the mean invariant changes ¢, , & H for further integration.
O For this replace the above 7 probability densities P, p P, _, P? by their expressions

14 14
V4 V4 V4
B12%XB12"  %B12%B12 M1,2

given in terms of the 9 variables s, 7, ¢, x5, x3,0,2,2',{ and use B = By/(§2+ 62 + (%/2, i.e.

Prg .ty (Xg = Dx¥§/2,x5 + (0 = D3y8)/2) P, o1 (25,25 +8/2) By, (0 +¥E/2)

O The integrations over the 6 variables xﬁ,xé,z,z’,n, s can be done with the help of the integral (in
which a and b can be any of the 6 variables xz ... s) :

foo exp[—ay? — 2byldy = \/m/a exp[b?/a]

0 Before the integration all the variables have to be Lorentz transformed to the CM frame, and after
integration they must be transformed back to the LAB frame. Considering all the beam particles, the
“final” result is, after tedious manipulations (3 more integrals over &, 8, { must still be solved!) :
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Strategy step 6-7: beam
averages & IBS rise times

IBS analytical model

2
y2
R e e R L e

\(‘gz)

y A2ﬁ4br2nax 2 2 2N\2

16 Z4r¢ (E5+67+¢

i 6% + % — 2¢7 )

D% + D, 6D d§dgdg

162+ 72 =202 + ———y2({%+0% — 282) + — &0 ¢

\ §2 4+ 6% —2¢° )

Z4 2N
where for a bunched beam: A = SR Es = 0,0

A? 32m2B3yte, € &
To solve the 3 remaining integrals over &, 6,  further approximations would be required !
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S S Original Piwinski model

IBS rise times

In his initial model (1974), besides cancelling Sy, ,, Sy ., D, Piwinski makes use of the smoothed focusing
approximation to derive |IBS formulae for approximate mean lattice parameters. After hard-working
manipulations the IBS growth rates write (for bunched beams, (:--) denotes a mean value) :

(B,) = ) (D) ~ B _R 1 o = (R)isthe mean ring radius, Qx the betatron tune, y; the
* Qx * Q, Q2 Q2 P y2  transition energy, a,, the momentum compaction factor.
t p
1/2 12 _ _ B (S)
Oxpzp = (B z8x.2) Txpzp = (ex,2/Buz) op’ =07+ Dzaxﬁz ap = Zn(R)f R(S)
1 do A o} _ f(abc)—87t><
1 _— 1 \ / Op \
_\ 202 dt 7?f(a; b, c) 1 — 3x?2
Ty n U] B ln — = + —|—C dx
1 1 dog | | [ (1 b c\ D2s? vPa
—_ = 5 > d = — f<—’—’—>+ > f(a,b,C) 2 2 2 2
Ty Oxp A 2 a'a’a Ty p = a? +(1—a)x q=>b*+(1—-b*)x
1 2
\= \ 1_do / \ A (l a S) ) Ny O e [2Abum
z 2 \b'b’b a= = c = fo
207, dt . iz yo,, T hZ2,

C = 0.577 Euler’s constant, f(a, b, c) is integrated numerically.
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Original Piwinski model

Invariants

O

Above transition energy the particle property is often identify by a negative mass comportment.
Association with a gas in a closed box is not valid and the overall oscillation energy can increase.

The beam behaviour can be described via a global invariant which can be cast into a form close to the
sum of the mean invariant change <€x,z> & (H) over the collisions for all particles, i.e. multiplying (H)/y?
by 1 — y2DZ/B2) in the summation yields a non invariant quantity because D, /f, varies.

0 Smoothed focusing approx. for the tune, momentum compaction factor and transition energy yields :

(H) (ylz ﬁx) <;3;> <ﬁz)¢constant —> - (H) (ylz > <’Z€) <'Z>=constant

l< ) <_ _ _> <8x> (€z>] <:—|_‘ ne = l — yl (slip factor)

Vt

O O

O Below transition (n.<0) the sum of the 3 (positive) invariants is limited and hence the 3 oscillation
energies, so the “emittances” are redistributed in all 3 phase planes holding the whole phase space
invariant, the distribution P is stable : equilibrium exist (like gaz molecules in a closed box).

O Above transition (n,>0) the overall oscillation energy can increase as n,>0 : no possible equilibrium.
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Bjorken-Mtingwa model

* Phase space distribution & 6D phase space volume
* Emittances (&,, €,, £;) & Angles - momentum spread

Gaussian 6-dim phase-space distributions for the beam are considered which can be expressed into the form :

N
P(r,p) = ?be_s(r'p) = Jdrdp e3P S(r,p) =S 4 V45O

["is the 6-dim phase-space volume, Ny, the particle number per bunch, r=(x, z,n) & p=(p,, P, ps) the positions
& momenta of the particles within the bunch, Oxgs Oz Os) Oy the rms bunch width, height, length, momentum

spread, €, €,, € the rms transverse & longitudinal emittances (only bunched beam are discussed). The
transverse & longitudinal phase space components write (5 being the mean longitudinal particle position i.e.

that of the synchronous particle):

2 c 2
h) _ Bx 2 ! 12 — Px 2 ! /2 D1 (S _ S)
SES 202 (vxj + 2auxpxp + Brxg’) SV = 2072 (vezs + 2007575 + Pazg’) ST = 202 " 202
B B
02 o2 Ap Ap Ap o xg =x—D,m xp=x"—Din
exzﬁ gzzi €S=0-T]0-S x’:Tx Z’: _Z T’:T&O-T’ =Tp ﬁ B _Dx € ~ ’_D?’C
Bx B p p p p g =z zl Zp = 2 zN

44
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Bjorken-Mtingwa model

* Golden Rule for two-body scattering in the CM frame

Bjorken & Mtingwa approach of IBS theory was via the S-matrix formalism related to quantum electrodynamics.
(QED). Hence they use the Fermi scattering “Golden Rule” to compute physical parameters for interactions
between particles & fields, by evaluating the relevant Feynman diagram with the Feynman rules.

In a 2-body scattering process particles 1 & 2 with 4-momenta pl'zdzefpfz (i.e. energy-momentum 4-vector pfz)
interact each other to give after collision two 4-momenta p{’z‘i:efpiftz (p1+p, - p1+p,) whose interaction rate is :

s
p1 M L d_?zl

dp, dp, dp1 dp; 8*(p1 + p2 — P1 — P2)
. r——=P(r,p))P(r,p,) | M|* ——
ROt =7 ) AP poP M ——
gt
M is the Coulomb scattering amplitude containing the physics of the process (S-matrix). Here r* denotes a

contravariant vector which with the covariant vector 7, make a product r#r, =g, 7#r" invariant thru Lorentz
transform (g11=1, g20=933=9as=—1, gu»,=0) : metric = (4—momentum)*= (energy)*— (3—momentum)?

E,Ey »
—z ~P1P2 T pErip=ct——Tp

E E
rerf=(ct,r)=(ct,x,z,5) pEpH= (;,p) = (;,px, Pz ps) P12 P P2u= p
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Bjorken-Mtingwa model

* Golden Rule for two-body scattering in the CM frame

0 The aim here is to determine the amplitude |M|? for a Coulomb scattering between 2 electrons of mass m
via the exchange of a virtual photon of 4-momentum g, by means of the Feynman rules.

0 To simplify the computations with respect to a “real-life” QED 4-body process e +e~—e~ +e~ (electrons spin
1, massless photon spin 0) spin O for both particles and boson is assumed (toy model).

* The coupling constant g, in QED which specify the interaction strength between electrons and photons is related to
the fine structure constant a as : g,=V4na.

* Aboson propagator f(q) is associated with the wavy line in the Feynman diagram and represents the transfer of
momentum from one e~ to the other e~ via the virtual photon y (see e.g. Griffith’s book for details) :

}

f@=oz i=V-T
u _
e e
!/
Hence M for elastic collisions (momentum & kinetic energy are conserved) writes as : P1 : P1
5] .
4inta , , %" C
M=gof@=—5" Gu=@i—pdu ah=a"qu=—(i—p0)? 2 > 14
K :
eZ 1 82 _ p2 plz _
In S/ units a= =—and in HL Heaviside-Lorentz units (ep=h=c=1) a=— e time €
4meghc 137 41T —
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Bjorken-Mtingwa model

* Golden Rule for two-body scattering in the CM frame

To see the link of M with a collisional process rewrite explicitly qﬁ :

E?+E;?
cz2

/ / ' / ElE, I} ]
q2 = —(pi-p)?= — (p2+p?-2p; - p)= — [ |p?| — |pi?| - 2( Czl — |p1lIp}| cos w)] =2|p?|(1— cos y)=|p?| sin?[1p/2]

because of momentum & energy conservation. Finally the amplitude M takes the form (a=e? /4w in HL units ) :
4ima e? ? do(p1,¥)

M =—— M) 2 cin2 = 1

p1 sin®[y/2] p1 sin®[y/2] d)

| M |%is thus the differential cross section of the two electron collisional process. Before ending dP /dt is rewritten
introducing the 6-dim beam distribution P (7, p) into it, yielding :

dP _ Ny J PPz ) s @0 AP1 P2 6% (1 + 12 — P1 — 2)
dt  2r2 Y1 V2 dQ yi 7; (2m)?

Calculations are far to be finished, moreover they are not easy (cf Bjorken-Mtingwa, 1983). So the final and well
known formulae for the 3 growth-rates are just given below without proof. On the other hand their use is easy.
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Bjorken-Mtingwa model

* Final steps of IBS theory providing quantifiable growth rates

The IBS growth rates t;;* in the 3 directions u = x (horiz), z (vert) and s (long) are for bunched beams :

1 dlng, Npcr§ Clog

(Tr[L,] Tr[(L + AD)~1] = 3 Tr[Ly, (L + AD)~1])

Z* j°° dA
Tu dt )/87'[,83}/38,682050,7 A? 0 \/det[L + Al

in which the bracket (---) denotes an average over the lattice period, with L =L, + L, + L and:

g 1 —y®, 0 g 1 0 0 y2(0 0 0
L=\ =v8x v?Hy/Bx O] L=77| V9 vH: /B O) L=—{0 1 0
X 0 0 0 4 0 -y9, 1 mT\0 0 O
After the bracket expansion the growth rates are simplified _ Dy,ay, + Dy Py, _ DZ,+BE,0%,
via relevant approximations and tedious computations into  9xz = B xz = ;
the form (u = x, 2, s): o o
1 Npcrglog  2° A j‘”d/l (ay A + b )VA A _Y?H, A _Y?H, A _r?
T, ¥Y8mPiyleceyo50, A2\ M)y T (A3 4+ ad? + bA + ¢)3/2 T B © B, oy

The 9 coefficients a, b, ¢, a, by, a, b,, as bs (not reproduced here) depend on the lattice optics parameters.
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Bjorken-Mtingwa model

* Final steps of IBS theory providing quantifiable growth rates

c is the speed of light, 8, y the Lorentz factors & a,,, 5, D, D;, the optics parameters. The longitudinal emittance
&5 is defined by the product ¢, = 050, [m] or by the momentum p as &5 = npasan/?‘lc‘l [eVs] (bunched beam).
0 Cjog is defined in terms of the impact parameter ry;, (the larger of the classical distance of closest approach

r. orthe quantum mechanical diffraction limit from the nuclear radius rrg%) and 1,1« (the smaller of the

mean rms beam size o, = ((By)e,)*/? or A the Debye length). Here Cj,,=20 10 S Cjog S 20).

O The Bjorken-Mtingwa IBS model assumes a 6-dim Gaussian beam density.

Inr Coulomb logarithm (ELENA ring 100keV)
Cr .. = mi max = min[o,, 1p] R [C_ QM]
log = Min 1 Tmax = MIN|[0y, Ap| Tmin = MaX|Mmnins Tmin el
N Tmin o 1‘
12.0? l/
A 7.434 |2E, N, x 107 - (v?> —1E, & 15 | ,
D= p= 1= TR : . ;
Z V6413 (Br)er(By )&y 02 2 (B l ,i-—/ ;
10.5 | : ]
1.44 x 107972 1.973 x 10713 | ]
Trflin = rrgﬁ = M. Zisman, S. Chattopadhyay, 0.0 0.2 0.4 0.6 0.8 1.0
2E) JBE E, J. Bisognano, “ZAP user’s manual”, 1986 sec
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Continuation... from Part 2

IBS Calculations

Horizontal, vertical and

longitudinal equilibrium states
and damping times due to SR
damping

The IBS growth rates in
one turn (or one time step)

] )4 2e,
Ex|—lEx
0 Ty(ez, ey, 0p)
1 2e If =0 Steady State
) ey |- leyo) + K )
T. (fi) N Ty(ex,€y,0p) emittances
1
Op
Op|—opd) +
‘/ _p P TP(‘SSE: Eya JP)
Complicate integrals
averaged around the ring Steady state exists if we are below transition or in the o\o\)‘ 2
presence of SR damping 0‘0‘\ (ﬁg“
dt should be much smaller than the IBS growth times ‘('P’ O\)‘
Good scanning of optics is important in order not to N .QQ
. . . e" \\\
skip large IBS kick points O
o o
QM
.
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IBS & LHC (7 TeV)

LHC and SLHC beam parameter with improved variants

LHC Luminosity with nominal beam intensity SLHC Luminosity
frevMpNpY Case 1 Case 2 Case 3 Case 4
= |AQpp,| | InitialIR IR phase 1 triplet: 3* =0.30 m |Ultimate N, : B* =0.25m >Ultimate N, : f* =0.15m
rp'B triplet reduced emittance reduced emittance reduced emittance

Ny (1011 1.15 1.15 1.70 2.36

gy = €' =Yyerms um 3.75 2.54 2.65 2.60

B* m 0.55 0.30 0.25 0.15

J,T,,V =" um 16.58 10.11 9.40 7.21

g; mm 75.50 75.50 75.50 75.50

Opp/p (1074 1.13 1.13 1.13 1.13

£, rms eVs 0.62 0.62 0.62 0.62

Crossing angle 6 urad 285 337 355 454

AQp, head-on** 1.00 1.09 1.43 1.37

Luminosity (103%) cm=2s71 1.00 2.00 4.65 10.29

** AQpp normalized to the value of the nominal beam
0 1tcase:nominal beam and LHC parameters at top energy give the nominal luminosity of 103*cm™2s™!
0 2" case: new optics will rise the crossing angle to 337 urad and the luminosity to 2 x 103*cm™2%s™1
0 3" case : will raise the head-on beam-beam tune shift to 1.43 and the luminosity to 4.65 x 103*cm™2%s!
O 4t case : with an intensity of 2.36 x 10! protons/bunch a top luminosity of ~103°cm~2s~* can be got
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IBS & LHC (7 TeV)

IBS effects in the SLHC

IBS (Bjorken-Mtingwa model) and synchrotron radiation calculation to

Initial IBS growth times (h): 7; & Ty

53594_ estimate the LHC & SLHC beam emittances evolution during 7 TeV physics
coasts are done for the 4 nominal & reduced emittance beam cases
Case 3 2
O .
O IBS growth rates : 1 _ Npero Clog (HL u V)
3.4 H,
E— TLHy BT Y
B3 LHV B>v*eneyoy Ap/p
| . . . _
O Longitudinal emittance: &, = ﬂPULUAp/p(ﬁC) !
B3 58h 103 h
casej' 10000 = P — F— I _J P — _I._
0 20 40 60 80 100 ool | I '
Aep/ep | Aey/en Aey /ey E | ' \
1t case | Initial IR triplet 16% 9% -0.0001% g 1Rt |
. * — E [
2nd case | 'R Phase Ltriplet (57 =0.30m) | o 21% | -0.001% = | ]
reduced emittance B E _
34 case | UItimate N, (F=0.25m) )| 4, 27% | -0.001% = LHC : aboveftransition ring ||
reduced emittance o 5 Y = 7461'> y,~53.8
N * _ L - t~ .
4t case | SUImate N, (B =015m)) ) 37% | -0.001% 0.1 - . -
reduced emittance 0 5000 10000 15000 20000 25000 m
IBS emittance growth after a 10 hours beam coast SLHC betatron functions for £* = 0.30 m (IP1 and IP5)
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IBS & LHC (7 TeV)

IBS effects in the SLHC

0 A constant beam intensity for the duration of the beam storage period is assumed in the computations.
O The next 2 figures show the evolution of the longitudinal & horizontal emittances over a 10 hours beam coast.

O IBS growth-rates TE}I’V were calculated iteratively by step At of 5 minutes updating the emittances at each iteration i:

SL,H,V(i + 1) = SL’H’V(i)eAt/TL'H'V(i) [ l = l + 1 T[T,%I,V(i + 1) = d ln SL,H,V(i)/dt

Longitudinal emittance £;(10) [eVs] evolution (IBS only) Horizontal emittance £4(10) [ptm] evolution (IBS only)
- — — e : : : .

4lu._ o e ..._
Case 4 Case 3 Case 2 Case 1 |

0.85- = =] =

Case 4 Case 3 Case 2 Case 1

0.80 el
L [t | ] [
0.75-
070" 3.0
0.65/

10

o 2 8 10 0 2

4 6 4 6
time [h] time [h]
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IBS & LHC (7 TeV)

IBS & synchrotron radiation damping effects in the SLHC

The synchrotron radiation turns into a visible effect for the LHC/SLHC proton beams at 7 TeV collision energy. Emittances shrink

with damping times of : 12.9 h in the longitudinal and 26.0 h in the 2 transverse planes.

Synchrotron radiation damping (SRD) is modelled substituting in the previous formula 7, ; /(i) by (TL_}I’V(i) — Ts_rldLHV)

The next 3 figures show the evolution of the longitudinal & transverse emittances over a 10 hours beam coast.

SRD dominates the IBS growth in the longitudinal & vertical planes for the 4 cases, in horizontal the emittance damps over the all

coast only for case 1 while, for cases 2-4 it grows at some point in time during the coast.

Longitudinal emittance £;(10) [eVs] evolution (IBS & SRD)

Cased Case3 Case?2 Casel
[ ] | ] = | |
o 2 i P ' 8 10
time [h]
06/11/2015

367

34

3.2

3.0r

2.8

26

2.4

Horizontal emittance £5(10) [um] evolution (IBS & SRD)

Cased4 Case3 Case2 Casel _:

T Jrp— | ||
_}-"—_ ]
B H‘h__
_0 é 4 I I 1I0_

6
time [h]
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IBS & LHC (7 TeV)

IBS & synchrotron radiation damping effects in the SLHC

Table : Emittance changes after a 10 hours beam coast resulting from the effects of IBS and synchrotron radiation damping

Vertical emittance s (10) [um] evolution (IBS & SRD)
Agp /ey, | Aey/ey | Agy /ey
' Case4 Case3 Case2 Casel 15t case | Initial IR triplet -36% -20% -32%
! N . IR phase 1 triplet (3" = 0.30 m)
_— - - 2 case | P e ' 27% | 5% | -32%
reduced emittance
3.0 3 case UItlmater_ (B =0.25m) 19% 39% 309%
reduced emittance
4th case >UIt|mater (" =0.15m) 8% 14% 399
reduced emittance
IBS emittance changes after a 10 hours beam coast
o 2 4« & 8 1 Conclusion

time [h]
0 Longitudinal & vertical : cases 1-4: emittances of all the luminosity scenarios are kept within target specifications.
O Horizontal : emittances stay in requirements cases 1-2: (nominal 103* & first IR upgrade 2 x 103* cm™2s~! luminosities,
case 3: ~3% blow-up expected (ultimate intensity N, = 2.36 x 10'!) & case 4: ~14% (~103> cm™2s ' peak luminosity).
Globally for most scenarios the evolution of emittances during the 10 hours coast is kept inside the design values
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IBS & ELENA (100 keV)

momentum o
(MeV/c) A injection
100 + :

l

35 ==
L3

electron
cooling

ELENA deceleration cycle

End of cooling

End of bunch
rotation

electron,

cooling | [ ejection

l / ~300 ms where

T IBS is active

//\ /N

ELENA (Extra Low Energy Antiproton)
is @ compact ring for cooling and more
deceleration of 5.3 MeV antiprotons
sent by the Antiproton Decelerator to
give dense beams at 100 keV energies

ELENA ring \

Momentum ~13.7 MeV/c Momentum (energy) 13.7 MeV/c (100 keV) )
Beam intensity 2.5 107 (1 bunch) Bunch intensity 6.25 10° (4 bunches) ~30 m circumference
Physical g, (95%) 5 mm.mrad Physical &, (95%) 4 mm.mrad N
Ap/p (95%) 310% Ap/p (95%) 3104 M‘“
Bunch length (95%) 10.1 m (circumf/3) Bunch length (95%) 1.3 m o>
\_ AN J e
ELENA : below transition ring
15t plateau : 4 bunches injection at 100 MeV/c from AD followed by beam cooling. y =1.0001 < y,~1.9

2"d plateau : Deceleration down to 35 MeV/c and cooling again.

3rd plateau : Last deceleration down to 13.7 MeV/c, beam cooled down to emittances needed for ELENA experiments.
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IBS & ELENA (100 keV)

Nominal beam parameter and variant study

Ejection momentum/energy 13.7MeV/c 100 keV
Injected/ejected beam intensity 310’ 2.5 10’
Number of extracted bunches 4

Extracted bunch intensity 6.25 10°

rms

e = 1um, 0y = 0.325m (75 1s), 0ppsp = 0.075%0 (7.5107%) e[/ = npog,op,(Bc) '

CpL B L95% O'Ap/p Ap /p95% 8ers 8L95% 811:11,1'1; 819{5;;@
m m %0 %o eVs eVs um um
. 2.410 _
Nominal beam 0.325 1.3 0.075 0.3 g 9.6 10* 1.0 4.0
810
Variant 1 0.325 1.3 0.025 0.1 e 84 L 3.210* 0.5 2.0
Variant 2 0.325 1.3

Initial nominal beam emittances with variants on the 100 keV plateau
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IBS & ELENA (100 keV)

Gv[1/s]

2 Ev[mm.mrad] Horizontal IBS

Longitudinal IBS

A /Z Growth-rate 1/t,,vs (g, &) for

ot f Gapp =0.075 %0 & G = 0.325 m 42

GI[1/s] 300 - VA Gh[1/s] |

0.4 . :2:‘

oo 111000, Vertical IBS
4 Bjorken-Mtingwa

Growth-rate 1/t, VS (Gy, 1) IBS calculation model Growth-rate 1/t,,Vs (g, &) for
for g, = £y & G = 0.325 M Gapp =0.075 %o & 65, =0.325 m
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IBS & ELENA (100 keV)

IBS growth times evolution

IBS growth times

IBS growth time log plots
0 e ‘ —r—

k T, variant 1 |

1 ﬁ ]
T, variant 2

100 -

sec

\

\ 0.01 T, hominal ]
] Ty Variant 1 «
, : T, variant 1
‘30 :\ . L 0'00017 . . I . . . I . . . I . . . I . . . 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
sec 1 sec
IBS growth-times 7, ,,,, evolution (&, = mpog,(Bc)™")
ELENA initial rms beam emittances and IBS growth times at 100 keV ejection
Cg M | Cppyyp %0 gevs | g,um | g,um | T ms | TS Ty S
|Nominal beam || 0.325 || 0.075 ||2.410%| 1.0 || 1.0 || 240 || 0.67 || -0.27
| Variant 1 | 0325 | 0.025 ||0.810% || 05 || 05 | 0.09 || 0.13 | -0.04
|Variant 2 | 0325 | 0.125 | 4.010* | | | 24.0 || |
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Caplp nominal

Oapip Variant 1

Gppip Variant 2

02

0.4

06
Sec

08

1.0

IBS rms longitudinal emittance growth log plot

T pom )

g, variant 1

£, nominal

g, variant 2

04|
<
O
) 03l
S =
>O 5 02
Q
'Y 0.1

2 l
Fo

iy .

g 0.010 L

E 0.005
] 0.002 L
_g = 0001
(%) -0.0005 |
Q -0.0002 |
-0.0001
0.0
06/11/2015

02

04

08
sec

08

1.0

mim.rmrad

2.0

15

1.0

0.5

- E ,;1 -

L l €g v Nominal Egyvariant 1 | ]

R ol ]
3

| g ]

0.0 0.2 0.4 0.6 0.8 1.0

IBS rms bunch length growth

IBS & ELENA (100 keV)

IBS rms relative momentum spread growth

Opy, Variant 1

Gpp, Variant 2

Gpr, Rominal |

0.0 02 0.4

IBS rms longitudinal emittance growth

06

1=
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IBS & ELENA (100 keV)

Comments on variant performance & study extra variants

Assuming one or several bunches circulate for ~1 s on the 100 keV plateau : the above plots show that none of the 3
scenarios are fully satisfactory because the bunch length and momentum spread will suffer too much blow-up due to IBS :

bunch length and momentum spread growth after 1 s on the 100 keV plateau is Big !

Nominal :
op(1s) =1.9 m, 6,,/,(1s) =0.4 %o (95% bunch length=7.4 m instead of 1.3 m !)
Variant 1: bunch length and momentum spread increases after 1 s on the 100 keV plateau is Huge !
op(18) =4.7 M, 6 (1) =0.4 %0 (95% bunch length=18.8 m !)
Variant 2: bunch length and momentum spread increases after 1 s on the 100 keV plateau is still too Large !
og(1s) =1.1 m, 6,,,,(1s) =0.4 %o (95% bunch length=4.3 m !)
G B L95% aAp/p Ap /p95% gers 8L95% ngr,'llls E?{SI;A)
m m %0 %o eVs eVs um um
|variant3 ||0.325 || 1.3 || 0.250 | 1 | 810 || 3210* || 1.0 4.0
lvariant4 ||0.325 | 13 || 0375 || 15 |1210% || 4810% || 1.0 4.0
variant5 || 0.325 || 13 || | | | |

06/11/2015
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IBS rms bunch length and momentum spread growth
0.8 —

m, per mille
o o
(@) ] ~

o
w

o
N

o
o

o ¢
»~

IBS & ELENA (100 keV)

Additional IBS variant beam study

Plots of the beam parameter evolution for the three new variant scenarios

5. (0)=0.325 m

'| Oapp OgLVariant 5 ]

" ] Capip ObL ]

Opip OpL Variant 3 variant4 | |

0.0 0.2 0.4 0.6 0.8 1.0
sec

mm.mrad

1.8

1.6

1.4

IBS rms physical transverse emittance growth

€ gy v Variant 4

l

gy Variant 3

04 06

sec

02

08

1.0

Evolution of the momentum spread and bunch length (left) and transverse emittances (right)
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Summary of the IBS variant beam performance

The table shows that among the 3 new scenarios investigated the variant 5 is the best because the bunch length and
momentum spread will suffer only 30% blow-up due to IBS after 1s on the 100 keV plateau (13% blow-up after 0.3s)

Nominal: the bunch length and momentum spread growth after 1 [s] on the 100 keV plateau is Big !
op.(1s) =1.9 m, G,,/,(1s) =0.4 %o (95% bunch length=7.4 m instead of 1.3 m at t=0!)
Variant 5: the bunch length and momentum spread growth after 1 [s] looks Fine
Gg.(1s) =0.4 m, 6,,,(15) =0.6 %o (95% bunch length=1.7m !)
O (/55 (0) | Oppp®/0ap(0) | €L ®/EL(0) | eq(®/en(0) | ey(Bey(0)
Growth factor at t= 1s | 0.3s 1s 03s| 1s 0.3s 1s 03s  1s | 03s
Nominal beam 5.7 4.4 5.7 4.4 | 325 19.0 131 | 1.13 |0.94 | 0.91
variant 1 145 | 11.3 14.5 11.3 |205.0 [ 125.3 [ 1.25 | 1.54 || 1.05 | 0.92
variant 2 3.3 2.4 3.3 24 || 11.0 5.9
variant 3 2.19 | 1.75 219 |1.75 | 478 | 304 | 165 | 1.29 |1.15 | 0.98
variant 4 159 | 1.32 159 |132 (254 | 175 |[1.81 | 1.36 1.27 | 1.05
variant 5 1.30 | 1.13 1.30 1.13 1 1.69 [ 1.29
IBS beam growth factor : beam parameter at time £ over the initial one at t=0 along the 100 keV plateau
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Epilogue

O Exchange of energies between horizontal & vertical f—oscillation & synchrotron oscillation due to IBS
was first studied by Piwinski (1974).

0 The derivatives of the amplitude function & dispersion 3, & D, were implemented into a CERN code
by Piwinsky & Sacherer (1977) and used for rise-time calculations in diverse proton storage rings.

O Likewise IBS rise-times were also derived by Bjorken-Mtingwa (1983) using a quantum field theory
approach giving a broad description of IBS theory.

O Between 2005 & 2012 the derivatives of vertical S—function & dispersion 3, & D, were implemented
by Bjorken-Mtingwa, Carli, Piwinski, Zimmermann. Mathematica Notebooks were written.

O IBS theory was extended to horizontal & vertical f—oscillation linear coupling (skew quadrupoles or
solenoids) by Piwinski (1990). The process is applied to the generalized emittances specified thru the
[—oscillation eigenvectors (e.g. as calculated by MADX). IBS with coupling was fully implemented into
a Mathematica Notebook by Carli (2012) and used for ELENA antiproton IBS studies at 100 keV energy.
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