1) SPACE-CHARGE

Introduction

The many charged particles in a high intensity beam represent a space-charge and produce electromagnetic self-fields which affect the beam dynamics being otherwise determined by the guide fields of the magnetic lattice and RF-system. Assuming weak self-fields we treat their effects as a perturbation and concentrate on the transverse case where this shifts the betatron frequencies (tunes).

For the direct space charge effect the conducting vacuum chamber is neglected, \(E \) and \(B \)-fields are obtained directly. The \(E \)-field is repelling and defocusses while the Lorentz force of the \(B \)-field focuses. The balance between them becomes more perfect as the particle velocity \(v \) approaches \(c \).

Conducting boundaries modify the field giving an indirect space-charge effect which is calculated with image charges. Here the balance between \(E \) and \(B \)-effects is perturbed and this effect is important also for \(v \to c \).

For a rigid, coherent, oscillation of the beam as a whole, the direct-space charge represents an internal force which does not influence this motion, however the indirect wall effect does.
Direct space-charge effect

Fields and forces

Continuous (unbunched) beam of circular cross section, radius \(a \), uniform charge/current densities \(\eta \), \(\vec{J} = \eta \beta c \) with total charge per unit length \(\lambda = \pi a^2 \eta \) and current \(I = \beta c \lambda \), produces cylindrically symmetric fields \(\vec{E} = [E_\rho, 0, 0] \) and \(\vec{B} = [0, E_\phi, 0] \) at radial distance \(\rho \):

\[
\begin{align*}
\text{div } \vec{E} &= \eta / \epsilon_0 \\
\frac{1}{\rho} \text{ div } \vec{E} \, d\rho = \oint \vec{E} \, d\vec{S}_E \\
\text{curl } \vec{B} &= \mu_0 \vec{J} \\
\oint \vec{B} \cdot d\vec{s} &= \oint \text{curl } \vec{B} \cdot d\vec{S}_J \\
d\vec{S}_E &= 2\pi \rho \, [d\rho, 0, 0], \quad d\vec{S}_J = 2\pi \rho \, d\rho \, [0, 0, 1], \quad d\vec{s} = \rho \, [0, d\phi, 0], \quad dV = 2\pi \rho \, ds \, d\rho.
\end{align*}
\]

Integrate \(\int_0^\rho \eta(\rho')d\rho' \)

\[
\begin{align*}
2\pi \rho \ell E_\rho &= \pi a^2 \ell \eta / \epsilon_0 \\
E_\rho &= \frac{\eta \rho}{2\epsilon_0} = \frac{\lambda \rho}{2\pi \epsilon_0 a^2} \\
2\pi \rho \ell E_\rho &= \pi \rho^2 \ell \eta / \epsilon_0 \\
E_\rho &= \frac{\eta a^2}{2\epsilon_0 \rho} = \frac{\lambda}{2\pi \epsilon_0 \rho}
\end{align*}
\]

For \(\rho \leq a \), relevant for direct space-charge, only charges \(\rho' \leq \rho \) contribute. Force on a particle \(\vec{F} = F_E + F_B = e \left(\vec{E} + [\vec{v} \times \vec{B}] \right) \)

\[
= \frac{e\eta}{2\epsilon_0} (1 - \beta^2) \vec{\rho} = \frac{eI}{2\pi \epsilon_0 c \beta \gamma^2 a^2} \vec{\rho}.
\]

\(\vec{F} \propto \vec{\rho} \) gives linear defocusing being \(\propto 1/\gamma^2 \) and vanishes as \(\beta \to 1 \).
Space-charge defocusing

Uniform space-charge force on particle is linear, radial, repulsive and defocuses beam in \(x\)- and \(y\)-plane, changing tunes \(Q_x, \; /Q_y\), (taking \(y\)):

\[
\vec{F} = F_E + F_B = e \left(\vec{E} + [\vec{v} \times \vec{B}] \right) = \frac{e\eta}{2\epsilon_0} (1 - \beta^2) \vec{\rho} = \frac{eI}{2\pi\epsilon_0 c} \gamma^2 \vec{\rho}.
\]

Force deflects by angle \(\Delta y' = \propto y\)

\[
F_y \approx m_0 \gamma d^2 y/dt^2 = m_0 c^2 \beta^2 \gamma^2 dy'/ds
\]

\[
\frac{dy'}{y} = d \left(\frac{1}{f} \right) = \frac{eI ds}{2\pi\epsilon_0 a^2 m_0 c^2 \beta^3 \gamma^3} = \frac{2r_0 I ds}{ec \beta^3 \gamma^3 a^2}
\]

\[
r_0 = \frac{e^2}{4\pi\epsilon_0 m_0 c^2} = 1.54 \times 10^{-18} \text{ m protons}
\]

\[
r_0 = 2.82 \times 10^{-15} \text{ m electrons}
\]

\[
y' = dy'/ds \approx \dot{y}/(\beta c) \ll 1, \text{ focusing strength } 1/f, \text{ classical particle radius } r_0. \text{ Tune change by element of length } \Delta s, \text{ strength } 1/f.
\]

\[
\frac{\text{d}Q_y}{4\pi} = \frac{\beta_y(s) d \left(\frac{1}{f} \right)}{2\pi\epsilon_0 c \beta^3 \gamma^3 a^2(s)} = \frac{-r_0 I \beta_y(s) ds}{2\pi\epsilon_0 c \beta^3 \gamma^3 a^2(s)}
\]

\[
\Delta Q_y = \frac{-r_0 I}{2\pi\epsilon_0 c \beta^3 \gamma^3} \int \beta_y(s) ds \frac{a^2(s)}{a^2(s)} = \frac{-r_0 IR}{ce \beta^3 \gamma^3 \mathcal{E}_y}
\]

using invariant emittance \(\mathcal{E}_y \approx a^2/\beta_y\). Tune shift by local space-charge depends on \(\mathcal{E}_y\), not on \(\beta_y\) and \(a\) separately. Small \(\beta_y\) gives small \(a\) and strong force but reduced effect.

Approx.: \(\mathcal{E}_y \approx a^2/\beta_y\); no change of \(\beta_y\).
 Elliptic beam cross section
Uniform η and elliptic cross section with half-axes a, b give fields and forces inside (L. Teng)

$$\vec{E} = [E_x, E_y] = \frac{I}{\pi \varepsilon_0 (a + b) \beta c} \left[\frac{x}{a}, \frac{y}{b} \right]$$

$$\vec{B} = [B_x, B_y] = \frac{\mu_0 I}{\pi (a + b)} \left[\frac{y}{b}, \frac{x}{a} \right]$$

which satisfies $\text{div} \vec{E} = \eta / \varepsilon_0$, $\text{curl} \vec{B} = \mu_0 \vec{J}$.

$$\vec{F} = e \left[\vec{E} + [\vec{v} \times \vec{B}] \right] = \frac{I \left[(x/a), (y/b) \right]}{\pi \varepsilon_0 \beta c \gamma^2 (a + b)}.$$

This force is $F_x \propto x$, $F_y \propto y$ and gives linear defocusing in the two directions.

$$\Delta Q_x = -\frac{r_0 I}{\pi c \beta^3 \gamma^3 E_x} \int \frac{a}{a + b} \text{d}s$$

$$\Delta Q_y = -\frac{r_0 I}{\pi c \beta^3 \gamma^3 E_y} \int \frac{b}{a + b} \text{d}s$$

Since a/b depends on s the local tune shift contribution depends also weakly on s.

Bunched beams
Current $I(s)$ depends on longitudinal distance s from bunch center. Relativistic field has small opening angle $\approx 1/\gamma$ and depends on local $I(s)$ if this changes little over $\Delta s = a/\gamma$.

$$\Delta Q_x \approx -\frac{r_0 RI(s)}{ec \gamma^3 \beta^3}, \quad \Delta Q_y \approx -\frac{r_0 RI(s)}{ec \gamma^3 \beta^3 E_y}.$$

Tune shift depends on particle position s in bunch giving to a tune spread, and, through synchrotron oscillations, to a tune modulation.

Non-uniform distribution
General charge distribution is not uniform, has radial dependence $\eta(\rho)$ giving non-linear force, making tune shift depend on betatron oscillation amplitude and leading to a tune spread.
Indirect space-charge effect — influence of the chamber wall

Conducting boundary imposes $E_\parallel = 0$ with only E_\perp. To calculate field we introduce image charge $-\lambda$ at distance h behind wall which cancels E_\parallel on surface. Have fields:

- direct \vec{E}_d, image \vec{E}_i, surface $\vec{E}_d\| = -\vec{E}_i\|$, $\vec{E}_\parallel = 0$
- inside: $\vec{E} = \vec{E}_d + \vec{E}_i$, $\text{div}\vec{E}_d = \eta/\epsilon_0$, $\text{div}\vec{E}_i = 0$

Conducting plates at $\pm h$. To get there $E_\parallel = 0$, need image charges of beam and of images. Field close to beam, first order in x, y (quadrupole field) of n-th image pair at $\pm 2nh$ and sum over n

$$E_{iny} = \frac{(-1)^n \lambda}{2\pi \epsilon_0} \left(\frac{1}{2nh + y} - \frac{1}{2nh - y} \right) \approx -\frac{\lambda y}{4\pi \epsilon_0 h^2} \frac{(-1)^n}{n^2}$$

$$E_{iy} = \sum_{1}^{\infty} E_{iny} = \frac{\lambda y \frac{\pi^2}{4\pi \epsilon_0 h^2}}{12}, \quad \text{div}\vec{E}_i = 0 \rightarrow E_{i_x} = -\frac{\lambda x}{4\pi \epsilon_0 h^2} \frac{\pi^2}{12},$$

$$F_x = \frac{2e \lambda x}{2\pi \epsilon_0} \left(\frac{1}{2a^2 \gamma^2} - \frac{\pi^2}{48h^2} \right), \quad F_y = \frac{2e \lambda y}{2\pi \epsilon_0} \left(\frac{1}{2a^2 \gamma^2} + \frac{\pi^2}{48h^2} \right)$$

$$\Delta Q_{x/y} = -\frac{2r_0 I R \langle \beta_{x/y} \rangle}{e c \beta^3 \gamma} \left(\frac{1}{2a^2 \gamma^2} \pm \frac{\pi^2}{48h^2} \right), \quad \text{with } I = \lambda \beta c.$$

B field not affected, no relativistic E/B-force compensation.
Incoherent and coherent motion

Direct space-charge effect

For incoherent motion particles have space-charge tune shift

\[\Delta Q_{\text{inc.}} = -\frac{r_0 IR \beta_y}{ce\alpha^2 \beta^3 \gamma^3} \]

In coherent motion space-charge force is intern, moves with beam, no effect on center-of-mass motion \(\Delta Q_{\text{coh.}} = 0 \)

Indirect space-charge effect

Space-charge field with a conducting wall at distance \(h \) was obtained by image line charge at \(h \) behind wall. A coherent beam motion by \(\bar{y} \) moves first images to \(\pm 2h - \bar{y} \) with a field at the beam

\[E_{c1y} = \frac{-\lambda}{2\pi \epsilon_0} \left(\frac{1}{2h + 2\bar{y}} - \frac{1}{2h - 2\bar{y}} \right) \]

Equidistant 2nd images cancel, general

\[E_{cy} = \sum_{\lambda=1}^{\infty} E_{cny} = \frac{\lambda \bar{y}}{4\pi \epsilon_0 h^2} \left(\frac{\pi^2}{12} + \frac{\pi^2}{6} \right) \]

\[Q_{ycoh.} = Q_0 - \frac{\pi^2}{16} \frac{2r_0 IR \langle \beta_y \rangle}{ec \beta^3 \gamma h^2} \]

\[Q_{ycoh.} - Q_{yinc.} = \frac{2r_0 IR \langle \beta_y \rangle}{ec \beta^3 \gamma} \left(\frac{1}{2a^2 \gamma^2} - \frac{\pi^2}{24h^2} \right) \]
Problems caused by space-charge in rings
In rings space-charge can shift tunes into resonances where \(Q = \frac{N}{M} \) is a simple rational fraction. Dipole imperfection deflects particle each turn in phase if \(Q \) =integer and for a quadrupole error this happens if \(Q \) =half integer. Since space-charge shifts coherent and incoherent tunes differently and produces spread it may be difficult to avoid all resonances.

Related effects
Beam-beam effect: electric and magnetic forces ad. Ions and electron clouds: don’t move, no \(B \)-force.
2) IMPEDANCES AND WAKE FUNCTIONS

Resonator

For space charge a perfectly conducting wall of uniform cross section and electrostatic methods were used. General cross sections have resonances described by an impedance.

Beam induces wall current \(I_w = - (I_b - \langle I_b \rangle) \)

Cavities have narrow band oscillation modes which can drive coupled bunch instabilities. Each resembles an RCL - circuit and can, in good approximation, be treated as such. This circuit has a shunt impedance \(R_s \), an inductance \(L \) and a capacity \(C \). In a real cavity these parameters cannot easily be separated and we use others which can be measured directly: The resonance frequency \(\omega_r \), the quality factor \(Q \) and the damping rate \(\alpha \):

\[
\omega_r = \frac{1}{\sqrt{LC}}, \quad Q = R_s \sqrt{\frac{C}{L}} = \frac{R_s}{L \omega_r} = R_s C \omega_r
\]

\[
\alpha = \frac{\omega_r}{2Q}, \quad L = \frac{R_s}{Q \omega_r}, \quad C = \frac{Q}{\omega_r R_s}
\]
Driving this circuit with a current I gives the voltages and currents across the elements

\[
\begin{align*}
V_R &= I_R R_s, \\
V_C &= \frac{1}{C} \int I_C dt, \\
V_L &= L \frac{dI_L}{dt}
\end{align*}
\]

\[V_R = V_C = V_L = V, \quad I_R + I_C + I_L = I\]
\[I = I_R + I_C + I_L = \dot{V} / R_s + C \ddot{V} + V / L.\]

Using $L = R_s / (\omega_r Q)$, $C = Q / (\omega_r R_s)$ gives
differential eqn. \[
\ddot{V} + \frac{\omega_r}{Q} \dot{V} + \omega_r^2 V = \frac{\omega_r R_s}{Q} \dot{I}
\]

Homogeneous solution is damped oscillation
\[V(t) = e^{-\alpha t} \left(A \cos \left(\omega_r \sqrt{1 - \frac{1}{4Q^2}} t \right) + B \sin \left(\omega_r \sqrt{1 - \frac{1}{4Q^2}} t \right) \right), \quad \alpha = \frac{\omega_r}{2Q}\]

Wake/Green – function, pulse response

$I(t) = q \delta t$, charge q gives capacity voltage
\[V(0^+) = \frac{q}{C} = \frac{\omega_r R_s}{Q} q \quad \text{using} \quad C = \frac{Q}{\omega_r R_s}\]

Energy stored in $C = \text{energy lost by } q$
\[U = \frac{q^2}{2C} = \frac{\omega_r R_s}{2Q} q^2 = \frac{V(0^+)}{2} q = k_{pm} q^2\]

parasitic mode loss factor $k_{pm} = \omega_r R_s / 2Q$

Capacitor discharges first through resistor
\[-\dot{V}(0^+) = \frac{q}{C} = \frac{I_R}{I} = \frac{V(0^+)}{C R_s} = -\frac{2 \omega_r k_{pm}}{Q} q.\]

$V(0^+), \dot{V}(0^+) \rightarrow A = 2q k_{pm}, \quad B = \frac{-A}{\sqrt{4Q^2 - 1}}$

\[V(t) = 2q k_{pm} e^{-\alpha t} \left(\cos \left(\omega_r \sqrt{1 - \frac{1}{4Q^2}} t \right) - \frac{\sin \left(\omega_r \sqrt{1 - \frac{1}{4Q^2}} t \right)}{\sqrt{4Q^2 - 1}} \right) \approx 2q k_{pm} e^{-\alpha t} \cos(\omega_r t).\]
Impedance

A **harmonic** excitation of circuit with current $I = \hat{I} \cos(\omega t)$ gives differential equation

$$\ddot{V} + \frac{\omega_r}{Q} \dot{V} + \omega_r^2 V = \frac{\omega_r R_s}{Q} \hat{I} = -\frac{\omega_r R_s}{Q} \hat{I} \omega \sin(\omega t).$$

Homogeneous solution damps leaving particular one $V(t) = A \cos(\omega t) + B \sin(\omega t)$. Put into differential equation, separating cosine and sine

$$-(\omega^2 - \omega_r^2) A + \frac{\omega_r \omega}{Q} B = 0$$

$$(\omega^2 - \omega_r^2) B + \frac{\omega_r \omega}{Q} A = \frac{\omega_r \omega R_s}{Q} \hat{I}.$$

Voltage induced by current $\hat{I} \cos(\omega t)$ is

$$V(t) = \hat{I} R_s \frac{\cos(\omega t) + Q \frac{\omega^2 - \omega_r^2}{\omega_r \omega} \sin(\omega t)}{1 + Q^2 \left(\frac{\omega^2 - \omega_r^2}{\omega_r \omega}\right)^2}.$$

Cosine term is **in phase** with exciting current, absorbs energy, **resistive**. Sine term is **out of phase**, does not absorb energy, **reactive**. Voltage/current ratio is **impedance** as function of frequency ω

$$Z_r(\omega) = R_s \frac{1}{1 + Q^2 \left(\frac{\omega^2 - \omega_r^2}{\omega_r \omega}\right)^2};$$

$$Z_i(\omega) = -R_s \frac{Q \frac{\omega^2 - \omega_r^2}{\omega_r \omega}}{1 + Q^2 \left(\frac{\omega^2 - \omega_r^2}{\omega_r \omega}\right)^2}.$$

Resistive part $Z_r(\omega) \geq 0$, reactive part $Z_i(\omega)$ positive below, negative above ω_r.

$\hat{I} \cos(\omega t) \rightarrow V = \hat{I} [Z_r \cos(\omega t) - Z_i \sin(\omega t)]$

$\hat{I} \sin(\omega t) \rightarrow V = \hat{I} [Z_r \sin(\omega t) + Z_i \cos(\omega t)]$
Complex notation

Excite: $I(t) = \hat{I} \cos(\omega t) = \hat{I} e^{j\omega t} + e^{-j\omega t}$

with $0 \leq \omega \leq \infty$

$I(t) = \hat{I} e^{j\omega t} / 2$ with $-\infty \leq \omega \leq \infty$

\[Z(\omega) = R_s \frac{1 - jQ\frac{\omega^2 - \omega_r^2}{\omega}}{1 + Q^2 \left(\frac{\omega^2 - \omega_r^2}{\omega_r}\right)^2} = Z_r + jZ_i \]

\[\approx R_s \frac{1 - j2Q\Delta\omega/\omega_r}{1 + 4Q^2 \left(\Delta\omega/\omega_r\right)^2} \quad \text{for} \ Q \gg 1 \]

\[\omega \approx \omega_r, |\omega - \omega_r|/\omega_r = |\Delta\omega|/\omega_r \ll 1. \]

Resonator impedance properties:

- at $\omega = \omega_r \rightarrow Z_r(\omega_r)$ max., $Z_i(\omega_r) = 0$
 - $0 < \omega < \omega_r \rightarrow Z_i(\omega) > 0$ (inductive)
 - $\omega > \omega_r \rightarrow Z_i(\omega) < 0$ (capacitive)

General impedance or wake properties

$Z_r(\omega) = Z_r(-\omega)$, $Z_i(\omega) = -Z_i(-\omega)$

$Z(\omega) = \int_{-\infty}^{\infty} G(t)e^{-j\omega t} dt$

$Z(\omega) \propto$ Fourier transform of $G(t)$

for $t < 0 \rightarrow G(t) = 0$, no fields before particle arrives, $\beta \approx 1$.
Typical impedance of a ring

Aperture changes form cavity-like objects with ω_r, R_s and Q and impedance $Z(\omega)$ developed for $\omega < \omega_r$, where it is inductive

$$Z(\omega) = R_s \frac{1 - jQ\frac{\omega^2 - \omega_r^2}{\omega\omega_r}}{1 + (Q\frac{\omega^2 - \omega_r^2}{\omega\omega_r})^2} \approx j\frac{R_s\omega}{Q\omega_r} + \ldots$$

Sum impedance at $\omega \ll \omega_{rk}$ divided by mode number $n = \omega/\omega_0$ is with inductance L

$$\left|\frac{Z}{n}\right|_0 = \sum_k \frac{R_{sk}\omega_0}{Q_k\omega_{rk}} = L\omega_0 = L\frac{\beta c}{R}.$$

It depends on impedance per length, $\approx 15\ \Omega$ in older, $1\ \Omega$ in newer rings. The shunt impedances R_{sk} increase with ω up to cutoff frequency where wave propagation starts and become wider and smaller. A broad band resonator fit helps to characterize impedance giving Z_r, Z_i, $G(t)$ useful for single traversal effects. However, for multi-traversal instabilities narrow resonances at ω_{rk} must be used.
3) LONGITUDINAL INSTABILITIES

Longitudinal dynamics

A particle with momentum deviation \(\Delta p \) has different orbit length \(L \), revolution time \(T_0 \) and frequency \(\omega_0 \)

\[
\frac{\Delta L}{L} = \frac{\Delta p}{p} = \frac{\alpha_c \Delta E}{p} \quad \frac{\Delta T}{T} = -\frac{\Delta \omega_0}{\omega_0} = \left(\alpha_c - \frac{1}{\gamma^2} \right) \frac{\Delta p}{p} = \eta_c \frac{\Delta p}{p}
\]

with momentum compaction \(\alpha_c = 1/\gamma_T^2 \), slip factor \(\eta_c \). At transition energy \(m_0 c^2 \gamma T \) the \(\omega_0 \)-dependence on \(\Delta p \) changes sign

\(E > E_T \to \frac{1}{\gamma^2} < \alpha_c \to \eta_c > 1, \quad \frac{\Delta \omega_0}{\Delta E} < 0 \)

\(E < E_T \to \frac{1}{\gamma^2} > \alpha_c \to \eta_c < 1, \quad \frac{\Delta \omega_0}{\Delta E} > 0 \).

For \(\gamma \gg 1 \to \Delta p/p \approx \Delta E/E = \epsilon, \eta_c \approx \alpha_c \).

RF-cavity of voltage \(\hat{V} \), frequency \(\omega_{RF} = h\omega_0 \), SR energy loss \(U \) the energy gain or loss of a particle in one turn \(\delta \epsilon = \delta E/E \) is

\[
\delta E = e\hat{V} \sin(h\omega_0(t_s + \tau)) - U
\]

\(t_s = \) synchronous arrival time at the cavity, \(\tau = \) deviation from it, synchronous phase \(\phi_s = h\omega_0 t_s \). For \(h\omega_0 \tau \ll 1 \) we develop

\[
\delta E = e\hat{V} \sin(\phi_s) + h\omega_0 e\hat{V} \cos \phi_s \tau - U.
\]
For $\delta E/E \ll 1$ use smooth approximation

$$\dot{E} \approx \delta E/T_0, \quad \dot{\tau} = \Delta T/T_0 = \eta_c \Delta E/E$$

$$\dot{E} = \frac{\omega_0 \hat{V} \sin \phi_s}{2\pi} + \frac{\omega_0^2 h \hat{V} \cos \phi_s}{2\pi} \tau - \frac{\omega_0}{2\pi} U.$$

Use $T_0 = 2\pi/\omega_0$, relative energy $\epsilon = \Delta E/E$

$$\dot{\epsilon} = \frac{\omega_0 \hat{V} \sin \phi_s}{2\pi E} + \frac{\omega_0^2 h \hat{V} \cos \phi_s}{2\pi E} \tau - \frac{\omega_0 U}{2\pi E}.$$

Energy loss U may depend on E

$$U(\epsilon, \tau) \approx U_0 + \frac{\partial U}{\partial E} \Delta E$$

giving for the derivative of the energy loss

$$\dot{\epsilon} = \frac{\omega_0^2 h \hat{V} \cos \phi_s}{2\pi E} \tau - \frac{\omega_0}{2\pi} \frac{\partial U}{\partial E}$$

$$\dot{\tau} = \eta_c \epsilon$$

where we used that for synchronous particle $\epsilon = 0, \quad \tau = 0$ we have $U_0 = e\hat{V} \sin \phi_s$

Combining these into a second order equation

$$\ddot{\epsilon} + \frac{\omega_0}{2\pi} \frac{\partial U}{\partial E} \dot{\epsilon} + \omega_{s0}^2 \epsilon = 0,$$

$$\omega_{s0}^2 = \frac{-\omega_0^2 h \eta_c \hat{V} \cos \phi_s}{2\pi E}, \quad \alpha_s = \frac{1}{2\pi} \frac{\omega_0}{\partial U}$$

$$\omega_{s1} = \omega_{s0}^2 - \alpha_s^2 \approx \omega_{s0}^2$$

$$\ddot{\tau} + 2\alpha_s \dot{\tau} + \omega_{s0}^2 \tau = 0$$

$$\tau = \hat{\tau} e^{-\alpha_s t} \cos(\omega_{s1} t), \quad \epsilon = \hat{\epsilon} e^{-\alpha_s t} \sin(\omega_{s1} t)$$

From $\dot{\tau} = \eta_c \epsilon$ we get $\hat{\epsilon} = \omega_{s0} \hat{\tau}/\eta_c$.

To get real ω_{s0} we need $\cos \phi_s \leq 0$ above transition where $\eta_c > 0$ and vice versa.

To get a stable (decaying) solution we need an energy loss which increases with E

$$\alpha_s = \frac{\omega_0}{4\pi} \frac{\partial U}{\partial E} = \frac{\omega_0}{4\pi E} \frac{\partial U}{\partial \epsilon} > 0.$$
Induced voltage and energy loss by a stationary bunch

Circulating symmetric bunch (N_b particles) has current

$$I(t) = \sum_{-\infty}^{\infty} I(t - kT_0)$$

$$I(t) = I_0 + 2 \sum_{1}^{\infty} I_p \cos(p\omega_0 t), \quad I_p = \int_{0}^{T_0} I(t) \cos(p\omega_0 t) \, dt$$

In impedance $Z(\omega)$ it induces voltage

$$V(t) = 2 \sum I_p [Z_r(p\omega_0) \cos(p\omega_0 t) - Z_i(p\omega_0) \sin(p\omega_0 t)]$$

Energy lost per particles and turn $U = \int_{0}^{T_0} I(t)V(t) \, dt/N_b$

$$U = \frac{2T_0}{N_b} \sum_{1}^{\infty} I_p^2 Z_r(p\omega_0) = \frac{2e}{I_0} \sum_{1}^{\infty} I_p^2 Z_r(p\omega_0)$$

using

$$\int_{0}^{T_0} \cos(p'\omega_0 t) \sin(p\omega_0 t) \, dt = 0, \quad I_0 = eN_b/T_0$$

$$\int_{0}^{T_0} \cos(p'\omega_0 t) \cos(p\omega_0 t) \, dt = \begin{cases} T_0/2 & \text{for } p' = p \\ 0 & \text{for } p' \neq p \end{cases}$$
Robinson instability

Qualitative treatment

Important longitudinal instability of a bunch interacting with an narrow impedance, called Robinson instability. In a qualitative approach we take single bunch and a narrow-band cavity of resonance frequency \(\omega_r\) and impedance \(Z(\omega)\) taking only its resistive part \(Z_r\). The revolution frequency \(\omega_0\) depends on energy deviation \(\Delta E\)

\[
\frac{\Delta \omega_0}{\omega_0} = -\eta_c \frac{\Delta p}{p}.
\]

While the bunch is executing a coherent dipole mode oscillation \(\epsilon(t) = \hat{\epsilon} \cos(\omega_s t)\) its energy and revolution frequency are modulated. Above transition \(\omega_0\) is small when the energy is high and \(\omega_0\) is large when the energy is small. If the cavity is tuned to a resonant frequency slightly smaller than the RF-frequency \(\omega_r < p\omega_0\) the bunch sees a higher impedance and loses more energy when it has an energy excess and it loses less energy when it has a lack of energy. This leads to a damping of the oscillation. If \(\omega_r > p\omega_0\) this is reversed and leads to an instability. Below transition energy the dependence of the revolution frequency is reversed which changes the stability criterion.
Qualitative understanding

\[
\begin{align*}
\epsilon &= \hat{e} e^{-\alpha_s t} \sin(\omega_s t), \text{ damping if } \alpha_s > 0 \\
\alpha_s &= \frac{\omega_s p I_p^2 (Z_r(\omega_{p+}) - Z_r(\omega_{p-}))}{2 I_0 h \tilde{V} \cos \phi_s} \\
\gamma > \gamma_T, \cos \phi_s < 0, \text{ stable } Z_r(\omega_{p-}) > Z_r(\omega_{p+}) \\
\text{Damping rate } \propto Z_r \text{ difference at side-bands.}
\end{align*}
\]

RF-cavity:
\[\alpha_s \approx \frac{I_0 (Z_r(\omega_{p+}) - Z_r(\omega_{p-}))}{\omega_s 0} \frac{2V}{2V \cos \phi_s} \approx \frac{p I_p^2 (Z_r(\omega_{p+}) - Z_r(\omega_{p-}))}{\omega_s 0} \frac{2I_0 h \tilde{V} \cos \phi_s}{2I_0 h \tilde{V} \cos \phi_s} \]

general:
\[\alpha_s = \sum_p \frac{p I_p^2 (Z_r(\omega_{p+}) - Z_r(\omega_{p-}))}{\omega_s 0} \frac{2I_0 h \tilde{V} \cos \phi_s}{2I_0 h \tilde{V} \cos \phi_s} \]

Cavity field induced by the two sidebands

Phase motion of the bunch center

Narrow band \(\rightarrow\) long memory, vice-versa
Potential well bunch lengthening

At low frequency wall is inductive with $L \omega_0 = |Z/n|_0$:

We take a parabolic bunch form

$$I_b(\tau) = \hat{I} \left(1 - \frac{\tau^2}{\hat{\tau}^2}\right) = \frac{3\pi I_0}{2\omega_0 \hat{\tau}} \left(1 - \frac{\tau^2}{\hat{\tau}^2}\right)$$

$$\frac{dI_b}{d\tau} = -\frac{3\pi I_0 \tau}{\omega_0 \hat{\tau}^3}, \quad I_0 = \langle I_b \rangle,$$

$$V = \hat{V} (\sin \phi_s + h\omega_0 \cos \phi_s \tau) + \frac{3\pi I_0 L \tau}{\omega_0 \hat{\tau}^3}$$

$$V = \hat{V} \left[\sin \phi_s + \cos \phi_s h\omega_0 \left(1 + \frac{3\pi |Z/n|_0 I_0}{h \hat{V} \cos \phi_s (\omega_0 \hat{\tau})^3}\right)\right]$$

$$\omega_{s0}^2 = -\frac{\omega_0^2 h \eta_c e \hat{V} \cos \phi_s}{2\pi E}$$

$$\omega_s^2 = \omega_{s0}^2 \left[1 + \frac{3\pi |Z/n|_0 I_0}{h \hat{V}_{RF} \cos \phi_s (\omega_0 \hat{\tau})^3}\right]$$

$$\Delta \omega_s = \omega_s - \omega_{s0} \approx \frac{3\pi |Z/n|_0 I_0}{2h \hat{V}_{RF} \cos \phi_s (\omega_0 \hat{\tau}_0)^3}$$
Decreasing ω_s reduces longitudinal focusing, increases bunch length $\hat{\tau}$. Relative energy spread $\hat{\epsilon} = \hat{\tau}_s \omega_s / \eta_c$ is given for electrons by synchrotron radiation, for protons the product (emittance) $\hat{\tau} \hat{\epsilon} = \text{const.}$

\[
\frac{\omega_s^2}{\omega_{s0}^2} = 1 + \frac{3\pi |Z/n|_0 I_0}{h \hat{V}_{RF} \cos \phi_s (\omega_0 \hat{\tau})^3}
\]

\[
\frac{\omega_s - \omega_{s0}}{\omega_{s0}} = \frac{\Delta \omega_s}{\omega_s} \approx \frac{3\pi |Z/n|_0 I_0}{2h \hat{V} \cos \phi_s (\omega_0 \hat{\tau}_0)^3}
\]

Only incoherent frequency ω_s of single particles is changed (reduced $\gamma > \gamma_T$, increased $\gamma < \gamma_T$), not coherent dipole (rigid bunch) frequency ω_{s1}. The two get separated.

Electron $\frac{\Delta \hat{\tau}}{\hat{\tau}_0} = -\frac{\Delta \omega_s}{\omega_{s0}}$, proton $\frac{\Delta \hat{\tau}}{\hat{\tau}_0} = -\frac{\Delta \omega_s}{2\omega_{s0}}$

From observed bunch lengthening impedance is estimated.

Frequency measurement would be better, but ω_s is invisible and ω_{s1} does not move, however, quadrupole mode can be used

\[
\frac{\omega_{s2} - 2\omega_{s0}}{2\omega_{s0}} = \frac{\Delta \omega_{s2}}{\omega_{s2}} \approx \frac{1}{4} \frac{\Delta \omega_s}{\omega_{s0}}.
\]
Separation of coherent and incoherent frequencies

The wall inductance, and most reactive impedances, separate coherent and incoherent frequencies. A swing with a non-rigid frame can illustrate this mechanism. A coherent, center-of-mass, motion moves the frame and changes the frequency, this is not the case if oscillate at a different phases, leaving th incoherent frequency unchanged. For space-charge this causes mainly problems with resonances, here a loss of a stabilization mechanism, called Landau damping, is more important. A spread in individual particle frequencies produces phase mixing which reduces the center-of-mass, coherent, amplitude and gives some stabilization. A separation between coherent and incoherent frequencies makes this ineffective.
4) TRANSVERSE INSTABILITIES

Transverse impedance

Field excited by \(Ix = D = \dot{D} \cos(\omega t) \)
\[
\frac{\partial E_z}{\partial x} = -kIx, \quad E_z(x) = -kIx^2
\]
\[Z_L(x) = -\int E_z dz/I = -E_z\ell/I = k\ell x^2\]
\[
\int B d\vec{a} = -\int \vec{E}d\vec{s}, \quad \dot{B}_y x\ell = E_z\ell = -k\ell Dx
\]
\[\dot{B}_y = -k\dot{D} \cos(\omega t), \quad B = -k\dot{D} \sin(\omega t)/\omega\]
field \(B \) out of phase with \(D = lx \)
\[\dot{B}_y = -k\dot{D}/\omega, \quad \text{Lorentz force } \vec{F} \approx -ec\dot{B}_y\]
\[
Z_T = -\frac{F_x \ell}{eD} = \frac{ck\ell}{\omega} = \frac{cZ_L}{x^2\omega} = \frac{c}{2\omega} \frac{d^2Z_L}{dx^2}, \quad \left[\Omega \right]/\left[\text{m} \right]
\]

Used special case to define transverse impedance and its relation to second derivative of the longitudinal impedance of same mode. In general we have the impedances long.: integrated field/current; trans.: integrated defl. field/ dipole moment. On resonance, \(E_z \) is in, \(B_y \) out of phase of \(I \). General deflecting mode, using \(x = \hat{x}e^{j\omega t} \)
\[
Z_T(\omega) = j \frac{\int \left(\vec{E}(\omega) + [\vec{v} \times \vec{B}(\omega)] \right) \cdot ds}{Ix(\omega)}
\]

Relation \(Z_L \) to \(Z_T \) of different modes:
In ring of global and vacuum chamber radii \(R \) and \(b \) the impedances, averaged for different modes, have semi-empirical ratio
\[
Z_T(\omega) \approx \frac{2RZ_L(\omega)}{b^2 \omega/\omega_0}
\]

From area available for the wall current we expect \(Z_L \propto 1/b \), therefore \(Z_T \propto 1/b^3 \).
Transverse instability of a single, rigid bunch

A bunch p traverses a cavity with off-set x, excites a field $-E_z$ which converts after $T_r/4$ into field $-B_y$, then into E_z and after into B_y.

The bunch oscillates with tune Q having a fractional part $q = 1/4$ seen as sidebands at $\omega_0(\text{integer} \pm q)$ by a stationary observer.

A) Cavity is tuned to upper sideband. Next turn bunch traverses in situation 'A', $t = T_r/4$ with velocity in $-x$-direction and gets by B_y force in $+x$-direction which damps oscillation.

B) Cavity is tuned to lower sideband, bunch traverses next in situation 'B', $t = T_r3/4 = T_r(1 - 1/4)$ with negative velocity and force in same direction, increases velocity, instability.

damping rate $a = \frac{e\omega_0\beta_x}{4\pi m_0 c^2 \gamma I_0} \sum_{\omega > 0} \left(I_{p+}^2 Z_{Tr}(\omega_p^+) - I_{p-}^2 Z_{Tr}(\omega_p^-) \right), \ \omega_{p\pm} = \omega_0(p \pm q)$.
Transverse instability of many rigid bunches

M bunches can oscillate in M independent modes $n = M\Delta\phi/2\pi$, phase $\Delta\phi$ between them seen in global view. Locally, bunches pass with increasing time delay shown as bullets fitted by upper (solid) and lower (dashed) side-band frequency. Higher frequencies can be fitted and spectrum repeats every $4\omega_0$. $\omega_{p\pm} = \omega_0(pM \pm (n + q))$

Spectrum $n = 3$, $q = 1/4$

$\Delta\phi = \pi$, $n = 2$

$\Delta\phi = 3\pi/2$, $n = 3$
Non-rigid bunch - head-tail modes, $Q' = 0$

Particle distribution in a bunch

Phase-space distr. ψ rotates with ω_s, not visible, but projection $\lambda(\tau) = \int \psi(\tau, \Delta E) dE$ or current $I = q\beta c \lambda$. Study motion by selecting particles with fixed synch. osc. amplitude $\hat{\tau}$ rotating in phase-space, moving from head to tail and vice versa while executing at same time vertical betatron oscillation $y = \dot{y} \cos(Q_y \omega_0 t)$. With $Q' \approx dQ/(dE/E) = 0$ tune is constant during synchrotron motion.

Mode $m=0$, all in phase, rigid bunch

Mode $m=1$, head and tail in opposite phase, not rigid

A very high impedance can couple these modes and give a Transverse Mode Coupling Instability, TMCI.
Head-tail mode \(m = 0 \) for \(Q' \neq 0 \)

Synchrotron oscillation in \(\Delta E \) affect transverse motion via chromaticity \(Q' = dQ/(dp/p) \). For \(\gamma > \gamma_T \) has excess energy moving from head to tail and lack going from tail to head. For \(Q' > 0 \), phase advances in first, lags in second step; vice versa for \(Q' < 0 \) or \(\gamma < \gamma_T \). Figure shows motion for \(T_\beta = T_s/8 \), for \(Q' = 0 \) and \(Q' < 0 \) in 4 steps of \(T_\beta/8 \).

\[
\begin{align*}
Q' &= 0 \quad Q' > 0 \\
\text{CERN booster; Gareyte, Sacherer.}
\end{align*}
\]
Model of head-tail instability

Above transition energy:

\(Q' = 0 \): Going from head to tail or vice versa has same phase change. Phase lag and advance interchange, giving neither damping nor growth.

\(Q' < 0 \): Going from head to tail there is a loss in phase, going from tail to head a gain (picture), giving a systematic phase advance between head and tail and in average growth.

\(Q' > 0 \): Going from head to tail there is a phase gain, going back a loss, giving a systematic phase lag between head and tail and in average damping.

Below transition this situation is reversed.

Head tail spectrum:

\[
y I_p \quad \omega_0 \quad Q' < 0
\]
A merry-go-round, having vertically moving horses, can illustrate transverse modes:
Coupled bunch modes, real space $y = f(\theta, t)$
Head-Tail modes, phase-space $y = f(\Delta E, \tau, t)$

Summary

Present instability treatment, invented by K. Robinson and generalized to nearly all cases by Frank Sacherer.

This demands resistive impedance at upper, Z^+, and lower, Z^-, side-band to fulfill **stability conditions**:

<table>
<thead>
<tr>
<th></th>
<th>above transition</th>
<th>below transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>longitudinal, stability</td>
<td>$Z^+_r < Z^-_r$</td>
<td>$Z^+_r > Z^-_r$</td>
</tr>
<tr>
<td>transverse $Q' = 0$, stability</td>
<td>$Z^+{Tr} > Z^-{Tr}$</td>
<td>$Z^+{Tr} > Z^-{Tr}$</td>
</tr>
<tr>
<td>transverse head-tail, stability</td>
<td>$Q' > 0$</td>
<td>$Q' < 0$</td>
</tr>
</tbody>
</table>

Ken Robinson

Frank Sacherer