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Magnetic bunch compressor (Chicane)




Long undulators chain




Beam separation




Experimental hall (Single Protein Imaging)




Atomic Laser ==> Bounded Electrons

Light Amplification by Stimulated Emission of Radiation

Spontaneous Emission Stimulated Emission




Active medium
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FEL Oscillator

FEL Amplifier
Laser-Seeded

SASE FEL
Self Amplified

Spontaneous Emission

Limited by seeding sources

A2 0.1 nm ’
Limited by electron beam quality



Properties of Stimulated Emission
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1. Monochromaticity. 2. Directionality.
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3. Coherence. —
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Transverse electron motion in an Undulator: '
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Undulator Radiation

© DESY

The electron trajectory is
determined by the undulator

field and the electron energy the radiation cone if

The electron trajectory is inside
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Second order longitudinal electron motion: |




Relativistic Mirrors
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Radiation Simulator — T. Shintake, @ http://www-xfel.spring8.or.jp/Index.htm




Due to the finite duration the radiation is not monochromatic but contains a
frequency spectrum which is obtained by Fourier transformation of a
truncated plane wave




Spectral Intensity

Angular width




Electron beam
HK-rav racdiation

Magnetic structures

Storage ring

Undulator

Free electron laser
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Different electrons radiate indepedently hence the total power depends linearly
on the number N, of electrons per bunch:

Incoherent Spontaneous Radiation Power:

Coherent Stimulated Radiation Power:

WE NEED micro-BUNCHING |




Spontaneous Emission ==> Random phases

undulator <

light wave:

Radiated Power :
Poc N

destructive interference
——> shotnoise radiation
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Coherent Light ==> Stimulated Emission
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electrons:
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light wave: VA VA VA

Radiated Power :

P o« N2

constructive interference
——> enhanced emission




0g( e ")

SRS LE

Letargy
Spontaneous Emission
Low Gain

Slow Bunching

Exponential Growth
Stimulated emission
High Gain

Enhanced Bunching

Saturation
Absorption
No Gain

Debunching




Free Electron Laser 1D Self Consistent Model

Consider"seeding"by an external light source with wavelength A,
The light wave is co-propagating with the relativistic electron beam




Newton Lorentz Equations

Problem: electrons are slower than
light

Question: can there be a continuous
energy transfer from electron beam
to light wave?

Answer: We need a Self Consistent
Model

Maxwell Equations

(R. Bonifacio, C.Pellegrini, L.Narducci, Opt. Comm., 50, 373 (1984))




After one wiggler period the electron sees the radiation with the same phase
if the flight fime delay is exactly one radiation period: FAVEE SECE ML iy

The relative slippage of the radiation envelope through the electron beam can
be neglected, provided that I >>N . (Steady State Regime)




Ex(z, t) =F, cos(klz —w;t + 1/)0)
Plane wave with constant amplitude ,
co-propagating with the electron beam:
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Ponderomotive phase: 1/}(1‘) = (kl + ku)z — ;t + 1/}0

Fast oscillating phase (we can neglect it): 1? =Y - Zkuz

In a resonant and randomly phased electron beam, nearly one half of
the electrons absorbs energy and one half loses energy, with no net
energy exchange.




If the undulator is sufficiently long the energy modulation becomes a
phase modulation: the electrons self-bunch on the scale of a radiation
wavelength.

Ponderomotive Potential

The phase of the combined "ponderomotive” (radiation + undulator) field,
propagates in forward direction with a phase velocity that corresponds
to the velocity of the resonant particle:

The particles bunch around a phase for which there is weak coupling
with the radiation:

, , ‘b‘ =~ () Spontaneous emission
Bunching _ v, _ [ -
Parameter: : .
‘ ‘b‘ Wl Stimulated emission




Motion in the potential well: the electron pendulum
equations

For particles with off resonance energy , the ponderomotive
phase is no longer constant

d _
721 = (kl + ku)vZ — k;c

Two coupled first order differential equations




Combining the two coupled first order differential equations:
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d-y
dt?

+Q° cosyp =0

Separatrix




Courtesy L. Giannessi (Perseo in 1D mode http://www.perseo.enea.it)
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High gain FEL regime

Test solution

Slowly Varying Envelope Approximation (SVEA):

the amplitude variation within one undulator period is very small

To be consistent with SVEA we should average also the source term
over a time in which could be considered constant




Integration by parts

Beam model

S: transverse beam area

Exercise: verify there are not misprints (~mistakes):

where : V =Sy T

using v,; =

using y ; ~,

N
where n, = —




Three coupled first order differential equations.

They describe a collective instability of the system which leads to electron self-
bunching and to exponential growth of the radiation until saturation effects set a
limit on the conversion of electron kinetic energy into radiation energy.

Saturation effects prevent the beam to radiate as N2, limting the radiated
power scaling to N%3, due to a competition between neighbours slices .

When propagation effects and slippage are relevant, i.e. when the elctron beam
is as short as a slippage length, the emitted radiation leaves the bunch before
saturation occurs and the power scaling becomes N? (Super-radiant or Single
Spike regime)




Can there be a continuous energy transfer from electron beam to light

(kl + ku)z — k;ct - d—(pt

dt

The electron beam acts as a dielectric medium which slows down the phase
velocity of the ponderomotive field compared to the average electron longitudinal
velocity.

Hence the bunching turns out to occur around a phase corresponding to
radiation energy gain.




The particles within a micro-bunch radiate coherently. The resulting strong
radiation field enhances the micro-bunching even further. Result: collective
instability, exponential growth of radiation power.

Newton Lorentz Equations
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Maxwell Equations




SASE FEL at short wavelengths require a very intense,
high quality e-beam

FEL Parameter

p=0136ijl/3B2/3)L4/3

Exponential growth

Gain Length

Saturation power

Constraint on emittance

Constraint on energy spread

Relative bandwidth




http://xfel.desy.de/




Courtesy L. Giannessi (Perseo in 1D mode http://www.perseo.enea.it)
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Radiation Simulator — T. Shintake, @ http://www-xfel.spring8.or.jp/Index.htm




SASE Longitudinal coherence

Slippage length = N , )\’rad

The radiation "slips” over the electrons for a distance N A4




SEEDING
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SASE Saturation Results
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FLASH - VUV Single-Pass FEL, Hamburg
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Courtesy Bart Faatz (DESY)

Layout of the VUV-FEL

Laser Compressor Compressor

5MeV 127 MeV 370 MeV 445 MeV bypass diagnostics




Courtesy Bart Faatz (DESY)

Beam Energy and Wavelength
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Short Wavelength SASE FEL
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XFEL at DESY
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