Linear Imperfections

CAS Frascati November 2008

Oliver Bruning / CERN AP–ABP
Linear Imperfections

- equation of motion in an accelerator
 - Hills equation
 - sine and cosine like solutions
 - closed orbit
 - sources for closed orbit perturbations

- dipole perturbations
 - closed orbit response
 - dispersion orbit
 - integer resonances
 - BPMs & dipole correctors

- quadrupole perturbations
 - one-turn map & tune error
 - beta-beat
 - half-integer resonances

- orbit correction
 - local orbit bumps
Variable Definition

Variables in moving coordinate system:

\[x' = \frac{d}{ds} x \]

\[\frac{d}{dt} = \frac{d}{dt} \cdot \frac{d}{ds} \Rightarrow x' = \frac{p_x}{p_0} \]

Hill’s Equation:

\[\frac{d^2 x}{ds^2} + K(s) \cdot x = 0; \quad K(s) = K(s + L); \]

\[K(s) = \begin{cases} 0 & \text{drift} \\ 1/\rho^2 & \text{dipole} \\ 0.3 \cdot \frac{B[T/m]}{p[GeV]} & \text{quadrupole} \end{cases} \]

Perturbations:

\[\frac{d^2 x}{ds^2} + K(s) \cdot x = G(s); \quad G(s) = \frac{F(s)_{\text{Lorentz}}}{v \cdot p_0} \]
Sinelike and Cosinelike Solutions

system of first order linear differential equations:

\[
\vec{y} = \begin{pmatrix} \dot{x} \\ x' \end{pmatrix} \quad \rightarrow \quad \vec{y}' + \begin{pmatrix} 0 & 1 \\ K & 0 \end{pmatrix} \cdot \vec{y} = 0
\]

\[K = \text{const}\]

\[
\vec{Y}_1 (s) = \begin{pmatrix} \sin (\sqrt{K} \cdot s) \\ \sqrt{K} \cdot \cos (\sqrt{K} \cdot s) \end{pmatrix} \quad \vec{Y}_2 (s) = \begin{pmatrix} \cos (\sqrt{K} \cdot s) \\ -\sqrt{K} \cdot \sin (\sqrt{K} \cdot s) \end{pmatrix}
\]

initial conditions:

\[
\vec{Y}_1 (0) = \begin{pmatrix} Y_1 \\ Y_1' \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad \text{and} \quad \vec{Y}_2 (0) = \begin{pmatrix} Y_2 \\ Y_2' \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}
\]

general solution:

\[
\vec{y} (s) = a \cdot \vec{Y}_1 (s) + b \cdot \vec{Y}_2 (s)
\]

transport map:

\[
\vec{y} (s) = M(s - s_0) \cdot \vec{y} (s_0)
\]

with:

\[
M = \begin{pmatrix} \cos (\sqrt{K} \cdot [s-s_0]) & \sin (\sqrt{K} \cdot [s-s_0]) \\ -\sqrt{K} \cdot \sin (\sqrt{K} \cdot [s-s_0]) & \sqrt{K} \cdot \cos (\sqrt{K} \cdot [s-s_0]) \end{pmatrix}
\]
Floquet theorem:

\[\vec{Y}_1 (s) = \left(\begin{array}{c} \sqrt{\beta(s)} \cdot \sin (\phi(s) + \phi_0) \\ [\cos (\phi(s) + \phi_0) + \alpha(s) \cdot \sin (\phi(s) + \phi_0)] / \sqrt{\beta(s)} \end{array} \right) \]

\[\vec{Y}_2 (s) = \left(\begin{array}{c} \sqrt{\beta(s)} \cdot \cos (\phi(s) + \phi_0) \\ -[\sin (\phi(s) + \phi_0) + \alpha(s) \cdot \cos (\phi(s) + \phi_0)] / \sqrt{\beta(s)} \end{array} \right) \]

\[\beta(s) = \beta(s + L); \quad \phi(s) = \int \frac{1}{\beta} \, ds; \quad \alpha(s) = -\frac{1}{2} \beta^1 (s) \]

`sinelike´ and `cosinelike´ solutions:

\[\vec{C}(s) = a \cdot \vec{Y}_1 (s) + b \cdot \vec{Y}_2 (s) \quad \vec{S}(s) = c \cdot \vec{Y}_1 (s) + d \cdot \vec{Y}_2 (s) \]

with:

\[\vec{C}(s_0) = \begin{pmatrix} C(s_0) \\ C^\dagger(s_0) \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \text{and} \quad \vec{S}(s_0) = \begin{pmatrix} S(s_0) \\ S^\dagger(s_0) \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \]

one can generate a transport matrix in analogy to the case with constant K(s)!
\[\vec{S}(s) = \left(\sqrt{\beta(s)} \beta(s_0) \cdot \sin(\phi(s) + \phi_0) \right. \]
\[\left. \sqrt{\beta(s_0)} \cdot [\cos(\phi(s) + \phi_0) + \alpha(s) \cdot \sin(\phi(s) + \phi_0)] / \sqrt{\beta(s)} \right) \]

\[\vec{C}(s) = \left(\sqrt{\beta(s)} \cdot [\cos(\phi(s) + \phi_0) + \alpha(s_0) \cdot \sin(\phi(s) + \phi_0)] / \sqrt{\beta(s_0)} \right. \]
\[\left. - (1 + \alpha_0 \alpha_0) \cdot [\sin(\phi(s) + \phi_0) + (\alpha_0 - \alpha) \cdot \cos(\phi(s) + \phi_0)] / \sqrt{\beta(s_0)} \right) \]

transport map from \(s_0 \) to \(s \): \[\vec{y}(s) = \mathbf{M}(s, s_0) \cdot \vec{y}(s_0) \]

with: \[\mathbf{M} = \left(\begin{array}{cc} C(s) & S(s) \\ C^\prime(s) & S^\prime(s) \end{array} \right) \]

transport map for \(s = s_0 + L \):
\[\mathbf{M} = \mathbf{I} \cdot \cos(2\pi Q) + \mathbf{J} \cdot \sin(2\pi Q) \]

\[\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \mathbf{J} = \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix}; \quad \gamma = \frac{[1 + \alpha^2]}{\beta} \]
Closed Orbit

Particles oscillate around an ideal orbit:

Additional dipole fields perturb the orbit:

Error in dipole field

Energy error

\[\alpha = \frac{I}{\rho} = \frac{q \cdot B \cdot l}{p + \Delta p} \approx \left(1 - \frac{\Delta p}{p}\right) \cdot \frac{q \cdot B \cdot l}{p} \]

Offset in quadrupole field

\[B_x = g \cdot y \quad B_y = g \cdot x \quad x = x_0 + \hat{x} \quad B_x = g \cdot \hat{y} \quad B_y = g \cdot x_0 + g \cdot \hat{x} \]

dipole component
Quadrupole Magnet

\[B_x = g \cdot y \]
\[B_y = g \cdot x \]
\[F_x = -q \cdot v \cdot B_y \]
\[F_y = q \cdot v \cdot B_x \]

\[
\frac{d^2 x}{ds^2} + K(s) \cdot x = G(s); \quad G(s) = \frac{F(s)}{v \cdot p_0} \]

Normalized fields:

dipole: \[k_0(s) = 0.3 \cdot \frac{B_0[T]}{p_0[GeV]} \]

quadrupole: \[k_1(s) = 0.3 \cdot \frac{g_0[T/m]}{p_0[GeV]} \]

quadrupole misalignment: \[\Delta k_0(s) = 0.3 \cdot \frac{g[T/m]}{p[GeV]} \cdot x_0 \]
Dipole Error and Orbit Stability

\[Q: \text{ number of } \beta \text{-oscillations per turn} \]

\[Q = N \]

the perturbation adds up

amplitude growth and particle loss

watch out for integer tunes!

\[Q = N + 0.5 \]

the perturbation cancels after each turn
Quadrupole Error and Orbit Stability

Quadrupole Error:

- Orbit kick proportional to beam offset in quadrupole

\[Q = N + 0.5 \]

1. Turn: \(x > 0 \)

- Amplitude increase

2. Turn: \(x < 0 \)

- Amplitude increase

Watch out for half integer tunes!
Sources for Orbit Errors

- **Quadrupole offset:**
 - alignment \(\pm 0.1 \text{ mm} \)
 - ground motion
 - slow drift
 - civilisation
 - moon
 - seasons
 - civil engineering

- **Error in dipole strength**
 - power supplies
 - calibration

- **Energy error of particles**
 - injection energy (RF off)
 - RF frequency
 - momentum distribution
Example Quadrupole Alignment in LEP

Transversal tilt dispersion of the 3278 dipoles
\[\sigma = \pm 0.34 \text{ mrad} \]

Vertical dispersion of the 784 quadrupoles
(with respect to the smoothing polynomial)
\[\sigma = \pm 0.65 \text{ mm} \]

Figure 1: observed status, end 1992

Figure 2: progressive corrections in 1993 and 1994
Problems Generated by Orbit Errors

injection errors:
- aperture → beam losses
- filamentation → beam size

closed orbit errors:
- x–y coupling
- aperture
- energy error
- field imperfections
- dispersion → beam size at IP
- beam separation

Aim:

\[\Delta x, \ \Delta y < 4 \text{ mm} \]
\[\text{rms} < 0.5 \text{ mm} \]

beam monitors and orbit correctors
Synchrotron:

the orbit determines the particle energy!

assume: \(L > \) design orbit

Equilibrium:

\[
f_{RF} = h \cdot f_{rev}
\]

\[
f_{rev} = \frac{1}{2\pi} \cdot \frac{q}{m \cdot \gamma} \cdot B
\]

\(E \) depends on orbit and magnetic field!
tidal motion of the earth:

orbit and beam energy modulation:

\[f_{\text{mod}} = 24 \text{ h}; 12 \text{ h} \]

\[\Delta E \approx 10 \text{ MeV} \]

\[\approx 0.02\% \]

aim:

\[\Delta E \lesssim 0.003\% \]

requires correction!
energy modulation due to tidal motion of earth

ΔE ≈ 10 MeV
energy modulation due to lake level changes changes in the water level of lake Geneva change the position of the LEP tunnel and thus the quadrupole positions

orbit and energy perturbations

\[\Delta E \approx 20 \text{ MeV} \]
energy modulation due current perturbations in the main dipole magnets

TGV line between Geneva and Bellegarde
correlation of NMR dipole field measurements with the voltage on the TGC train tracks

$\Delta E \sim 5 \text{ MeV for LEP operation at } 45 \text{ GeV}$
ground motion due to human activity
quadrupole motion in HERA–p (DESY Hamburg)

RMS

peak to peak
Closed Orbit Response

inhomogeneous equation:

\[
\frac{d^2 x}{ds^2} + K(s) \cdot x = G(s); \quad G(s) = \Delta k_0(s)
\]

\[
\vec{y}' + \begin{pmatrix} 0 & 1 \\ K & 0 \end{pmatrix} \cdot \vec{y} = \vec{G}; \quad \vec{G} = \begin{pmatrix} 0 \\ G \end{pmatrix}
\]

\[
\vec{y}(s) = a \cdot \vec{S}(s) + b \cdot \vec{C}(s) + \vec{\psi}(s)
\]

we need to find only one solution!

variation of the constant:

\[
\vec{\psi}(s) = c(s) \cdot \vec{S}(s) + d(s) \cdot \vec{C}(s)
\]
Closed Orbit Response

variation of the constant in matrix form:

\[\vec{\psi}(s) = \phi(s) \cdot \vec{u}(s); \quad \text{with} \]

\[
\phi(s) = \begin{pmatrix}
C(s) & S(s) \\
C'(s) & S'(s)
\end{pmatrix}
\]

substitute into differential equation:

\[\phi(s) \cdot \vec{u}'(s) = \vec{G}(s) \]

\[\vec{u}(s) = \int_{s_0}^{s} \phi(t)^{-1} \cdot \vec{G}(t) \, dt \]

\[\vec{y}(s) = a \cdot \vec{S}(s) + b \cdot \vec{C}(s) + \phi(s) \cdot \int_{s_0}^{s} \phi(t)^{-1} \cdot \vec{G}(t) \, dt \]
Closed Orbit Response

periodic boundary conditions:

\[\mathbf{y}(s) = a \cdot \mathbf{S}(s) + b \cdot \mathbf{C}(s) + \int_{s_0}^{s} \phi(t)^{-1} \cdot G(t) \, dt \]

with

\[\mathbf{y}(s) = \begin{pmatrix} x(s) \\ x'(s) \end{pmatrix}; \quad x(s) = x(s + L); \quad x'(s) = x'(s + L) \]

periodic boundary conditions determine coefficients \(a \) and \(b \)

\[x(s) = \frac{\sqrt{\beta(s)}}{2 \sin(\pi Q)} \cdot \int_{s_0}^{s_0+\text{circ}} \sqrt{\beta(t)} \cdot G(t) \cos[\phi(t) - \phi(s) - \pi Q] \, dt \]
Closed Orbit Response

Example: particle momentum error

normalized dipole strength: \(k_0(s) = 0.3 \cdot \frac{B[T]}{p[GeV]} \)

\[
k_0(s) = \frac{1}{\rho(t)} - \frac{1}{\rho(t)} \cdot \frac{\Delta p}{p_0}
\]

\[
x(s) = \frac{\sqrt{\beta(s)}}{2 \sin(\pi \cdot Q)} \cdot \int \sqrt{\beta(t)} \cdot G(t) \cos [\phi(t) - \phi(s) - \pi \cdot Q] \, dt
\]

\[
x(s) = D(s) \cdot \frac{\Delta p}{p}
\]

with

\[
D(s) = \frac{\sqrt{\beta(s)}}{2 \sin(\pi \cdot Q)} \cdot \int \frac{\sqrt{\beta(t)}}{\rho(t)} \cdot \cos [\phi(t) - \phi(s) - \pi \cdot Q] \, dt
\]

Dispersion Orbit
from the quadrupole alignment errors

the orbit error in a storage ring with conventional magnets is dominated by the contributions from the quadrupole alignment errors

orbit perturbation is proportional to the local β-functions at the location of the dipole error

alignment errors at QF cause mainly horizontal orbit errors

alignment errors at QD cause mainly vertical orbit errors
aim at a local correction of the dipole error due to the quadrupole alignment errors

place orbit corrector and BPM next to the main quadrupoles

horizontal BPM and corrector next to QF
vertical BPM and corrector next to QD

orbit in the opposite plane?

relative alignment of BPM and quadrupole?
LEP Orbit

Horizontal Orbit:

- beam offset in quadrupoles:
 - Lake Geneva
 - moon

 energy error

Vertical Orbit:

- beam offset in quadrupoles
- beam separation

orbit deflection depends on particle energy

vertical dispersion \[D(s) \]

\[
\sigma_y = \sqrt{\varepsilon \cdot \beta_y + \delta_y^2 \cdot D^2}
\]

small vertical beam size relies on good orbit

1994: 13000 vertical orbit corrections in physics
Quadrupole Gradient Error

one turn map:

can be generated by matrix multiplication:

\[\vec{z}_{n+1} = \mathbf{M} \cdot \vec{z}_n \]

\[\vec{z} = \begin{pmatrix} x \\ x' \end{pmatrix} \]

and can be expressed in terms of the C and S solutions

\[\mathbf{M} = \mathbf{I} \cdot \cos(2\pi Q) + \mathbf{J} \cdot \sin(2\pi Q) \]

\[\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \mathbf{J} = \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix}; \quad \gamma = [1 + \alpha^2] / \beta \]

remember:

\[\cos(2\pi Q) = \frac{1}{2} \text{ trace } \mathbf{M} \]

the coefficients of:

\[\frac{\mathbf{M} - \mathbf{I} \cdot \cos(2\pi Q)}{\sin(2\pi Q)} \]

provide the optic functions at \(s_0 \)
Quadrupole Gradient Error

Transfer matrix for single quadrupole:

\[m_0 = \begin{pmatrix} 1 & 0 \\ -k_1 \lambda & 1 \end{pmatrix} \]

Matrix for single quadrupole with error:

\[m = \begin{pmatrix} 1 & 0 \\ -[k_1 + \Delta k_1] \lambda & 1 \end{pmatrix} \]

One turn matrix with quadrupole error:

\[M = m \cdot m_0^{-1} \cdot M_0 \]

Trace of \(M \):

\[\cos(2\pi Q) = \cos(2\pi Q_0) \frac{1}{2} \beta \cdot \Delta k_1 \lambda \cdot \sin(2\pi Q_0) \]
Quadrupole Gradient Error

distributed perturbation:

\[
\cos(2\pi Q) = \cos(2\pi Q_0) - \frac{\sin(2\pi Q_0)}{2} \cdot \oint \beta \cdot \Delta k_1 ds
\]

\[
\Delta Q = \frac{1}{4\pi} \cdot \oint \beta \cdot \Delta k_1 ds
\]

chromaticity:

\[
k_1 = \frac{e \cdot g}{p}
\]

momentum error

\[
\Delta k_1 = -k_1 \cdot \frac{\Delta p}{p}
\]

\[
\Delta Q = -\frac{1}{4\pi} \cdot \oint \beta \cdot k_1 \cdot ds \cdot \frac{\Delta p}{p}
\]

\[
= \xi \cdot \frac{\Delta p}{p}
\]
quadrupole error:

\[
\mathbf{z}_{n+1} = \mathbf{M} \cdot \mathbf{z}_n
\]

with

\[
\mathbf{M} = \mathbf{I} \cdot \cos(2\pi Q) + \mathbf{J} \cdot \sin(2\pi Q)
\]

\[
\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \mathbf{J} = \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix}; \quad \gamma = \left[1 + \alpha^2 \right] / \beta
\]

calculate:

\[
\frac{m_{12}}{\sin(2\pi Q)}
\]

\[
\Delta \beta(s) = \frac{\beta(s)}{2 \sin(2\pi \cdot Q)} \cdot \int_{s_0}^{s_0+\text{circ}} \beta(t) \cdot \Delta k(t) \cos[2[\phi(t) - \phi(s)] - 2\pi Q] \, dt
\]

\(\beta - \text{beat oscillates with twice the betatron frequency} \)
deflection angle:

\[\theta_i = \int_{\text{dipole}} G_i(t) \, dt = \frac{0.3 \cdot B_i [T] \cdot l}{p [\text{GeV}]} \]

trajectory response:

[no periodic boundary conditions]

\[x(s) = -\sqrt{\beta_i / \beta(s)} \cdot \theta_i \cdot \sin[\phi(s) - \phi_i] \]

\[x'(s) = -\sqrt{\beta_i / \beta(s)} \cdot \theta_i \cdot \cos[\phi(s) - \phi_i] \]
Local Orbit Bumps II

closed orbit bump:

compensate the trajectory perturbation with additional corrector kicks further downstream

- closure of the perturbation within one turn
- local orbit excursion
- possibility to correct orbit errors locally

- closure with one additional corrector magnet
 - π - bump
- closure with two additional corrector magnets
 - three corrector bump
Local Orbit Bumps III

\[\pi - \text{bump:} \quad (\text{quasi local correction of error}) \]

limits / problems:
- closure depends on lattice phase advance
- requires 90° lattice
- sensitive to lattice errors
- requires horizontal BPMs at QF and QD
- sensitive to BPM errors
- requires large number of correctors
Local Orbit Bumps IV

3 corrector bump: (quasi local correction of error)

\[\theta_2 = -\frac{\sqrt{\beta_1}}{\sqrt{\beta_2}} \cdot \frac{\sin(\Delta\phi_{3-1})}{\sin(\Delta\phi_{3-2})} \cdot \theta_1 \]

\[\theta_3 = \left(\frac{\sin(\Delta\phi_{3-1})}{\tan(\Delta\phi_{3-2})} - \cos(\Delta\phi_{3-1}) \right) \cdot \frac{\sqrt{\beta_1}}{\sqrt{\beta_3}} \cdot \theta_1 \]

works for any lattice phase advance
requires only horizontal BPMs at QF

limits / problems:
sensitive to BPM errors
large number of correctors
can not control \(x' \)
Summary Linear Imperfections

- avoid machine tunes near integer resonances:
 - they amplify the response to dipole field errors
 - a closed orbit perturbation propagates with the betatron phase around the storage ring
 - discontinuities in the derivative of the closed orbit response at the location of the perturbation

- avoid storage ring tunes near half-integer resonances:
 - they amplify the response to quadrupole field errors
 - betafunction perturbations propagate with twice the betatron phase advance around the storage ring

- integral expressions are mainly used for estimates
- numerical programs mainly rely on maps
 - closed orbit = fixed point of 1-turn map
 - dispersion = eigenvector of extended 1-turn map
 - tune is given by the trace of the 1-turn map
 - twiss functions are given by the matrix elements