Vacuum in Accelerators

Vincent Baglin

CERN AT-VAC, Geneva
What does it mean?

From

Units
till

LHC
Vacuum in Accelerators

Outline

1. Vacuum Basis

2. Vacuum Components

3. Vacuum with Beams : LHC Case
1. Vacuum Basis
Units

The pressure is the force exerted by a molecule per unit of surface: 1 Pa = 1 N/m²

<table>
<thead>
<tr>
<th></th>
<th>Pa</th>
<th>kg/cm²</th>
<th>Torr</th>
<th>mbar</th>
<th>bar</th>
<th>atm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pa</td>
<td>1</td>
<td>10.2 10⁻⁶</td>
<td>7.5 10⁻³</td>
<td>10⁻²</td>
<td>10⁻⁵</td>
<td>9.81 10⁻⁶</td>
</tr>
<tr>
<td>kg/cm²</td>
<td>98.1 10³</td>
<td>1</td>
<td>735.5</td>
<td>980</td>
<td>0.98</td>
<td>0.96</td>
</tr>
<tr>
<td>Torr</td>
<td>133</td>
<td>1.35 10⁻³</td>
<td>1</td>
<td>1.33</td>
<td>1.33 10⁻³</td>
<td>1.31 10⁻³</td>
</tr>
<tr>
<td>mbar</td>
<td>101</td>
<td>1.02 10⁻³</td>
<td>0.75</td>
<td>1</td>
<td>10⁻³</td>
<td>0.98 10⁻³</td>
</tr>
<tr>
<td>bar</td>
<td>1.01 10⁵</td>
<td>1.02</td>
<td>750</td>
<td>10³</td>
<td>1</td>
<td>0.98</td>
</tr>
<tr>
<td>atm</td>
<td>101 300</td>
<td>1.03</td>
<td>760</td>
<td>1 013</td>
<td>1.01</td>
<td>1</td>
</tr>
</tbody>
</table>

As a consequence of the « vacuum force » …
Work with the Mechanical Design Office!

0.5 tonne → 6.6 tonnes

Otherwise…
Little Problem (you don’t need a “good” vacuum)!

• Case of the CERN ISR in the 70’s: spontaneous breaking of the bellows (due to a bad design or due to a fixed point not well attached?)

• But still possible nowadays even with modern computing tools …

• Case of the QRL’s bellows in the LHC, due to a bad design (too small corrugation high)
Ideal Gas Law

- Statistical treatment which concerns molecules submitted to thermal agitation (no interaction between molecules, random movement, the pressure is due to molecules hitting the surface)

- For such a gas, the pressure, $P \ [\text{Pa}]$, is defined by the gas density, $n \ [\text{molecules.m}^{-3}]$, the temperature of the gas, $T \ [\text{K}]$, and the Boltzmann constant k, $(1.38 \times 10^{-23} \ \text{J/K})$

$$P = n \ k \ T$$

Replaces gas density and pressure

- The distribution of velocities, dn/dv, follows a Maxwell-Boltzmann function

- The average velocity is:

$$\bar{v} = \sqrt{\frac{8kT}{\pi m}} = 146 \sqrt{\frac{T}{M}}$$

- At room temperature (m/s):

<table>
<thead>
<tr>
<th>He</th>
<th>Air</th>
<th>Ar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800</td>
<td>470</td>
<td>400</td>
</tr>
</tbody>
</table>

Vincent Baglin CERN Accelerator School - Frascati- 2/14 November 2008
Total Pressure and Partial Pressure

- The gas is usually composed of several types of molecules (ex: air, gas in vacuum systems)

- The total pressure, P_{Tot}, is the sum of all the partial pressure, P_i (Dalton law)

$$P_{\text{Tot}} = \sum P_i = k \ T \sum n_i$$

Partial pressures for atmospheric air

<table>
<thead>
<tr>
<th>Gas</th>
<th>%</th>
<th>P_i (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N$_2$</td>
<td>78.1</td>
<td>7.9×10^4</td>
</tr>
<tr>
<td>O$_2$</td>
<td>20.5</td>
<td>2.8×10^3</td>
</tr>
<tr>
<td>Ar</td>
<td>0.93</td>
<td>1.2×10^2</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>0.0033</td>
<td>4.4</td>
</tr>
<tr>
<td>Ne</td>
<td>1.8×10^3</td>
<td>2.4×10^{-1}</td>
</tr>
<tr>
<td>He</td>
<td>5.2×10^4</td>
<td>7×10^{-2}</td>
</tr>
</tbody>
</table>
Mean Free Path

- It is the path length that a molecules traverse between two successives impacts with other molecules. It depends of the pressure, of the temperature and of the molecular diameter.

- It increases linearly with temperature

- For air at room temperature :

\[
\lambda_{air}[cm] = \frac{5 \times 10^{-3}}{P[Torr]}
\]

- At atmospheric pressure, \(\lambda = 70 \) nm

- At 1 Torr, \(\lambda = 50 \) \(\mu \)m

- At \(10^{-2} \) Torr, \(\lambda = 0.5 \) cm

- At \(10^{-6} \) Torr, \(\lambda = 50 \) m
Turbulent and Viscous Flows

- When pumping down from atmospheric pressure, the physics is characterised by different flow regimes. It is a function of the pressure, of the mean free path and of the components dimensions.

- Reynold number, \(\text{Re} \):
 - if \(\text{Re} > 2000 \) the flow is turbulent
 - it is viscous if \(\text{Re} < 1000 \)

\[
\text{Re} = \frac{Q [\text{Torr} \cdot \text{l/s}]}{0.089D [\text{cm}]}
\]

- The **turbulent** flow is established around the atmospheric pressure

- In the low vacuum \((10^3-1 \text{ mbar})\), the flow is **viscous**. The flow is determined by the interaction between the molecules themselves. The flow is **laminar**. The mean free path of the molecules is **small** compared to the diameter of the vacuum chamber

\[
\text{Viscous flow: } \bar{P}D > 0.5 \text{[Torr.cm]}
\]
Transition and Molecular Flows

• In the medium vacuum (1-10⁻³ mbar), the flow is transitional. In every day work, this range is transited quickly when pumping down vacuum chambers. In this regime, the calculation of the conductance is complex. A simple estimation is obtained by adding laminar and molecular conductances.

• In the high vacuum (10⁻³ – 10⁻⁷ mbar) and ultra-high vacuum (10⁻⁷–10⁻¹² mbar), the flow is molecular. The mean free path is much larger than the vacuum chamber diameter. The molecular interactions do not longer occurs. Molecules interact only with the vacuum chamber walls.

\[
\text{Molecular flow : } \bar{p} D < 1.5 \times 10^{-2} \text{ [Torr.cm]}
\]

Molecular flow is the main regime of flow to be used in vacuum technology.

In this regime, the vacuum vessel has been evacuated from its volume. The pressure inside the vessel is dominated by the nature of the surface.
God made the bulk:
The surface was invented by the devil

Wolfgang Pauli
When expressing the complexity of a surface
Conductance

- It is defined by the ratio of the molecular flux, Q, to the pressure drop along a vacuum vessel. It is a function of the shape of the vessel, the nature of the gas and its temperature.

\[
C = \frac{Q}{(P_1 - P_2)}
\]

- Adding conductances in parallel

\[
C = C_1 + C_2
\]

- Adding conductances in series

\[
\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}
\]
Conductance Calculus in Molecular Regime

• For an orifice:

\[C = \sqrt{\frac{kT}{2\pi m}} A; \quad C_{\text{air, } 20^\circ}[l/s] = 11.6 \ A[cm^2] \]

The conductance of an orifice of 10 cm diameter is 900 l/s

• For a tube:

\[C = \frac{1}{6} \sqrt{\frac{2\pi kT}{m}} \frac{D^3}{L}; \quad C_{\text{air, } 20^\circ}[l/s] = 12.1 \frac{D[cm]^3}{L[cm]} \]

The specific conductance of a tube of 10 cm diameter is 120 l/s.m

To increase the conductance of a vacuum system, it is better to have a vacuum chamber with large diameter and short length.
Pumping Speed

• The **pumping speed**, S, is the ratio of the flux of molecules pumped to the pressure:

$$ S = \frac{Q}{P} $$

where Q is the flux of molecules pumped and P is the pressure.

• Coupling of a pump and of a vacuum chamber:

\[
\begin{align*}
Q &= C (P - P') \\
Q &= P'S
\end{align*}
\]

\[
\Leftrightarrow S_{\text{eff}} = \frac{Q}{P} = \frac{CS}{C+S}
\]

if $C >> S$, $S_{\text{eff}} \sim S$

if $C << S$, $S_{\text{eff}} \sim C$

Example:
Consider a turbomolecular pump of 400 l/s (CHF 10 000) to evacuate a 10 cm diameter tube of 2 m long.

$S = 400$ l/s; $C = 60$ l/s so $S_{\text{eff}} \sim 50$ l/s

... you should have used a smaller pump since you are conductance limited!

$S = 60$ l/s (CHF 5 000); $C = 60$ l/s so $S_{\text{eff}} \sim 30$ l/s
Outgassing

- The outgassing rate, \(q \), of a surface is the number of molecules desorbed from a surface per unit of surface and per unit of time.
- It is a function of the surface nature, of its cleanliness, of its temperature and of the pump down time.
- In all vacuum systems, the final pressure is driven by the outgassing rate:
 \[P_{\text{final}} = \frac{Q}{S} = \frac{q A}{S} \]

Metallic surfaces

\[q \sim q_0/t \]

Plastic surfaces

\[q \sim q_0/\sqrt{t} \]

Good Vacuum Design:
Use ONLY metallic surfaces and reduce to ZERO the amount of plastics

Vincent Baglin
CERN Accelerator School - Frascati- 2/14 November 2008
Cleanning Methods

• Several means are used in vacuum technology to reduce the outgassing rates

• Chemical cleaning is used to remove gross contamination such as grease, oil, finger prints.

• Example of CERN LHC beam screens:
 Degreasing with an alkanile detergent at 50°C in an ultrasonic bath
 Running tap water rinse
 Cold demineralised water rinse by immersion
 Rinse with alcool
 Dry with ambient air

• Vacuum firing at 950°C is used to reduce the hydrogen content from stainles steel surface
 - Length: 6 m
 - Diameter: 1 m
 - Maximum charge weight: 1000 Kg
 - Ultimate pressure: 8 \times 10^{-8} \text{Torr}
 - Pressure at the end of the treatment: high \times 10^{-6} \text{Torr}

• Glow discharges cleaning is used to remove b

• Wear gloves to handle the material
The outgassing rate of unbaked surfaces is dominated by H$_2$O. A bake-out above 150 degrees increase the desorption rate of H$_2$O and reduce the H$_2$O sojourn time in such a way that H$_2$ become the dominant gas.

Stainless steel after 50 h of pumping (Torr.l/s/cm2)

<table>
<thead>
<tr>
<th></th>
<th>H2</th>
<th>CH4</th>
<th>H2O</th>
<th>CO</th>
<th>CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unbaked</td>
<td>7 10^{-12}</td>
<td>5 10^{-13}</td>
<td>3 10^{-10}</td>
<td>5 10^{-12}</td>
<td>5 10^{-13}</td>
</tr>
<tr>
<td>Baked</td>
<td>5 10^{-13}</td>
<td>5 10^{-15}</td>
<td>1 10^{-14}</td>
<td>1 10^{-14}</td>
<td>1 10^{-14}</td>
</tr>
</tbody>
</table>

2. Vacuum Components
Pirani Gauge

• Pirani gauges are commonly used in the range 1 atm -10^{-4} mbar.

• The operating principle is based on the variation of the thermal conductivity of the gases as a function of pressure. A resistor under vacuum is heated at a constant temperature (~120°C). The heating current required to keep the temperature constant is a measure of the pressure.

• In the viscous regime, the thermal conductivity is independent of the pressure. Therefore pressure readings given above 1 mbar are wrong.

True vs indicated pressure

Penning Gauge

- Penning gauges are commonly used in the range 10^{-5} - 10^{-10} mbar. They are used for interlocking purposes.

- It is a cold cathode ionisation gauge \textit{i.e.} there are no hot filament.

- The operating principle is based on the measurement of a discharge current in a Penning cell which is a function of pressure: $I^+ = P^n$, n is close to 1.

- At high pressure the discharge is unstable due to arcing.
- At low pressure, the discharge extinguishes which means zero pressure reading.

- Electrons are produced by field emission and perform oscillations due to the magnetic field.

- Along the path length, molecules are ionised and ions are collected onto the cathode.

- Leakage current on the HV cables simulates a higher pressure.

P. Redhead. J.Vac.Sci. 21(5), Sept/Oct 2003, S1-S5
Bayard-Alpert Gauge

- Bayard-Alpert gauges are used for vacuum measurement purposes in the range 10^{-5} - 10^{-12} mbar.

- It is a hot filament ionisation gauge. Electrons emitted by the filament perform oscillations inside the grid and ionise the molecules of the residual gas. Ions are then collected by an electrode.

Where:
$I^+ = I^- \sigma n L$

I^+ is the ion current
I^- is the filament current
σ is the ionisation cross section
n the gas density
L the electron path length

- The gauge needs to be calibrated

- X-ray limit of a few 10^{-12} mbar
Residual Gas Analysers

- Residual Gas Analysers are used in the range 10^{-4} - 10^{-12} mbar. Their purpose is to do gas analysis.

- A filament produces electrons which ionise the residual gas inside a grid. A mass filter is introduced between the grid and the ion collector. The ion current can be measured in Faraday mode or in secondary electron electron multiplier mode.

- It is a delicate instrument which produces spectrum.

- It can be used to identified/find leaks (Ar, N$_2$).

- The ion current is sometimes difficult to analyse.

Primary Pump

- Are used to pump down from atmosphere down to 10^{-2} mbar with a speed of a few m3/h
- They are usually used as a baking pump for turbomolecular pumps
- Two categories: dry and wet pumps.
- Dry pumps are expensive and need additional cooling (water)
- Wet pumps are operating with oil which acts as a sealing, a lubricant, a heat exchanger and protects parts from rust and corrosion

Oil Sealed Rotary Vane Pump

Vincent Baglin
CERN Accelerator School - Frascati- 2/14 November 2008
Turbomolecular Pump

- This pump operates in the molecular regime and is used to pump down an accelerator vacuum system. Usually, it is installed with its primary pump on a mobile trolley: it can be removed after valving off.
- Its ultimate pressure can be very low: 10^{-11} mbar
- Its pumping speed range from 10 to 3000 l/s

![Graph showing pumping speed vs. pressure for different gases]

- The pumping mechanism is based on the transfer of impulse. When a molecule collides a blade, it is adsorbed for a certain length of time. After re-emission, the blade speed is added to the thermal speed of the molecules. To be significant, the blade speed must be comparable to the thermal speed hence it requires fast moving surfaces (~40000 turns/min)

- The compression ratio (P_{inlet}/P_{outlet}) increases exponentially with \sqrt{M}: “clean” vacuum without hydrocarbons. So, the oil contamination from the primary pump is avoided.
Sputter Ion Pump

- This pump operates in the range $10^{-5} - 10^{-11}$ mbar. It is used to maintain the pressure in the vacuum chamber of an accelerator.
- Its pumping speed ranges from 1 to 500 l/s

When electrons spiral in the Penning cell, they ionize molecules. Ions are accelerated towards the cathode (few kV) and sputter Ti. Ti, which is deposited onto the surfaces, forms a chemical bonding with molecules from the residual gas. Noble gases and hydrocarbons, which do not react with Ti, are buried or implanted onto the cathode.
- Like for a Penning gauge, the collected current is proportional to the pressure. It is also used for interlock.

Flanges and Gaskets

- For primary vacuum, elastomer seals and clamp flanges are used
- KF type components:
 Many fittings (elbows, bellows, T, cross, flanges with short pipe, reductions, blank flanges …)
 ISO diameters

- For ultra high vacuum, metallic gaskets and bolds flanges are used
- Conflat® Type components:
 Copper gaskets, blank flanges, rotatable flanges, welding flanges, elbows, T, crosses, adaptators, zero length double side flanges, windows …
 ISO diameters

Vincent Baglin
CERN Accelerator School - Frascati- 2/14 November 2008

P. Lutkiewicz, C. Rathjen.
J.Vac.Sci. 26(3), May/Jun 2008, 537-544
Tubes, Bellows, Valves

- Metallic tubes are preferred (low outgassing rate)
- Stainless steel is appreciated for mechanical reason (machining, welding)

- Bellows are equipped with RF fingers (impedance)

- Valves are used for roughing and sectorisation

Vincent Baglin
CERN Accelerator School - Frascati - 2/14 November 2008
Leak Detection

• The vacuum system of an accelerator must be leak tight!

• All vacuum components must follow acceptance tests (leak detection, bake out, residual gas composition and outgassing rate) before installation in the tunnel

• Virtual leaks, due to a closed volume, must be eliminated during the design phase. Diagnostic can be made with a RGA by measuring the gas composition before and after venting with argon.

• Leaks could appear:
 - during components constructions at welds (cracks or porosity)
 - due to porosity of the material
 - during the assembly and the bake-out of the vacuum system (gaskets)
 - during beam operation due to thermal heating

• Detection method: He is sprayed around the test piece and a helium leak detector (i.e. a RGA tune to He signal) is connected to the device under test.

Counter flow method
3. Vacuum with Beams : LHC
Desesperated Time

- Despited all the precautions taken before …

- The vacuum ingeneer becomes desesperated after the passage of the first (significant !) beam in his beautyfull (and expensive) vacuum system

Ma come è possibile????

- Because, the static pressure increases by several orders of magnitude due to dynamics effects
HOW is it Possible?
Photon Stimulated Desorption

- Synchrotron radiation induce gas desorption: SR machine, LEP, LHC
- Heat load and gas load

\[P = \frac{Q + \eta_{\text{photons}} \Gamma_{\text{photons}}}{S} \]

Beam cleaning during the first period of LEP

- η_{photon} is the photon desorption yield

Cu baked at 150°C
Vacuum Instability: the Effect

- In circular machine with large proton current: ISR, LHC

- Beam current stacking to 1 A
- Pressure increases to 10^{-6} Torr (x 50 in a minute)
- Beam losses

First documented pressure bump in the ISR
E. Fischer/O. Gröbner/E. Jones 18/11/1970
Vacuum Instability: Mecanism and Recipy

- **Reduction** of the effective pumping speed, S_{eff}

- **Solution:**

 Reduce η_{ion}

\[
P_{\text{eq}} = \frac{Q}{S_{\text{eff}}} = \frac{Q}{S \left(1 - \frac{\eta_{\text{ion}}}{S} \sigma \frac{I}{e} \right)}
\]
Electron Cloud: the Mechanism

- In modern machine with dense bunches and large positive current: KEK-B, PEP-II, SPS, RICH, LHC …
- Emittance growth, gas desorption and heat load in cryogenic machine
- Key parameters:
 - bunch structure
 - vacuum chamber dimension
 - secondary electron yield
 - photon electron yield
 - electron and photon reflectivities
 …

\[
P = \frac{Q + \eta_{Electrons} \cdot \Gamma_{Electrons}}{S}
\]

Schematic of electron-cloud build up in the LHC beam pipe.

F. Ruggiero et al., LHC Project Report 188 1998, EPAC 98

Vincent Baglin
CERN Accelerator School - Frascati- 2/14 November 2008
Electron Cloud : the Recipies

• Play with the key parameters
• Reduce photoelectron yield (perpendicular vs grazing incidence)
• Reduce secondary electron yields (scrubbing, TiZrV coatings, carbon coatings, geometry ..)
• Reduce the amount of electrons in the system (solenoid magnetic field, clearing electrodes, material reflectivities …)
• Adapt the bunch structure or the chamber geometry to reduce multiplication
• …

Secondary Electron Yield

N. Hilleret et al., LHC Project Report 433 2000, EPAC 00
The CERN Large Hadron Collider (LHC)

1st beam 10th of September 2008

- 26.7 km circumference
- 8 arcs of 2.8 km
- 8 long straight sections of 575 m
- 4 experiments
- 7 TeV

1st and 2nd turn of beam 1

H and V trajectories of beam 1
LHC Dipole Vacuum System

- Cold bore (CB) at 1.9 K which ensures leak tightness
- Beam screen (BS) at 5-20 K which intercepts thermal loads and acts as a screen
LHC Vacuum System Principle

- Molecular desorption stimulated by photon, electron and ion bombardment
- Desorbed molecules are pumped on the beam vacuum chamber
- 100 h beam life time (nuclear scattering) equivalent to $\sim 10^{15} \text{H}_2/\text{m}^3$ (10^{-8} Torr H_2 at 300 K)

In cryogenic elements

- Molecular physisorption onto cryogenic surfaces (weak binding energy)
- Molecules with a low recycling yield are first physisorbed onto the beam screen (CH_4, H_2O, CO, CO_2) and then onto the cold bore
- H_2 is physisorbed onto the cold bore
LHC Vacuum System Principle: Demonstration

- Equilibrium pressure

\[n_{eq} = \frac{\eta \dot{\Gamma}}{C} \]

- Equilibrium coverage

\[\theta_{eq} = \left(\frac{\sigma S \eta}{C \eta_0} \right) \theta_m \]

- Equilibrium pressure

\[n_{eq} = \frac{\eta \dot{\Gamma}}{C} \]

- Equilibrium coverage

\[\theta_{eq} = \left(\frac{\sigma S \eta}{C \eta_0} \right) \theta_m \]

Vincent Baglin
CERN Accelerator School - Frascati - 2/14 November 2008

\[E_C = 194 \text{ eV} \]
\[3 \times 10^{16} \text{ photons.s}^{-1}.\text{m}^{-1} \]
\[BS \sim 5 - 100 \text{ K} \]
\[CB \sim 2.5 - 4.2 \text{ K} \]
Room Temperature Vacuum System

• ~ 1 μm thick, Non Evaporable Getter TiZrV coated vacuum chambers ensure the required vacuum performances for LHC
• Some vacuum chambers were constructed and getter coated …

Courtesy R. Veness AT/VAC and P. Chiggiato TS-MME

Vincent Baglin CERN Accelerator School - Frascati- 2/14 November 2008
Room Temperature Vacuum System

- and installed inside the LHC tunnel

Vacuum chambers

Collimators

Warm magnets
TiZrV Vacuum Performances

Pumping Speed

![Pumping Speed Graph](image)

CO surface coverage [Torr ℓ cm2]

Pumping Speed [l s$^{-1}$ cm$^{-2}$]

10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3}

10^{13} 10^{14} 10^{15} 10^{16}

H_2, CO, N_2,

Courtesy P. Chiggiato TS/MME

ESD Yields

![ESD Yields Graph](image)

Effective Desorption Yield [molecules/electron]

10^{-2} 10^{-3} 10^{-4} 10^{-5} 10^{-6} 10^{-7}

Heating Temperature [°C]

100 200 250 300 350 400 450

H_2, CH_4, CO, CO_2

C. Benvenuti et al. J.Vac.Sci.Technol A 16(1) 1998

PSD Yields

![PSD Yields Graph](image)

Table 2: Summary of results from the activated test chamber

<table>
<thead>
<tr>
<th>Gas</th>
<th>Sticking probability</th>
<th>Photodesorption yield (molecules/photon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_2</td>
<td>0.5</td>
<td>$<10^{-3}$</td>
</tr>
<tr>
<td>CH_4</td>
<td>0</td>
<td>$<10^{-7}$</td>
</tr>
<tr>
<td>CO</td>
<td>0</td>
<td>$<10^{-5}$</td>
</tr>
<tr>
<td>CO_2</td>
<td>0.5</td>
<td>$<20^{-5}$</td>
</tr>
</tbody>
</table>

V. Anashin et al. EPAC 2002

Secondary Electron Yield

![Secondary Electron Yield Graph](image)

0 0.5 1.0 1.5 2.0

0 500 1000 1500 2000 2500 3000

A. r., 2 h 120 °C, 2 h 160 °C, 2 h 200 °C, 2 h 250 °C, 2 h 300 °C

Vincent Baglin

CERN Accelerator School - Frascati- 2/14 November 2008
Room Temperature Vacuum System : Demonstration

Ultimate Vacuum Pressure Distribution after NEG Activation of the LHC Room Temperature Vacuum Sectors

G. Bregliozzi et al. EPAC’08, Genoa 2008
Thank you for your attention !!!
Some References

- Cern Accelerator School, Vacuum technology, CERN 99-05
- Cern Accelerator School, Vacuum in accelerators, CERN 2007-03
- The physical basis of ultra-high vacuum, P.A. Redhead, J.P. Hobson, E.V. Kornelsen. AVS.

Some Journals Related to Vacuum Technology

- Journal of vacuum science and technology
- Vacuum