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Which Secondary Particle?

1.) It should have charge !

RIBs = rare isotope beams

~ 2200 with t > 1 ms,  

~ 1100 with t > 1 min,  

some t = 10n years

m = 3 .. 260 amu

= 3 .. 260 x 938.5 MeV/c2

2.) Lifetime:

pion    p+/- t = 26 ns  * g                  mp =  139.6 MeV/c2

positron e+ (stable)                    me =  0.511 MeV/c2

muon   m+/- t = 2.2 ms * g                mm =  105.7 MeV/c2

antiproton  p  (pbar, stable)            mp =  938.3 MeV/c2

g  = Lorentz factor
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Where ?

positrons:  BINP (VEPP-2, VEPP-4, VEPP2000), DESY (DORIS, PETRA), Cornell (CESR), 

CERN (LEP), SLAC (SPEAR, PEP II), KEKB => Super-KEKB, BEPC => BEPC-II, 

LN Frascati (ADA, ADONE, DAFNE), ILC, CLIC   (all e+e- colliders)

stopped, running, under construction, plans
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Why ?

Example for e+e- collider

Z0-Boson,  m = 91.2 GeV/c2 measured exactly in LEP

with energy 45.5 GeV for e+ and e- to reach 91.2 GeV/c2, 

Using antiparticles makes cross section 

much larger and reaction possible at all.

observed decay products, 17x106 collision events

f = other Fermions (70% hadrons) with further decays

OPAL detector (1 of 4 det. in LEP)

e+e-

 exact mass of Z0 and W+, W-

Goal: set free energy in a collider after annihilation, 

For symmetric collisions we release all energy.

E = 2 x 511 keV/c2 + 2 x kinetic energy 
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Why ?

Examples for p+p collider

Goal: set free energy in a collider after annihilation, 

E = 2 x 938 MeV/c2 + 2 x kinetic energy 

Z0-Boson  m = 91.2 GeV/c2 first observed directly in SPS converted

into a p+p collider    (Nobel price 1984, C. Rubbia , S. van der Meer)

Store p + p in same ring circulating in opposite directions at E > 44.7 GeV.

pp

Same trick used in Tevatron of Fermilab for

discovery of top quark (1995), mtop = 173.1 GeV/c2 .
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Where ?

positrons:  BINP (VEPP-2, VEPP-4, VEPP2000), DESY (DORIS, PETRA), Cornell (CESR), 

CERN (LEP), SLAC (SPEAR, PEP II), KEKB => Super-KEKB, BEPC => BEPC-II, 

LN Frascati (ADA, ADONE, DAFNE), ILC, CLIC   (all e+e- colliders)

p (pbar):      CERN  PS ->  AA -> SPS collider,  AC->AA->LEAR, AD -> ELENA

Fermilab Main Ring -> pbar ring -> Tevatron as collider

FAIR            SIS-100 -> CR -> HESR -> Cryring

stopped, running, under construction, plans
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Compare mass and magnetic moment of p and p.

Does antimatter really behave symmetric 

to normal matter (CPT theorem) ?

More Experiments with p

Put p in a trap, combine with e+,

(ATRAP, ASACUSA, BASE @ CERN)

Panda detector for FAIR

hydrogen jet target

Nucleon Structure (quarks and gluons)

After p+p collision new

forms of hadronic matter:

glueballs (only gluons), 

or hybrids with quarks.

Do spectroscopy of anti atom.
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Where ?

positrons:  BINP (VEPP-2, VEPP-4, VEPP2000), DESY (DORIS, PETRA), Cornell (CESR), 

CERN (LEP), SLAC (SPEAR, PEP II), KEKB => Super-KEKB, BEPC => BEPC-II, 

LN Frascati (ADA, ADONE, DAFNE), ILC, CLIC   (all e+e- colliders)

pbar:            CERN  PS ->  AA -> SPS collider,  AC->AA->LEAR, AD -> ELENA

Fermilab Main Ring -> pbar ring -> Tevatron as collider

FAIR            SIS-100 -> CR -> HESR -> Cryring

muons:           Fermilab pbar ring => muon Delivery Ring -> g-2 ring

plans for muon collider

stopped, running, under construction, plans
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Where ?

positrons:  BINP (VEPP-2, VEPP-4, VEPP2000), DESY (DORIS, PETRA), Cornell (CESR), 

CERN (LEP), SLAC (SPEAR, PEP II), KEKB => Super-KEKB, BEPC => BEPC-II, 

LN Frascati (ADA, ADONE, DAFNE), ILC, CLIC   (all e+e- colliders)

pbar:            CERN  PS ->  AA -> SPS collider,  AC->AA->LEAR, AD -> ELENA

Fermilab Main Ring -> pbar ring -> Tevatron as collider

FAIR            SIS-100 -> CR -> HESR -> Cryring

muons:           Fermilab pbar ring => muon Delivery Ring -> g-2 ring

plans for muon collider

RIBs in flight:  GSI Darmstadt (SIS18 -> FRS -> ESR)

IMP Lanzhou  (CSRm -> CSRe)

RIKEN (SRC -> BigRIPS -> Rare RI Ring)

FAIR (SIS100 -> Super-FRS -> CR -> HESR)

HIAF (China) BRing -> SRing

RIBs ISOL:     Many ISOL facilities worldwide, none coupled to a ring, yet.

CERN plan for ISOLDE -> TSR (from MPI Heidelberg)

idea of b beams (ne production by b-decay in long ring)

stopped, running, under construction, plans

9



Why ?

Should happen in Super-Nova explosions or merging stars, mechanism unclear, 

must proceed via rare isotopes and successive capture of neutrons/protons and 

decays. Path depends on binding energy for added nucleons and lifetimes.

Nucleosynthesis of heavier elements

10



Isochronous Mass Spectrometry in the ESR
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Sorting of Ions

raw data

Look for repeating peaks
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Baohua Sun, thesis Univ. Giessen 2005.

Time-of-flight Spectrum

Identification by m/q ratio.

Fragments from fission of 238U
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Masses Measured with Storage Rings 

thesis Daria Shubina, Univ. Heidelberg 2012

Isochronous +ToF

Cooled + Schottky 
done in ESR @ GSI Darmstadt

and also CSRe @ IMP Lanzhou
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Future Possibilities

nuclides with known masses
G.Audi et al., Nucl. Phys. A729 (2003) 3

stable nuclei

to be measured with SUPER-FRS-CR-RESR-NESR
Conceptual Design Report, GSI 2001
observed nuclei

r-process
path
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collaboration for FAIR

technical proposal 2005
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Why ?

Reactions with Rare Isotopes

Proton scattering is a technique to learn about matter distribution.

Like once Rutherford with a particles on gold foil,

with ~ 1 GeV proton beam on target made of material of interest.

Not possible for short lived radioactive nuclides.

 Reverse role of target and beam, shoot RIB on hydrogen target.

A very clean way and sensitive way is inside a storage ring.

Extremes of matter distribution inside nuclei

11Li                          208Pb

Shape of nucleus follows from 

shape of scattering distribution.
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Scattering of RIB on Hydrogen Target

measure position and energy with Si detectors
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M. von Schmid, EXL, Physica Scripta T116 (2015) 014005.
RMS radius of 56Ni



EXL collaboration, thesis Mirko von Schmid

56Ni(p,p) scattering distribution
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56Ni(p,p) scattering distribution

Diffraction Pattern (like for a wave after a single slit).

Extract radius of nucleus by fitting theory with parameters.

EXL collaboration, first such investigation for RIBs.

 RMS radius of 56Ni = 3.76 ± 0.08 fm

Physica Scripta T116 (2015) 014005.
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The fate of accelerated ions

Yeah, I am an 

accelerated ion.

By the way, what

do you do with 

accelerated ions?

Aaarrgh !
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pion (rest mass  mp+ ~ 140 MeV/c2)

We need a collision in which at least this energy is set free. 

Particle Production

pp central collision with Ekin > 70 MeV, 

b > 0.367

n

Transform motion from center-of-mass system (CoM) to laboratory (Lab).

pp

b > 0.647 = (b+bCoM) / (1+bbCoM)

Ekin > 290 MeV                                     

p
p+

Not all kinetic energy can be transferred to new particle 

some remains kinetic energy of collision partners.                      

p + p → p + n + p+

p + n → p + p + p-

pions then decay into muons

p

p+

n
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m = E / c²

mp =  mpbar  1 GeV/c²
pbar

p

p

p

pbar

m = E / c²

Ekin > 6 GeV

CoM

p, > 6 GeV p at rest

Lab

Creation of Antiprotons

Charge must be conserved and number of baryons

 creation of pairs of p and pbar.

22



pbar distribution after target
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Optimize Yield

Higher energy ?

+ larger cross section 

up to certain energy.

+ more forward focused

- higher Br

from Klaus Knie

based on Duperray et al., 

ppbar [GeV/c]

Phys. Rev. D 68, 094017
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How to produce Rare Isotopes ?

Fragmentation

Removal of nucleons in quasi-free

nucleon-nucleon collisions
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E > 100 MeV/u

average binding energy ~8 MeV/nucleon

~



Distribution of Fragments

Uranium on lead target
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Production Cross sections
Tin isotopes by different methods

Projectile fragmentation

Projectile fission

Target

Projectile 129Xe Main Fragment

238U
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|a|, |b| < 10 mrad

Fission Kinematics

in Uranium fission ~200 MeV are released

in Lab:
132Sn from
238U beam 

at 1 GeV/u

CoM

200 MeV

with angular acceptancewith thick target

MOCADI 

simulation 29



Momentum Spread

after Fragmentation Reaction

A. Bacquias, Phys.Rev.C 85, 024904 (2012)

exp. data V. Henzl, thesis, U. Prague

• Fermi momentum of bound nucleons

• Mom. transfer by evaporated nucleons

• Coulomb expansion in multi fragment.

Bacquias’ model

Experiment FRS@GSI

Morrissey
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Emittance Growth with Targets

Reaction in target causes transverse momentum px,
but in a thin target x does not change much. 

x

tan(a) =px/pz

x

tan(a)

primary particle secondary particle

pz pz

px

Make small beam spot to avoid large emittance for secondary beam

a
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Limits by Targets

rotating Fermilab copper/nickel target, 

fresh and after use for pbar production

small spot and pulsed beam = 

Short pulse  no thermal conductivity,

no mechanical motion.

Heating  expansion  stress

T [°C] s [Pa]

Patrick Hurh, Fermilab

Calculation for new target
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Limits by Targets

Simple temperature and stress calculation

melting? 

Example (FRS at GSI):

1010  U/spill at 125 MeV/u on 1mm2 spot,

 dQ/dm = 2 kJ/g, DT = 4000 K (in Cu)

Cu Al

graphite

Super-FRS at FAIR  5x1011 U ions/spill

use graphite, but requires enlarged spot.

1mm thick plates

H.Weick

Cu diamond
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Instantaneous energy deposition

number of ions
stopping power

spot size

molar mass
heat capacity

Initial compressive pressure P, wave propagates 

(vsound) to target boundary   tensile stress.

P > spall strength? plastic deformation P > yield strength ? 

not exactly elastic, cyclic stress, cracks?

bulk modulus
thermal expansion coeff.
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Br Separation

78Ni

resolving power R = m/Dm or q/Dq

R =

Dp/pnucl. reaction ~ 0.4 – 8 %

Dp/pmatter atomic ~ 0.05 – 0.3 %

statistical energy-loss difference

For given emittance x0a0

the B-field covered by

the beam defines R.

1

x0 a0

B(s) 

Br
df
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Limited by momentum spread



Br-DE-Br Separation Method

78Ni

scheme of FRS @ GSI, L=72m

Al degrader 1..10 g/cm2

production target

Be  1..4 g/cm2

DE = 1 - 50% lost     Z2
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Identification In-Flight

Br = m/q bg c0

• Br from magnet setting and

position detectors at dispersive 

focal planes (e.g. MWPCs).

thesis V. Henzl, CTU Prague 2005.

238U on H target, FRS@GSI

• Velocity (bg) from ToF over

larger distance (10-100 m)
mostly by plastic scintillators

• Z from DE in 

ionization chamber

= m [amu] / q [e]
But only with quasi DC beam !
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Diagnostics for Secondary Beams

Normal beam diagnostic for pulsed beam not selective, 

beam can be dominated by other particles.

• many pions along with pbars, 

• many other nuclides in RI beam  even with separator 

We may measure the wrong beam parameters.

Usual particle identification in-flight combines many detectors,

and requires measurement of single ions in coincidence. 

e.g. intense RIBs 106/spill,  spill = 100ns    rate = 1013/s

max. coincidence rate ~ 106/s, limited by detectors and electronics.

Special detectors blind for other particles ?

e.g. Cherenkov counter collecting light under limited angle only.

same Br in beamline -> different velocity -> different angle of light,

so far only for large differences (p, d, He)
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Schottky Diagnostics

in Ring

Measure revolution 

frequency from noise 

of pick-up.

Very sensitive down

to single ions.

Example from ESR 

(electron cooled beam)

relative mass difference 

Dm/m = 2.6x10-5

Intensity changes with 

time due to EC decay
140Pr  140Ce.
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Identification and Kicker

for really rare isotopes

target

beam from 

SRC cyclotron

Rare RI Ring (R3) at RIKEN

from Takayuki Yamaguchi

separator

measure masses of

rare isotopes in R3

~ 1 ion per injection

E = 168 MeV/u

kicker repetition

rate max. 90 Hz

C = 60.35m

ESRC = 345 MeV/u
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What is special about Secondary Beams

Limits by production targets.

Selective diagnostics for pulsed beams needed/wanted.

The reaction (and separation) process blows up the emittance.

 Handle as good as possible (strong lenses, matching).

for injection, extraction and transfer?

Secondary particles are produced in reactions with 

low probability, many other particles  separate.

Provide high energy by annihilation at high luminosity, 

investigate the secondary particles (pbar+x, rare isotopes). 
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