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Overview

1. Maxwell’s equations

2. Electromagnetic fields in different materials - material equations

3. Electrostatic fields

4. Magnetostatic fields

5. Electromagnetic waves

6. Field attenuation in conductors
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Please note:

All illustrations underlying a copyright were removed for the online version of this 

lecture.



11.03.2017 4

Maxwell‘s Equations
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Maxwell‘s Equations in their Integral Representation
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Figure: https://upload.wikimedia.org/wikipedia/commons/thumb/1/1e/James_Clerk_Maxwell_big.jpg/390px-
James_Clerk_Maxwell_big.jpg
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Gauss‘ Law (for Electricity) in Integral Form

Electric charges       or electric charge densities              generate electric flux densities              .

total electric flux through 
Gaussian surface             

total electric charge enclosed in 
Gaussian surface             
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Quick Quiz (I/II) – Value of Net Flux through Surface?

total electric flux through 
Gaussian surface             
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total electric flux through 
Gaussian surface             

• Total electric flux through the Gaussian surface equals zero 
since no charges are contained in the volume!

• Total amount of flux flowing into the Gaussian surface is 
equal to total amount of flux flowing out of the surface

• Absence of charges in the volume does not mean that the 
electric displacement fields are zero in the volume

Quick Quiz (II/II) – Value of Net Flux through Surface?
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Gauss‘ Law (for Electricity) –
from  Integral to Differential  Form

for infinitely small volumes 
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Gauss‘ Law for Magnetism in Integral Form

Magnetic flux densities               do not have sources, i.e. they are solely curl fields.

total magnetic flux through 
Gaussian surface             
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Gauss‘ Law for Magnetism –
from  Integral to Differential  Form

for infinitely small volumes 
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Faraday‘s Law of Induction

Time-dependent magnetic flux densities               generate curled electric field strength              .
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Faraday‘s Law of Induction – The Minus Sign (I / II)
The polarity of the induced electric field strength is such that it tends to produce a current that creates 
a magnetic flux to oppose the change in magnetic flux through the area enclosed by the current loop. 
This is known as Lenz’s Law.



• The minus sign in the induction law is also required for Maxwell‘s equation to be energy conserving!
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The polarity of the induced electric field strength is such that it tends to produce a current that creates 
a magnetic flux to oppose the change in magnetic flux through the area enclosed by the current loop. 
This is known as Lenz’s Law.

Faraday‘s Law of Induction – The Minus Sign (II / II)
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Faraday‘s Law of Induction –
from Integral to Differential Form

for infinitely small areas 
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Ampère‘s Law with Maxwell‘s Extension

Electric currents              and time-dependent electric displacement currents                    generate 
curled magnetic field strengths              .
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Ampère‘s Law with Maxwell‘s Extension –
from Integral to Differential Form

for infinitely small areas 
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Maxwell‘s Equations in their Differential Representation
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Figure: https://upload.wikimedia.org/wikipedia/commons/thumb/1/1e/James_Clerk_Maxwell_big.jpg/390px-
James_Clerk_Maxwell_big.jpg
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The Divergence Operator

• The divergence operator                           measures the source strength of the vector field                 
in that point 

• In some textbooks the divergence is denoted by 

• The divergence acts on a vector field and gives back a scalar field, i.e. the source strength!

• In Cartesian coordinates, the divergence is defined in terms of:



11.03.2017 20Faculty of Computer Science and Engineering, University of Rostock
U. van Rienen, J. Heller, and T. Flisgen
Recapitulation of Electromagnetism

The Divergence Operator – A 2D Example

vector field scalar field
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The Curl Operator

• The curl operator                             measures the rotation of  a vector field                   in that point

• In some textbooks the curl (or rotation) is denoted by 

• The curl operator acts on a vector field and gives back a vector field, i.e. the curl strength!

• In Cartesian coordinates, the curl is defined in terms of:
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The Curl Operator – A 3D Example

vector field vector field
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Electromagnetic Fields in Materials
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Electric Fields in Matter
• Materials can be polarized by applied electric fields
• The polarization           is in fact a displacement           of electric charges
• Permittivity of free space:
• Relative permittivity:
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Magnetic Fields in Matter
• Materials can be magnetized by applied magnetic fields
• The magnetization           is in fact a change of the orientation of magnetic dipoles
• Permeability of free space:
• Relative permeability:
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Some Remarks in Material Modelling
Often it is not sufficient to consider the material parameters as constants, because matter can be

• inhomogeneous

• dispersive, so that the material parameters are complex-valued and frequency-dependent:

• anisotropic (directional dependent), so that the material parameters become tensors

• non-linear (and can have a hysteresis in addition), so that the material parameters are 
functions on the field strength itself
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Electrostatics
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Electrostatics – Maxwell Simplifications

The electric field is curl-free

Gauss‘ law of electricity:
The divergence of the electric flux 
density is equal to the charge density

Due to the electric field being curl-free it can be expressed as negative gradient of an arbitrary 
scalar potential 

With this approach, we can ensure that Faraday’s law of induction holds for the static electric field:
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Electrostatics – Derivation of Poisson‘s equation

Starting with Gauss’ law of electricity

we employ the material equation for electric fields and assume that 
the permittivity is homogeneous:

Next, we express the electric field in terms of the gradient of an arbitrary scalar potential 

Combining both equations delivers the so-called Poisson equation (or potential equation)
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Electrostatics – Poisson‘s equation

In its simplest case, Poisson’s equation                                  describes the electric potential of a 
point charge:
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Electrostatics – A simple example: Capacitor

A capacitor is free of charges between its plates:

Assuming that the potential does only depend on one spatial direction, the Laplace-operator can be 
simplified to
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Magnetostatics
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Magnetostatics – Maxwell Simplifications

Simplified Ampère‘s law: The curl of the 
magnetic field equals the current-density 

Gauss' law of magnetism:
The magnetic flux density is divergence-free

With this approach, we can ensure that Gauss’ law for magnetism holds:

The magnetic flux density is divergence-free so that it can be expressed as curl of an arbitrary 
vector-potential
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Magnetostatics – Derivation of Poisson‘s equation

Starting with Ampère‘s law

we employ the material equation for magnetic fields and assume 
that the permeability                     is homogeneous:

Next, we express the magnetic flux density in terms of the gradient of a vector potential 

Combining both equations delivers Poisson’s equation for the magnetic vector potential
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Magnetostatics – Electromagnet

A possible application is the computation of magnetic fields in an electromagnet
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Electromagnetic Waves
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Electromagnetic Waves
Electromagnetic waves exist with different properties - such as waves in free space
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Electromagnetic Waves
Electromagnetic waves with different properties exist - such as guided waves
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Electromagnetic Waves
Electromagnetic waves with different properties exist - such as standing waves
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Wave Equation arising from Maxwell‘s Equations 
All electromagnetic waves in homogeneous media satisfy Maxwell‘s equation, in particular, the 
wave equation that we will derive here: 
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Wave Equation arising from Maxwell‘s Equations 
All electromagnetic waves in homogeneous media satisfy Maxwell‘s equation, in particular, the 
wave equation – here we continue its derivation: 

Curl-Curl Equation 

Wave Equation (with excitation) 
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Eigenmodes – Solutions of the Homogeneous Wave 
Equations
Eigenmodes are solutions of the wave equation for the non-excited, loss free and charge-free case: 

The partial differential equation comes with either of these boundary conditions:

Perfect Electric Conducting Perfect Magnetic Conducting

boundary boundary
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Electric Field of some Eigenmodes in a Resonator
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Field Attenuation in Conductors

Faculty of Computer Science and Engineering, University of Rostock
U. van Rienen, J. Heller, and T. Flisgen
Recapitulation of Electromagnetism



11.03.2017 45Faculty of Computer Science and Engineering, University of Rostock
U. van Rienen, J. Heller, and T. Flisgen
Recapitulation of Electromagnetism

Influence on Conducting Matter on Waves (I / II)
In conducting matter, Ohmic electric current densities will flow. They are proportional to the electric 
field strength with the conductivity     as constant:

Replacing the electric current density in the wave equation with the upper relation gives 

Transforming this equation into frequency domain delivers

Now, consider a plane wave propagation in +z – direction:

Plugging this into the frequency-domain representation of the wave equation gives
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Influence on Conducting Matter on Waves (II / II)
The wave number is complex valued

with the following real and imaginary parts

The real part describes the propagation of the wave while the imaginary part describes the 
exponential decay of the field strengt in the conductor

The distance which is required for the fields to drop by a factor of          is called penetration depth
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Exponential Decay of Amplitudes in Conductors



11.03.2017 48

What we have done

1. Maxwell’s equations

2. Electromagnetic fields in different materials - material equations

3. Electrostatic fields

4. Magnetostatic fields

5. Electromagnetic waves

6. Field attenuation in conductors
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