Injection and Extraction in Cyclotrons

CERN Accelerator School – Specialised Course
Erice, March 12, 2017

Mike Seidel
Paul Scherrer Institut
Outline

• Cyclotron Basics
 scaling and isochronicity, focusing, turn separation, classical cyclotrons and derived types

• Injection for Cyclotrons
 internal source, electrostatic inflectors, horizontal injection, optics matching, bunching

• Extraction for Cyclotrons
 electrostatic septum, stepwidth calculation, charge exchange extraction
The Classical Cyclotron

- invented 1930, Lawrence, Nobel Prize
- powerful concept:
 - simplicity, compactness
 - continuous injection/extraction
 - multiple usage of accelerating voltage

- two capacitive electrodes "Dees", two gaps per turn
- internal ion source
- homogenous B field
- constant revolution time
 (for low energy, \(\gamma \approx 1 \))

\[\omega_c = \frac{eBz}{\gamma m} \]
wide spectrum of cyclotrons ...

compact and cost optimized for series production
e.g. medical nuclide production
→ Internal source, extraction or internal target

huge and complex for variable research purposes, e.g. R.I.B.
production or high intensity
→ External source, injection
cyclotron basics: isochronicity and scalings

continuous acceleration \(\rightarrow \) revolution time should stay constant, though \(E_k, R \) vary

magnetic rigidity:

\[
BR = \frac{1}{e} p = \beta \gamma \frac{m_0 c}{e}
\]

orbit radius from isochronicity:

\[
R = \frac{c}{\omega_c} \beta = R_\infty \beta
\]

deduced scaling of \(B \):

\[
R \propto \beta; \quad BR \propto \beta \gamma \quad \rightarrow \quad B(R) \propto \gamma(R)
\]

thus, to keep the isochronous condition, \(B \) must be raised in proportion to \(\gamma(R) \); this contradicts the focusing requirements!

field index \(k \):

\[
k = \frac{R}{B} \frac{dB}{dR} = \frac{\beta}{\gamma} \frac{d\gamma}{d\beta} = \gamma^2 - 1
\]
cyclotron basics: stepwidth (nonrelativistic, B const)

relation between energy and radius

\[qRB_z = \sqrt{2mE_k} \]
\[\frac{dR}{R} = \frac{1}{2} \frac{dE_k}{E_k} \]

use:
\[\Delta E_k = \text{const}; B_z = \text{const}; E_k \propto R^2 \]

thus:
\[\Delta R \propto \frac{R}{E_k} \propto \frac{1}{R} \]

radius increment per turn decreases with increasing radius → extraction becomes more and more difficult at higher energies

“cyclotron language”

\[R_{\infty} = \frac{R}{\beta} \]
focusing in a cyclotron

centrifugal force \(mv^2/r\)

Lorentz force \(qv\times B\)

\[m\ddot{r} = m r\ddot{\theta}^2 - q r \dot{\theta} B_z \]

focusing: consider small deviations \(x\) from beam orbit \(R\) \((r = R + x)\):

\[
\begin{align*}
\ddot{x} + \frac{q}{m} v B_z (R + x) - \frac{v^2}{R + x} &= 0, \\
\ddot{x} + \omega_c^2 (1 + k) x &= 0.
\end{align*}
\]

using: \(\omega_c = \frac{q B_z}{m} = \frac{v}{R}\)

\(r\dot{\theta} \approx v\)

\(k = \frac{R}{B} \frac{dB}{dR}\)

thus in radial plane:

\(\omega_r = \omega_c \sqrt{1 + k} = \omega_c \nu_r\)

\(\nu_r = \sqrt{1 + k}\)

\(\approx \gamma\) using isochronicity condition

in vertical plane:

\(\nu_z = \sqrt{-k}\)

\(k < 0\) to obtain vertical focus.
Classical vs Isochronous Cyclotron

- insufficient vertical focusing
- limited energy reach

\[\nu_z^2 = -\frac{R}{B_z} \frac{dB_z}{dR} + F^2(1 + 2\tan^2\delta) \]

\[F^2 = \frac{B_z^2 - B_z^2}{B_z^2} \]
Azimuthally Varying Field vs. Separated Sector Cyclotrons

- AVF = single pole with shaping
- often spiral poles used
- internal source possible
- D-type RF electrodes, rel. low energy gain
- compact, cost effective
- depicted Varian cyclotron: 80% extraction efficiency; not suited for high power

- modular layout, larger cyclotrons possible, sector magnets, box resonators, stronger focusing, injection/extraction in straight sections
- external injection required, i.e. pre-accelerator
- box-resonators (high voltage gain)
- high extraction efficiency possible:
 e.g. PSI: 99.98% = (1 - 2·10⁻⁴)
classification of cyclotron like accelerators

- **classical cyclotron**
 \[B(\theta) = \text{const} \]

- **Thomas cyclotron**
 [Azimuthally Varying Field, e.g. \(B(\theta) \propto b + \cos(3\theta) \), one pol]

- **separated sector cyclotron**
 [separated magnets, resonators]

- **synchro-cyclotron**
 [varying RF frequency]

- **Fixed Focus Alternating Gradient Accelerator (FFAG)**
 [varying RF, strong focusing]

- **AVF concept** – harmonic pole shaping, electron model, Richardson et al (1950), courtesy of Lawrence Berkeley National Laboratory

- high intensity
- high energy
- compact machine
next: injection for cyclotrons

- internal source, axial injection, horizontal injection
- electrostatic inflector, electrostatic deflectors
- transverse matching, bunching
- space charge
Injection – Overview

Injection Techniques
- **internal source**
- axial injection
 - mirror inflector
 - **spiral inflector**
 - hyperbolic inflector
- radial injection
 - **electrostatic septum**
 - stripping injection

Aspects to be considered
- overall central region design
- radial centering
- matching of beam optics
- vertical centering
- bunching / long. capture
- minimize overall losses for high intensity application
Internal Ion Source

Example: Cold Cathode, Penning Ionisation Gauge (PIG)

cylindrical „chimney“ with slit as extraction aperture for protons

advantage:
- simple concept
- no heating required

critical:
- reproducibility of captured current (geometry related sensitivity)
- current stability on short (ms) timescale
internal ion source

→ example COMET (Accel/Varian)

- Hydrogen is injected and ionized through chimney.
- First acceleration by puller, connected to one Dee (80kV).

Diagram Notes:
- Chimney = ion source.
- Deflector electrode for intensity regulation.
external source: axial vs. horizontal injection

axial: suited for compact cyclotron with field covering entire plane

horizontal: suited for sector cyclotron with gaps between magnets

B field results in desired radial deflection

Ideally field free region
Beam Deflection by Electric Field

momentum change: \[\Delta p_{\perp} = \int F_{\perp} dt = \int \frac{E_{\perp}}{\beta c} ds, \quad F = qE \]

resulting angle: \[\theta = \frac{\Delta p_{\perp}}{p} = \frac{q l E}{\gamma \beta^2 E_0} \]

bending radius: \[\rho = \frac{l}{\theta} \]

electric rigidity: \[E\rho = \frac{\gamma^2 - 1}{\gamma} \frac{E_0}{q} = \frac{\gamma + 1}{\gamma} \frac{E_k}{q} \]

low energy at source: \[E\rho \approx 2U_{\text{acc}} \]

comparison electric and magnetic force on protons
\[\vec{F}_E = e \cdot \vec{E}, \quad \vec{F}_B = e \cdot \vec{v} \times \vec{B} \]

table: bending radius, varying \(E_k \)

<table>
<thead>
<tr>
<th>(E_k)</th>
<th>(B = 1T)</th>
<th>(E = 10\text{MV/m})</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 keV</td>
<td>35 mm</td>
<td>12 mm</td>
</tr>
<tr>
<td>1 MeV</td>
<td>140 mm</td>
<td>200 mm</td>
</tr>
<tr>
<td>1 GeV</td>
<td>5.6 m</td>
<td>150 m</td>
</tr>
</tbody>
</table>
electrostatic inflectors

Mirror inflector: particle energy is variable, simple design

Spiral inflector: force always perpendicular to velocity vector, no energy change

Velocity vector rotates around vertical axis due to action of magnetic field; other solutions exist, e.g. hyperbolic inflector or even magnetostatic inflector.
injection schemes – spiral inflector

• an electrostatic component, basically a capacitor
• E-field arranged perpendicular to orbit, particles move on equipotential surfaces

simulation of orbits injected through a spiral inflector

[inflector IBA Cyclone 30 cyclotron]

[courtesy: W.Kleeven (IBA)]
Horizontal Injection – Example PSI Ring Cyclotron

Injection element

Injection path (72MeV) in region of low field, passing along 3rd-harmonic (150MHz) resonator

extraction
Bunching for Cyclotrons

Ion sources deliver DC beam; for acceleration in an RF field the beam must be bunched; unbunched beam should be removed at low energy (≤5MeV) to avoid uncontrolled losses and activation

Schemes applied in practice:

<table>
<thead>
<tr>
<th></th>
<th>bunching in cyclotron</th>
<th>external buncher cavities</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>internal source</td>
<td>x</td>
<td></td>
<td>lowest cost and complication</td>
</tr>
<tr>
<td>external source</td>
<td>x</td>
<td>x</td>
<td>higher intensity, variety of ions</td>
</tr>
<tr>
<td>DC pre-accelerator</td>
<td></td>
<td>x</td>
<td>low ΔE, costly</td>
</tr>
<tr>
<td>Cockcroft-Walton</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio Freq. Quadrupole (RFQ)</td>
<td></td>
<td>x</td>
<td>compact, costly</td>
</tr>
</tbody>
</table>
Sketch of 870 keV Injektion Beam Line

Ion Source

Cockcroft – Walton
High voltage generator

50 MHz Buncher CWB

150 MHz Buncher CW3B

Injektion Point

Beamline

Accelerating System 50 MHz

Center region Injector 2

Phase 180°

Coll.
50 MHz and 50/150 MHz Harmonic Oscillation

→ by utilizing a harmonic buncher (3ω), a larger fraction of a DC beam can be captured in the cyclotron

only 50MHz buncher

additional 150MHz buncher

[M.Humbel, PSI]
Center Region of PSI Injector 2

collimation of low energy protons and intensity control

0.86 → 72MeV
max 2.5mA, 180kW
PSI Injector 2 and Injection Beamline
Transverse Matching

- Similar to a synchrotron the envelope function β varies around the circumference; the beam at injection must be matched to avoid blow up and sub-optimal beam distributions.

Nonetheless of the short «storage» time of a beam in a cyclotron, the distribution starts to filament, if not properly matched.

Example: beam sizes around the circumference for Inj II cyclotron, PSI [Ch.Baumgarten, [7]]
transverse space charge

especially at low energy space charge effects are critical for the injection of high intensity beams

vertical force from space charge: \[F_y = \frac{n_v e^2}{\varepsilon_0 \gamma^2} \cdot y, \quad n_v = \frac{N}{(2\pi)^{\frac{3}{2}} \sigma_y D_f R \Delta R} \]

[constant charge density, \(D_f = \frac{I_{avg}}{I_{peak}} \)]

thus, eqn. of motion: \[\ddot{y} + \left(\omega_c^2 \nu_{y0}^2 - \frac{n_v e^2}{\varepsilon_0 m_0 \gamma^3} \right) y = 0 \]

\[\rightarrow \text{tune shift results in intensity limit (see [6])!} \]

tune shift from forces: \[\Delta \nu_y \approx -n_v \frac{2\pi r_p R^2}{\beta^2 \gamma^3 \nu_{y0}} \]
next: extraction for cyclotrons

• review of schemes: internal targets, electrostatic deflectors, stripping
• maximizing extraction efficiency: stepwidth, coherent oscillations, avoid tails
electrostatic septum and charge exchange extraction

- simplest solution: use beam without extraction $\rightarrow \text{internal target}$; use some mechanism to exchange target
- **electrostatic deflectors** with thin electrodes, deflecting element should affect just one turn, not neighboured turn \rightarrow critical, cause of losses
- alternative: charge exchange by stripping foil; accelerate H^- or H_2^+ to extract protons (problem: significant probability for unwanted loss of electron; Lorentz dissociation: B-field low, scattering: vacuum 10^{-8}mbar)

<table>
<thead>
<tr>
<th>binding energies</th>
</tr>
</thead>
<tbody>
<tr>
<td>H^-</td>
</tr>
<tr>
<td>0.75eV</td>
</tr>
</tbody>
</table>

\[\text{eg.: } \text{H}^- \rightarrow \text{H}^+ \]
\[\text{H}_2^+ \rightarrow 2\text{H}^+ \]
derivation of relativistic turn separation in a cyclotron

starting point: bending strength
→ compute total log.differential
→ use field index $k = R/B \cdot dB/dR$

\[
BR = \sqrt{\gamma^2 - 1} \frac{m_0c}{e}
\]

\[
\frac{dB}{B} + \frac{dR}{R} = \frac{\gamma d\gamma}{\gamma^2 - 1}
\]

\[
\frac{dR}{d\gamma} = \frac{\gamma R}{\gamma^2 - 1} \frac{1}{1 + k}
\]

radius change per turn

\[
\frac{dR}{dn_t} = \frac{dR}{d\gamma} \frac{d\gamma}{dn_t}
\]

\[
= \frac{U_t}{m_0c^2} \frac{\gamma R}{(\gamma^2 - 1)(1 + k)}
\]

\[
= \frac{U_t}{m_0c^2} \frac{R}{(\gamma^2 - 1)\gamma}
\]

\[U_t = \text{energy gain per turn}\]

\{ \text{isochronicity not conserved (last turns)} \}

\{ \text{isochronicity conserved (general scaling)} \}
discussion: scaling of turn separation

for clean extraction a large stepwidth (turn separation) is of utmost importance; in the PSI Ring most efforts were directed towards maximizing the turn separation.

general scaling at extraction:

$$\Delta R(R_{\text{extr}}) = \frac{U_t}{m_0 c^2} \frac{R_{\text{extr}}}{(\gamma^2 - 1)\gamma}$$

scaling during acceleration:

$$\frac{dR}{dn_t} \approx \frac{U_t}{m_0 c^2 \beta^2} R \rightarrow \Delta R(R) \propto \frac{1}{R}$$

desirable:
- limited energy (< 1GeV)
- large radius R_{extr}
- high energy gain U_t

illustration:
stepwidth vs. radius in cyclotrons of different sizes; 100MeV inj \rightarrow 800MeV extr
methods to enhance turn separation

several techniques were invented to „artificially“ increase turn separation beyond the magnitude achieved by simple acceleration

<table>
<thead>
<tr>
<th>„brute force“</th>
<th>resonant orbit distortion is excited by harmonic coils beyond a certain radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>precessional extraction</td>
<td>resonant excitation at (v_r = 1) plus steep (v_r) slope in fringe field</td>
</tr>
<tr>
<td>regenerative extraction</td>
<td>using coherent excitation at half integer resonance by gradient bump</td>
</tr>
</tbody>
</table>

taken from Kleeven [1]
Resonant Extraction (Varian/Accel cyclotron)

Extraction efficiency: up to 80%

use $V_r = 1$

Electrostatic extraction elements

Field bumps

[M.Schippers, PSI]
extraction with coherent oscillations (PSI)

betatron oscillations around the “closed orbit” can be used to increase the radial stepwidth by a factor 3!

without orbit oscillations: stepwidth from E_k-gain

with orbit oscillations: extraction gap; up to 3 x stepwidth possible for $\nu_r = 1.5\pi$ (phase advance)

ν_r decreases from 1.75 to 1.5

phase vector of orbit oscillations (r,r')
extraction profile measured at PSI Ring Cyclotron

red: tracking simulation [OPAL]
black: measurement

turn numbers from simulation

dynamic range: factor 2.000 in particle density

position of extraction septum d=50µm

[Y.Bi et al]
vertical tune in Ring cyclotron supports extraction

radial tune vs. energy (PSI Ring)
typically $v_r \approx \gamma$ during acceleration; but decrease in outer fringe field

field map showing increase and steep decline of field with radius
coupling resonance – pass quickly!

Q_r decreases towards extraction – enhance turn separation

comments:
- running on the coupling resonance would transfer the large radial betatron amplitude into vertical oscillations, which must be avoided
- special care has to be taken with fine-tuning the bending field in the extraction region
injection/extraction with electrostatic elements

principle of extraction channel

- **parameters**
 - Extraction channel:
 - $E_k = 590\text{MeV}$
 - $E = 8.8 \text{ MV/m}$
 - $\theta = 8.2 \text{ mrad}$
 - $\rho = 115 \text{ m}$
 - $U = 144 \text{ kV}$

- Major loss mechanism is scattering in 50μm electrode!

electrostatic rigidity:

\[
E \rho = \gamma + \frac{1}{\gamma} \frac{E_k}{q}
\]
Electrostatic Elements for High Energy/High Intensity

- HV feedthrough 140-150 kV
- Actuator
- Cathode
- Isolator
- Loss electrodes
- Tungsten stripes 3 mm X 0.05 mm
- GND

[D.Götz, PSI]
longitudinal space charge (tails at extraction)

sector model:
→ accumulated energy spread transforms into transverse tails
 • consider rotating uniform sectors of charge (overlapping turns)
 • test particle “sees” only fraction of sector due to shielding of vacuum chamber with gap height $2w$

two factors are proportional to the number of turns:
 1) the charge density in the sector
 2) the time span the force acts

$$\Delta U_{sc} \approx 2.800 \Omega \cdot e I_p \cdot \frac{n_{\text{max}}^2}{\beta_{\text{max}}}$$

 derivation see [4]: Joho 1981

in addition:
 3) the inverse of turn separation at extraction:

$$\frac{1}{\Delta R_{\text{extr}}} \propto n_{\text{max}}$$

→ the attainable current at constant losses scales as n_{max}^{-3}
extraction foil

- thin foil, for example carbon, removes the electron(s) with high probability
- new charge state of ion brings it on a new trajectory → separation from circulating beam
- lifetime of foil is critical due to heating, fatigue effects, radiation damage
- conversion efficiencies, e.g. generation of neutrals, must be considered carefully

Electrons removed from the ions spiral in the magnetic field and may deposit energy in the foil.

How much power is carried by the electrons?

→ velocity and thus γ are equal for p and e

$$E_k = (\gamma - 1)E_0$$

$$\rightarrow E_{k_e} = \frac{E_0^e}{E_0^p}E_{k_p} = 5.4 \cdot 10^{-4} E_{k_p}$$

Bending radius of electrons?

$$\rho^e = \frac{E_0^e}{E_0^p}\rho^p$$

→ typically mm
example: multiple H⁻ stripping extraction at TRIUMF

[R.Baartman]
example: H_2^+ stripping extraction in proposed Daedalus cyclotron [neutrino source]

purpose: pulsed high power beam for neutrino production, goals:
• 800MeV kin. energy
• 5MW avg. beam power

[L.Calabretta, A.Calanna et al]
Summary: Injection & Extraction for Cyclotrons

Injection
- Internal source
 - Axial injection: electrost. inflector
 - Horizontal injection: electrost. septum
 - Stripping injection

Extraction
- Internal target
 - Electrostatic element
 - Coherent oscillations
 - Resonant extraction
 - Stripping extraction: H^-, H_2^+, various ions

Beam Physics Aspects:
- Central region design, beam centering, transverse matching, bunching, beam blowup/tails & loss minimization & activation, space charge
literature w.r.t. cyclotron injection/extraction

| [1] | comprehensive review of inj./extr. concepts | W.Kleeven (IBA), Injection and Extraction for Cyclotrons
https://cds.cern.ch/record/1005057/files/p271.pdf |
| [2] | many examples and calculations for compact machines | P.Heikkinen (Jyväsym), Injection and Extraction for Cyclotrons
http://accelconf.web.cern.ch/AccelConf/c81/papers/ei-03.pdf |
http://accelconf.web.cern.ch/AccelConf/CYCLOTRONS2013/papers/we2pb01.pdf |
| [7] | formation of round bunches and matching approach | Ch.Baumgarten, transverse-longitudinal coupling by space charge in cyclotrons
Thank you for your attention!