Magnets and Special Magnets
C. Mühle
CAS
Beam Injection, Extraction and Transfer
Erice
10-19 March 2017

Outline

- Basic physics
- Magnet types
- Coils
- Yokes
- Special magnets
- Magnet examples
Lorentz Equation

Charles Augustin de Coulomb (1736 – 1806)
Coulomb-Kraft
\[\mathbf{F} = q\mathbf{E} \]

Hendrik Antoon Lorentz (1853 – 1928)
Lorentzkraft
\[\mathbf{F} = q \mathbf{v} \times \mathbf{B} \]

\[\mathbf{F} = q\mathbf{E} + q\mathbf{v} \times \mathbf{B} \]
Maxwell equations

\[\nabla \times \mathbf{H} = \mathbf{j} + \frac{\partial}{\partial t} \mathbf{D} \]
\[\nabla \cdot \mathbf{B} = 0 \]

\[\nabla \times \mathbf{E} = -\frac{\partial}{\partial t} \mathbf{B} \]
\[\nabla \cdot \mathbf{D} = \rho \]

\[\mathbf{D} = \varepsilon_0 \varepsilon \mathbf{E} \]

\[\mathbf{B} = \mu_0 \mu \mathbf{H} \]

\[\mathbf{j} = \sigma \mathbf{E} \]

Ampere’s law:
\[\oint_{\partial A} \mathbf{H} \cdot d\mathbf{s} = \oint_{A} \mathbf{j} \cdot dA + \frac{\partial}{\partial t} \int_{A} \mathbf{D} \cdot dA \quad \text{from} \quad \nabla \times \mathbf{H} = \mathbf{j} + \frac{\partial}{\partial t} \mathbf{D} \]

Faraday’s law:
\[\oint_{\partial A} \mathbf{E} \cdot d\mathbf{s} = -\frac{\partial}{\partial t} \int_{A} \mathbf{B} \cdot dA \quad \text{from} \quad \nabla \times \mathbf{E} = -\frac{\partial}{\partial t} \mathbf{B} \]

Gauss’s theorem:
\[\int_{\partial V} \mathbf{D} \cdot d\mathbf{A} = Q \quad \text{from} \quad \nabla \cdot \mathbf{D} = \rho \]

Magnetic field has no charges:
\[\int_{\partial V} \mathbf{B} \cdot d\mathbf{A} = 0 \quad \text{from} \quad \nabla \cdot \mathbf{B} = 0 \]
Magnetic material properties

<table>
<thead>
<tr>
<th>Term</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu = \begin{bmatrix} \mu_{xx} & \mu_{xy} & \mu_{xz} \ \mu_{yx} & \mu_{yy} & \mu_{yz} \ \mu_{zx} & \mu_{zy} & \mu_{zz} \end{bmatrix})</td>
<td>Permeability tensor</td>
</tr>
<tr>
<td>(\mu_{ij} = 0, \mu_{ik} = \mu_k \neq 0)</td>
<td>isotropic, homogeneous</td>
</tr>
<tr>
<td>(\mu_{ij} = 0, \mu_{ik} = \mu_k(x, y, z))</td>
<td>isotropic, inhomogeneous</td>
</tr>
<tr>
<td>(\mu_{ij} = \text{const})</td>
<td>anisotropic, homogeneous</td>
</tr>
<tr>
<td>(\mu_{ij} = \mu_{ij}(x, y, z))</td>
<td>anisotropic, inhomogeneous</td>
</tr>
<tr>
<td>(\mu_{ik} = \mu_k(H(x, y, z)))</td>
<td>isotropic, homogeneous, nonlinear (massive iron)</td>
</tr>
<tr>
<td>(\mu_{ik} = \mu_k(H(x, y, z)))</td>
<td>anisotropic, homogeneous, nonlinear (laminated iron)</td>
</tr>
</tbody>
</table>

Magnet types
Magnets in the Accelerator

- Bending magnets => Dipole, \(B = \text{const.} \)

- Focusing magnets => Quadrupole, \(B = g^*r = B^*r \)

- Non linear magnets (corrector magnets)
 => Sextupole, \(B = B^*r^2/2 \), Octupole \(B = B^*r^3/6 \), ...

Optical Analogies

- Prism => Dipole

- Spherical lens => Quadrupole

- Aspherical lens => Sextupole, Octupole, ...
Design Types

Current dominated

Cos nθ

Intersecting ellipses

Iron dominated

H-Magnet

C-Magnet

O-Magnet

(Window-frame m.)

Magnetic Flux Lines

South pole

North pole

Dipole

Quadrupole

Sextupole

Quadrupoles and higher orders have a radially symmetric field strength distribution but not the field direction.
Forces on the Beam - Dipole

- Positive ion into the plane
- Right hand rule
- Direction of a positive ion = technical definition of current
- Constant field => constant force

![Dipole Diagram](image)

Forces on the Beam - Quadrupole

- Field increases linearly with the distance from the center => Force increases linearly
- Ion beam
 - Horizontally defocusing
 - Vertically focusing
 - -> More than one QP for focusing in both planes
- Named according to horizontal plane => Defocusing Quadrupole

![Quadrupole Diagram](image)
Forces on the Beam - Sextupole

- Field increases quadratically with the distance => force increases quadratically!
- Force has same direction on both sides of the axis
- Named after the horizontal axis w.r.t. the machine center

Polarity - Dipole

- Field direction according to right hand rule

Field increases quadratically with the distance => force increases quadratically!

- Force has same direction on both sides of the axis
- Named after the horizontal axis w.r.t. the machine center

Polarity - Dipole

- Field direction according to right hand rule

Polarity - Quadrupole

Fig. J. Tanabe

Polarity - Sextupole

Fig. J. Tanabe
Forces on the Particle Beam – Alternative Formulations

- Currents with equal charge and equal direction of movement attract each other.

Conclusions:
- Currents with opposite charge and equal direction of movement repel each other.
- Currents with equal charge and opposite direction of movement repel each other.
- Currents with opposite charge and opposite direction of movement attract each other.

Dipole Types

- Named by yoke shape
- Field quality dominated by iron
Orthogonal Analog Model

Recipe to judge the field quality (homogeneity)
- Draw lines from plus to minus currents
- Field is perpendicular to these

Window frame type dipole has better field quality
- Optimisation by
 - Pole overhang and/or
 - Pole profile

Dipole Types- pros and cons

<table>
<thead>
<tr>
<th>Magnet</th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>O (Window frame)</td>
<td>Symmetrical</td>
<td>Bedstead coils or cylindrical coils with high flux leakage</td>
</tr>
<tr>
<td>C</td>
<td>Saves space at one side, Simple coil assembly</td>
<td>Asymmetrical, bedstead coil, heavy yoke</td>
</tr>
<tr>
<td>H</td>
<td>Symmetrical, Simple pancake coils</td>
<td>Bad field quality (compared to WF)</td>
</tr>
</tbody>
</table>
Quadrupole Types

a) Collins-Quadrupole
 (≈ “Figure of 8”-Quadrupole)
b) 1. Standard-Quadrupole
 (no increase of the pole basis)
c) 2. Standard-Quadrupole
 (max. increase of the pole basis)
d) Panofsky-Quadrupol

Coils
Ampère's Law

André-Marie Ampère (1775 – 1936)

The field integral along a closed path equals the enclosed current

Dipole Excitation

\[\int \frac{\vec{B}}{\mu_0} \cdot d\vec{l} = \frac{Bh}{\mu_0} \]

Ampère's law:

\[NI \approx \frac{Bh}{\mu_0} \]

is small, as \(\mu \) is large
Ampère’s law:
\[\int \frac{\mathbf{B}}{\mu_0} \cdot d\mathbf{l} = \frac{ Bh }{ \mu_0 } \]
is small, as \(\mu \) is large

Similar for sextupole:
\[NI \approx \frac{ B r_0^2 }{ 2 \mu_0 } \]

Conductor Materials

<table>
<thead>
<tr>
<th></th>
<th>Aluminum (pure, > 99.5%)</th>
<th>Copper (OFHC- Oxygen free high conductivity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price (large quantities)</td>
<td>2.7-3.4 EUR/kg</td>
<td>8-16 EUR/kg</td>
</tr>
<tr>
<td>Conductivity</td>
<td>36 S m/mm²</td>
<td>58 S m/mm²</td>
</tr>
<tr>
<td>Specific weight</td>
<td>2.70 g/cm²</td>
<td>8.96 g/cm³</td>
</tr>
<tr>
<td>Linear expansion coefficient</td>
<td>23*10^{-6} K^{-1}</td>
<td>17*10^{-6} K^{-1}</td>
</tr>
<tr>
<td>Elasticity modulus</td>
<td>72.000 N/mm²</td>
<td>123.000 N/mm²</td>
</tr>
<tr>
<td>Keystoning effect</td>
<td>Smaller</td>
<td>Higher</td>
</tr>
<tr>
<td>Oxydation</td>
<td>In air. Dissolves in mixed copper/aluminum cooling circuits</td>
<td>Small</td>
</tr>
<tr>
<td>Conclusions (for same (N^I))</td>
<td>Larger</td>
<td>Smaller</td>
</tr>
<tr>
<td></td>
<td>Lighter</td>
<td>Heavier</td>
</tr>
<tr>
<td></td>
<td>Higher transparency for particles</td>
<td>Reduced transparency for particles</td>
</tr>
<tr>
<td></td>
<td>Lower investment costs</td>
<td>Higher investment costs</td>
</tr>
<tr>
<td></td>
<td>Higher operating costs</td>
<td>Lower operating costs</td>
</tr>
<tr>
<td></td>
<td>=> Rather for detector magnets</td>
<td>=> Rather for accelerator magnets</td>
</tr>
</tbody>
</table>

=> You need more of the cheaper material!
Coil Cooling

Cooling

- Air
 - Free flow
 - Forced flow
 - No measures
 - Fan ventilation
- Water
 - Direct
 - Indirect
 - Internal cooling channel
 - Cooling disc 1
 - Cooling disc 2
 - Winding
 - Cooling channel
 - Water

C. Muehle / Magnets and Special Magnets

Copper Profiles

- Quadratic or rectangular with round bore -> best packing factors
- Round tube -> small coils with tight bends in several directions
- Exotic shapes
Coil Shapes

Dipoles:
- O-Magnets:
 - a) Saddle shaped (bedstead) coil (type 1, upper part)
 - b) Saddle shaped (bedstead) coil (type 2, upper part)
 - c) Pair of cylindrical coils
- H-Magnets:
 - c) 1 race track coil per pole

Quadrupoles:
- Analog shapes (shape a bent inside)

Yokes
Yoke Material Choice

- Material choice according to required ...
 - ... flux density
 - ... ramp rate
 - ... space requirements
 - ... costs

Flux density
- Ferrite
- Sintered iron
- Soft iron
- Cobalt iron

Ramp rate
- Ferrite
- Sintered iron
- Laminated iron
- Bulk iron
Saturation Effects

- $\mu_r = \mu_r(B)$, for $B > 1.5$ T μ_r becomes smaller

Saturation effects

- Reduced field
 - Reduced field quality
 - Loss of Ampere turns
- Increased N^*I
 - Adapt yoke design (thicker yoke)
- Adapt pole profile (wider pole)
 - Correction windings
 - Slits in the pole

Slits in the Pole

2 options

- Field guidance
- Artificial saturation near the center
Sagitta

- Asymmetric central trajectory in a *straight* dipole

- Consequences:
 - Wider aperture
 - Curved dipole

\[h = r \left(1 - \cos\left(\frac{\alpha}{2}\right)\right) \propto l^2 \]

Aperture Reduction for Laminated Dipoles

- Laminations are stacked parallel on radius \(R \) => Aperture reduction
 - Use several blocks with adapted stacking direction along the magnet
Special magnets
(incl. examples)

- Magnets with special technical features or materials in their design
 - Magnetic Septa -> separate talk
 - Kicker Magnets -> separate talk
 - Radiation Resistant Magnets
 - Special Yoke Shapes
 - Integrated Magnets
 - Magnets with Cobalt iron yokes
 - ...

- Magnets which cannot be described by multipoles as shown in the beginning
 - Solenoids
 - Magnetic Horns
 - Toroids
 - ...
Radiation

Beam loss

Intended

- Targets
- Charge state separation
- Mass separation

Unavoidable

- Any beam loss process:
 - Charge exchange reaction
 (at residual gas particles, at el. septum wires)
 - Resonances

The materials for the magnet must be chosen according to the expected radiation level. Coil insulation is the most sensitive one.

<table>
<thead>
<tr>
<th>Standard epoxy resin</th>
<th>Improved plastics (e.g. Isocyanates, Polyimide)</th>
<th>Fully anorganic</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^7 Gy</td>
<td>10^8 Gy</td>
<td>$>10^9$ Gy</td>
</tr>
</tbody>
</table>

Radiation Resistant Magnets

- Coil potting with polyimide or isocyanates
 - Conductor and coil design unchanged
 - Potting mould to be adopted for different material (e.g. cooling)
 - Coils for external beam line at KEK

- Fully anorganic
 - MIC (metall oxide insulated) conductor
 - Coil solder potted
 - Dipole for SuperFRS preseparator
Special Yoke Shapes

- Imposed by external requirements
 - Other beamlines at injection/extraction or branching points
 - ...
- Examples
 - Branching dipole (HEBT Heidelberg Ionentherapie) – opening for straight beam path including yoke reinforcement
 - Sextupole for Australian Light Source – opening for light beam line

Integrated Magnets

- Radial or longitudinal integration of several multipoles
 - Reduced space requirements
 - Reduced installation and alignment effort
 - Enlarged vibration stability
- Examples
 - Corrector magnet in SIS18 (current dominated; normal and skew quadrupoles, skew sextupole)
 - Main magnet for MAX IV (common massive yoke, dipole, quadrupoles, sextupole, steering magnets)
Special Yoke Materials: CoFe

- Enlarged saturation flux density (2.2-2.3T)
- Compact design with high field/gradient
- But
 - High material price
 - Brittle material
 - Risk of activation
- Example
 - Internal quadrupoles for IH-type LINAC
 - Maximum Pole basis
 - CoFe yoke laminations (0.35mm)
 - One layer coil
 - Up to 124T/m
- In addition an example of an integrated magnet – triplet in copper plated housing

Solenoids

- In general a long coil
- Focusing magnet (in both planes)
- Field along the beam path
- Principle of focusing
 - Stray field creates radial motion of particles
 - Radial motion is perpendicular to main field and causes therefore focusing
- Application
 - Focusing in LEBT (typically NC)
 - Focusing in LINAC (typically SC)
 - Magnet for particle tracking in experiments (NC or SC)
Solenoids

- **LEBT-Solenoid**
 - 0.54T
 - ~0.5t
 - Diam. ~0.6m, length ~0.3m

- **Alice central magnet**
 - 0.55T
 - ~10,000t
 - Diam. ~12m, length ~12m

Magnetic Horn

- Focusing magnet close to targets
- Central path field free
- Focusing of off-axis particles

Fig. K. Knie
Magnetic Horn

- Focusing after pbar production target planned at FAIR
- 400kA/15kV
- Inner conductor shaped to generate a parallel beam independently from original angle of the particles

Toroid

- For charged particle tracking in detectors
- Example
 - HADES (High Acceptance Dielectron Spectrometer) at GSI
 - Toroidal field generated by 6 super-conducting air coils
Examples

Magnets for HIT (Heidelberger Ionentherapie)

- Dedicated facility for cancer therapy with ions in Heidelberg
- Developed by GSI
- 2 commercial facilities were built (Siemens, Danfysik)
- More similar facilities are operational or in commissioning
- Compact accelerator
- 120 magnets
- Footprint ~70m x 70m
- Most magnets described before can be found here.
Analysis Dipole (1.1)

- H type magnet
- D shaped coil
- 0.2T
- Small bending radius
- 90°

Switch Yard Dipole (1.2)

- H type magnet
- Straight
- 0.1T
- Funneling of beams from 2 ion sources
MEBT Dipole (1.3)

- H type magnet
- Curved
- 25°
- 0.57T

Inflector Dipole (1.4)

- Window frame type magnet
- Yoke c-shaped
- Curved
- 15°
- 0.42T
Bumper (1.5)

- Window frame type magnet
- Very fast (560T/s):
 - Powder composite material
 - 2 turns
 - 0.0195T

Septum I (1.6)

- Window frame type magnet
- Yoke c-shaped
- Straight (2x)
- Septum coil (soldered out of different parts)
- 6.5°
- 0.75T
Septum II (1.7)

- Window frame type magnet
- Yoke c-shaped
- Curved
- Septum (soldered)
- Operated in series with synchrotron dipoles
- 13.5°
- 0.9T

Synchrotron Dipole (1.8)

- H type magnet
- Curved – stacked in 3 blocks along the magnet to avoid aperture reduction
- Removable endplates for length adjustment
- Integrated correction windings for horizontal steering
- 1.53T, 1.53T/s
- 60°
Spill Abortion Bumper (1.9)

- Window frame type magnet
- Safety function
- Fast Magnet (1000T/s ramp down)
 - Yoke: Powder composite material
 - Few turns
- 0.69°
- 0.2T

15° HEBT Dipole (1.10)

- H type magnet
- Curved
- Same cross section as 1.11
- 'Zero-field' correction coil integrated for straight beamline
- 1.5T
45° HEBT Dipole (1.11)

- H type magnet
- Curved – 3 blocks along the magnet
- ‘Zero-field’-coil integrated
- Return yoke width enlarged cross section for compensation of straight beam line channel
- 1.51T

45° Gantry Dipole (1.12)

- Hybrid type magnet
 - Inner coil – window frame type
 - Outer coil – H type (around poles), but bedstead shape
- Curved – 2 blocks along the magnet
- 1.81T
90° Gantry Dipole

- Window frame type magnet
- Extremely large Aperture – must accommodate scanned beam
- Curved – 3 blocks along the magnet
- 1.81T

Scanning dipole (1.13)

- Window frame type magnet
- Lamination thickness 0.35 mm
- Thin-walled vacuum chamber
- 0.31T, 62T/s
LEBT Steerer (2.1)

- Double steering magnet (horiz./vert.)
- Window-Frame-Magnet (x,y)
- Cylindrical coils
- No active cooling
- 0.0252T

Matching Steerer (2.2)

- Double steering magnet (x,y)
- Window-Frame-Magnet (x,y)
- 0.085T
Rohrsteerer (2.3)

- (Beam) Pipe Steering Magnet
- Coil-dominated \Rightarrow cosθ-Design
- Double steering (x,y)
- Low-Cost-Steering magnet
 - Yoke: stator of standard electrical motor
 - Indirect cooling
 - 0.05T

Synchrotron (Vertical) Steerer (2.4)

- Simple vertical steering magnet
- Window frame type magnet
- Cylindrical coils
- 0.134T
HEBT Steerer (2.5)

- Simple steering magnet (x or y)
- Window frame type magnet
- Cylindrical coils
- 0.1T

LEBT Quadrupole (3.1 and 3.2)

- Quadrupole without increased pole basis
- Singulett and tripllett
- 3.2T/m
IH Quadrupole (3.3, 3.4)

- Compact design with highest gradient
 - Maximum Pole basis
 - CoFe yoke laminations (0.35mm)
 - One layer coil
 - Up to 124T/m

MEBT Quadrupole (3.5) / Gantry Quadrupole (3.6)

- Maximum pole basis
- 18.8T/m
- 1 skew quadrupole
HEBT Quadrupole (3.7)

- Cross section as 3.5 und 3.6, but longer yoke
- 19.3 T/m

Synchrotron Quadrupole (3.8)

- "Figure of 8" type quadrupole
- Removable pole end pieces for field optimization and length adjustment
- 7.0 T/m
Solenoid (4.1)

- 0.54T
- ~0.5t
- Diameter ~0.6m
- Length ~0.3m

Sextupol (4.2)

- Yoke 3 parts
- $d^2B/dx^2 = 26.7T/m^2$
Literature

- CERN Accelerator School (CAS) Magnets in Bruges
 https://cds.cern.ch/record/1158462
- CAS - Measurement and alignment of accelerator and detector magnets
 https://cds.cern.ch/record/318977
- US Particle Accelerator School, Iron Dominated Electromagnet Design, Jack Tanabe, June 2005
- ...

Questions?