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Relativity - Basic principles

 The Principle of Relativity — The laws of physics are
invariant (i.e. identical) in all inertial systems (non-
accelerating frames of reference) =>

— All experiments run the same in all inertial frames of reference

The Principle of Invariant Light Speed — The speed
of light in a vacuum is the same for all observers,
regardless of the motion of the light source =>

— ¢ =299792458 m/s




Inertial Systems




Galileo Transformations




Wave Equation ?




Galileo Transformations Fail !

x'=x —t, t'=t.
The partial derivatives are related by
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Insertion into the equation yields

18%y 3%y 13w vVa*y 2v %y

c ax? 2 arax’




In both reference frames a spherical wave propagat
with velocity ¢ and must remain spherical
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Derivation of Lorentz
Transformations

' = a1z + appy + a13z + ayat
Y = ag T + axny + axzz + ayt
2 = ag1x + asy + asszz + asat

t' = ayr + asy + a3z + aqut .




Lorentz Transformations




Lorentz Transformations and the
invariance of light vector
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Lorentz Transformations and the
invariance of wave equation
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The consequences of Lorentz
Transformations

e Time Dilation:

 Length Contraction:

Ax=Ax
Y




Relativistic dynamics




Fundamental relations of the relativistic dynamics

Rest Relativistic Relativistic L
Energy momentum y-factor Total Energy Kinetic Energy
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Newton’s 2" Law

Lorentz Force




Relativistic equation of motion
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Acceleration does not generally point in the direction of velocity
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A moving body is more inert in the longitudinal direction than in the transverse direction



Longitudinal motion in the laoratory frame
==>eX: beam dynamics in a relativistic capacitor

Consider longitudinal motion
only :
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Solving explicitly for 3 one can find:
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After separating the variables one can integrate once more to obtain
the position as a function of time :
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In the non relativistic limit:
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The previous solution can be written also in the form:
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the corresponding world
line in the Minkowsky
space-time (ct,z) is an
hyperbola



==> hyperbolic motion
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Therefore such motion is called hyperbolic motion.

It describes the motion of a particle that arrives from large positive z,
slows down and stops at turning point Z, = ¢’ / a,

then it accelerates back up the z axis.

The world-line is asymptotic to the light cones, and obviously, it will
never reach the speed of light.



The problem of relativistic bunch length

Low energy electron bunch injected ina Length contraction?




Bunch length in the laboratory frame S

Let consider an electron bunch of initial length L  inside a capacitor
when the field is suddenly switched on at the time t,.
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Thus a simple computation show that no observable contraction
occurs in the laboratory frame, as should be expected since both
ends are subject to the same acceleration at the same time.



Bunch length in the moving frame S’

More interesting is the bunch dynamics as seen by a moving reference
frame S’, that we assume it has a relative velocity V with respect to S
such that at the end of the process the accelerated bunch will be at rest
in the moving frame S’. It is actually a deceleration process as seen by S’
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The key point is that as seen from S’ the decelerating force is not applied
simultaneously along the bunch but with a delgy given by:
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At the end of the process when both particle have been subject to the
same decelerating field for the same amount of time the bunch length
results to be:

L(r) = (vL, + K()) - h(¢) = VL,




Electromagnetic Fields of a moving charge




Fields of a point charge with uniform motion
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7 Z’ vt 1S the position of the point charge in the lab. frame O.

* Inthe moving frame O’ the charge is at rest
e The electric field i1s radial with spherical symmetry
e The magnetic field is zero
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Relativistic transforms of the fields from O’ to O
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The field pattern is moving with the charge and it can be
observed at t=0:
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The fields have lost the spherical symmetry
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B is transverse to the direction of motion
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Space Charge




The net effect of the Coulomb interactions in a multi-particle system can be

classified into two regimes:

1) Collisional Regime ==> dominated by binary collisions caused by close

particle encounters ==> Single Particle Effects
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2) Space Charge Regime ==> dominated by the self field produced by the
particle distribution, which varies appreciably only over large distances
compare to the average separation of the particles ==> Collective Effects,

Single Component Cold Plasma
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Continuous Uniform Cylindrical Beam Model

Gauss’ s law
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Lorentz Force
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has only radial component and

1s a linear function of the transverse coordinate

The attractive magnetic force , which becomes significant at high
velocities, tends to compensate for the repulsive electric force.



Bunched Uniform Cylindrical Beam Model
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Longitudinal Space Charge field in the bunch moving frame:
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Radial Space Charge field in the bunch moving frame
by series representation of axisymmetric field:

3
r

16

E (r,5)= [ﬁ-iE(o s)]—+[ =

g, OS

~

E,.(r3)=

(L-5) N 5 T
52 |2

280 VR? +(L-5)> R+



Lorentz Transformation back to the Lab frame
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It is still a linear field with r but with a longitudinal correlation s
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The Laminar beam




Trace space of an ideal laminar beam
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Trace space of a lai
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Geometric emittance: & o

Ellipse equation: yx2 + 200x" + /’j’x’2 =,

Twiss parameters: By -oa’=1 B =-2a

Ellipse area: A= e,




Fig. 17: Filamentation of mismatched beam in non-linear force




rms emittance
A

rms

Since:

it follows:
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rms beam envelope:
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Define rms emittance:
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It holds also the relation: vp - a’ =1
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Substituting ¢, 8,7 we get ——= —( = ) =1

rms rms

We end up with the definition of rms emittance in terms of the
second moments of the distribution:
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What does rms emittance tell us about trace space distributions
under linear or non-linear forces acting on the beam?
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Assuming a generic X, X correlation of the type: X '=Cx"

Whenn=1 ==> ¢ =0

Whenn#£1 ==> ¢_ 40



Envelope Equation without Acceleration

Now take the derivatives:

do, _d <x >—Li<x >——2 xx>—oxx'

dz |dz 20 dz o8
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And simplify: |0} =—2+—2—= _< ) = Coms _|_< )
O, O, O, O,

We obtain the rms envelope equation in which the rms emittance
enters as defocusing pressure like term.
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Assuming that each particle 1s subject only to a linear focusing

. . " 2
force, without acceleration: X +k,x=0

take the average over the entire particle ensemble (xx") = —k; <x2>
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We obtain the rms envelope equation with a linear focusing force
in which the rms emittance enters as defocusing pressure like
term.



Bunched Uniform Cylindrical Beam Model
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Lorentz Force
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1s a linear function of the transverse coordinate
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The attractive magnetic force , which becomes significant at high velocities, tends to
compensate for the repulsive electric force. Therefore space charge defocusing is
primarily a non-relativistic effect.
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Envelope Equation with Space Charge

Single particle transverse motion:
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Now we can calculate the term (xx") that enters in the envelope equation
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Including all the other terms the envelope equation reads:

Space Charge De-focusing Force
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Emittance Pressure

External Focusing Forces

Laminarity Parameter: o =




The beam undergoes two regimes along the accelerator
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Space charge induced emittance oscillations in

a laminar beam




Neutral Plasma

Surface charge density

Surface electric field

Ex, = —0/€p = —endx/ey

Restoring force

Plasma oscillations

Ox = (0x)p cos (w,, t)




Neutral Plasma, Single Component
Cold Relativistic Plasma

e Ogcillations
e Instabilities

« EM Wave propagation




ke (5,7) Single Component
o' +kio =" L.
s o Relativistic Plasma

Equilibrium solution:

Small perturbation:

o(8)=0,,(s)+00(s)

(SO’”(S) + ZkSZCSO'(S) =0 60(s) =0 ,(s) cos(w/zksz)

Perturbed trajectories oscillate around the equilibrium with the same frequency
but with different amplitudes:

o(s) = O,y (5)+60,(s) cos(\/EkSZ)




Emittance Oscillations are driven by space charge differential
defocusing in core and tails of the beam
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Perturbed trajectories oscillate around the
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Envelope oscillations drive Emittance oscillations
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