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Relativity - Basic principles

•  The Principle of Relativity – The laws of physics are 
invariant (i.e. identical) in all inertial systems (non-
accelerating frames of reference) =>

–  All experiments run the same in all inertial frames of reference

•  The Principle of Invariant Light Speed – The speed 
of light in a vacuum is the same for all observers, 
regardless of the motion of the light source =>

–  c = 299792458 m/s



Inertial Systems 



Galileo Transformations



Wave Equation ?



Galileo Transformations Fail !



In both reference frames a spherical wave propagates 
with velocity c and must remain spherical

 



Derivation of Lorentz 
Transformations
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γ =
1

1− β 2
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β =
v
c

Lorentz Transformations



Lorentz Transformations and the 
invariance of light vector 



Lorentz Transformations and the 
invariance of wave equation



The consequences of Lorentz 
Transformations

•  Time Dilation:

•  Length Contraction:

Δt = γΔ "t

Δx = Δ "x
γ
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Fundamental relations of the relativistic dynamics
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Newton’s 2nd Law Lorentz Force 
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Relativistic equation of motion


Acceleration does not generally point in the direction of velocity
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A moving body is more inert in the longitudinal direction than in the transverse direction
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m// = moγ
3 v( )
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1 + β 2γ 2 ≡ γ 2
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γ 3
dβ
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=
ao
c

Consider longitudinal motion 
only :
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ao =
eEz
mo

Longitudinal motion in the laoratory frame 

==> ex:  beam dynamics in a relativistic capacitor
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After separating the variables one can integrate once more to obtain 
the position as a function of time : 
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β t( ) =
ao t − to( ) + cβoγ o

c2 + cβoγ o + ao t − to( )( )2

Solving explicitly for  β one can find:


In the non relativistic limit:
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The previous solution can be written also in the form: 
the corresponding world 
line in the Minkowsky 
space-time (ct,z) is an 
hyperbola 

€ 

z t( ) − zo =
c2

ao
1+ βoγ o +

ao
c

t − to( )
% 

& 
' 

( 

) 
* 
2

− γ o

% 

& 

' 
' 

( 

) 

* 
* 

= h t( )



€ 

βo = 0
γ o = 1
zo = 0
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Therefore such motion is called hyperbolic motion. 

It describes the motion of  a particle that arrives from large positive z , 

slows down and stops at turning point   

then it accelerates back up the z axis. 

The world-line is asymptotic to the light cones, and obviously, it will 
never reach the speed of light.
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Z t( ) = z t( ) +
c2

ao

in the simpler case with 
initial conditions: 


and shifted variable: 


==> hyperbolic motion




The problem of relativistic bunch length 

γ ≈1
Lb = 3mm ≈ "Lb

γ =1000

Lb =
!Lb
γ
= 3µm

Length contraction? Low energy electron bunch injected in a 
linac: 



Bunch length in the laboratory frame S 

Let consider an electron bunch of initial length  Lo inside a capacitor 
when the field is suddenly switched on  at the time to.  
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L t( ) = zh t( ) − zt t( )
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L t( ) = Lo + h t( )( ) − h t( ) = Lo

Thus a simple computation show that no observable contraction 
occurs in the laboratory frame, as should be expected since both 
ends are subject to the same acceleration at the same time. 




Bunch length in the moving frame S’


Lorentz transformations:
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c " t = γ ct − V
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" t o, t = to = 0
" z o, t = zo, t = 0
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leading for the tail particle to:
 and for the head particle to:
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The key point is that as seen from S’ the decelerating force is not applied 
simultaneously along  the bunch but with a delay given by: 
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Δ # t o = # t o,h − # t o, t = −
V
c

# γ oLo < 0

More interesting is the bunch dynamics as seen by a moving reference 
frame S’, that we assume it has a relative velocity V with respect to S 
such that at the end of the process the accelerated bunch will be at rest 
in the moving frame S’. It is actually a deceleration process as seen by S’
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At the end of the process when both particle have been subject to the 
same decelerating field for the same amount of time  the bunch length 
results to be: 
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Fields of a point charge with uniform motion 
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•    In the moving frame O’ the charge is at rest
•    The electric field is radial with spherical symmetry
•    The magnetic field is zero
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vt is the position of the point charge in the lab. frame O.
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Ex = " E x
Ey = γ ( " E y + v " B z )

Ez = γ ( " E z − v " B y )
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Relativistic transforms of the fields from O’ to O
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The fields have lost the spherical symmetry
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The field pattern is moving with the charge and it can be 
observed at t=0:
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γ =1 γ >1 γ >>1 
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B is transverse to the direction of motion 
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σ x,y, z << λD
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σ x,y, z >> λD



Continuous Uniform Cylindrical Beam Model


J = I
πR2

ρ =
I

πR2v
R
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εoE ⋅ dS = ρdV∫∫
Gauss’s law
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Bϑ =
β
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Er =
I

2πεoR
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Er =
I

2πεov
1
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     for   r > R

Ampere’s law
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B ⋅ dl = µo J ⋅ dS∫∫ Bϑ = µo
Ir

2πR2    for    r ≤ R

Bϑ = µo
I

2πr
   for    r > R



Lorentz Force

€ 

Fr = e Er −βcBϑ( ) = e 1−β 2( )Er =
eEr

γ 2

The attractive magnetic force , which becomes significant at high 
velocities, tends to compensate for the repulsive electric force. 

has only radial component  and 

is a linear function of the transverse coordinate



Bunched Uniform Cylindrical Beam Model

Longitudinal Space Charge field in the bunch moving frame:
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Radial Space Charge field in the bunch moving frame 

by series representation of axisymmetric field:
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It is still a linear field with r but with a longitudinal correlation s
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Lorentz Transformation back to the Lab frame
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Ez = ˜ E z
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˜ s = γs



γ= 1 γ = 5 γ = 10

L(t)
Rs(t) Δt
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Trace space of an ideal laminar beam 
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Paraxial approx.
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X’ 

Trace space of a laminar beam 
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X’ 

Trace space of non laminar beam 



Twiss parameters:
 12 =−αβγ

Ellipse equation:

Geometric emittance:
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εg
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γx2 + 2αx $ x + β $ x 2 = εg

Ellipse area:
 A = πεg

!β = −2α





rms emittance 

x

x’
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rms beam envelope: 

€ 

γx2 + 2αx $ x + β $ x 2 = εrms

σ x = x2 = βεrms    

σ x ' = !x 2 = γεrms

Define rms emittance: 

such that: 
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It holds also the relation: 

Substituting             we get 
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α,β ,γ

εrms = σ x
2σ x '

2 −σ xx '
2 = x2 "x 2 − x "x 2( )

We end up with the definition of rms emittance in terms  of the 
second moments of the distribution: 

σ x = x2 = βεrms

σ x ' = x '2 = γεrms

σ xx ' = x !x = −αεrms
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εrms
2 = x2 # x 2 − x # x 2

!x =Cxn

εrms
2 =C2 x2 x2n − xn+1

2( )
When n = 1   ==>   εrms = 0

When n = 1    ==>   εrms = 0

x
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a
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What does rms emittance tell us about trace space distributions 
under linear or non-linear forces acting on the beam? 

Assuming a generic            correlation of the type: 
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Envelope Equation without Acceleration


Now take the derivatives: 
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And simplify: 
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=
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We obtain the rms envelope equation in which the rms emittance 
enters as defocusing pressure like term. 



Assuming that each particle is subject only to a linear focusing  

force, without acceleration: 
 
take the average over the entire particle ensemble  

!!x + kx
2x = 0
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" " σ x + kx
2σ x =

εrms
2

σ x
3

x !!x = −kx
2 x2

We obtain the rms envelope equation with a linear focusing force 
in which the rms emittance enters as defocusing pressure like 
term. 
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γ= 1 γ = 5 γ = 10

L(t)
Rs(t) Δt
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Er(r,s,γ ) =
Ir

2πε0R
2βc

g s,γ( )
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Ez(0,s,γ ) =
I

2πγε0R
2βc

h s,γ( )

Bunched Uniform Cylindrical Beam Model




Fr = e Er −βcBϑ( ) = e 1−β 2( )Er =
eEr

γ 2

The attractive magnetic force , which becomes significant at high velocities, tends to 
compensate for the repulsive electric force. Therefore space charge defocusing is 
primarily a non-relativistic effect.

is a linear function of the transverse coordinate
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Lorentz Force




Envelope Equation with Space Charge


!!x =
ksc s,γ( )
σ x
2 x

Single particle transverse motion: 
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External Focusing Forces

Space Charge De-focusing Force

Emittance Pressure

Now we can calculate the term        that enters in the envelope equation
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Including all the other terms the envelope equation reads:
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Laminar Beam

Thermal Beam

The beam undergoes two regimes  along the accelerator 
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Transition Energy (ρ=1) 
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ρ

Potential space charge emittance growth 

ρ = 1 

εth = 0.6 µm

Eacc = 25 MV/m
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Surface charge density Surface electric field

Restoring force

Plasma frequency

Plasma oscillations

Neutral Plasma




Neutral Plasma


Magnetic focusing


Magnetic focusing


Single Component       
Cold Relativistic Plasma


• Oscillations


• Instabilities


• EM Wave propagation




Single Component 
Relativistic Plasma
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" " σ + ks
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σ
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2mcβγ
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δ # # σ s( ) + 2ks
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ksc s,γ( )
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Equilibrium solution:
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σ ζ( ) =σ eq s( ) +δσ s( )

Small perturbation:
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σ s( ) =σ eq s( ) +δσ o s( )cos 2ksz( )

Perturbed trajectories oscillate around the equilibrium with the same frequency 
but with different amplitudes:
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δσ s( ) = δσ o s( )cos 2ksz( )



Emittance Oscillations are driven by space charge differential 
defocusing in core and tails of the beam 

x

px

Projected Phase Space Slice Phase 
Spaces



X

X
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Perturbed trajectories oscillate around the 
equilibrium with the  

same frequency but with different amplitudes 



σ(z)

ε(z)

Envelope oscillations drive Emittance oscillations


€ 

εrms = σ x
2σ x'

2 −σ xx'
2 = x2 % x 2 − x % x 2( ) ≈ sin 2ksz( )
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