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Historical note (1)Historical note (1)
 Resonant extraction has its roots in cyclotrons.  

 The first cyclotrons used scattering from an internal target to obtain an external 
proton beam.  The activation and loss of intensity were incentives for change.

 In 1951, James Tuck and Lee Teng (Chicago cyclotron) suggested a resonant 
scheme that increased the amplitude of radial oscillations sufficiently in a single turn 
to clear the mouth of a magnetic extraction septum.

 A quantitative analysis, confirming the principle of what was then known as the 
‘Peeler-Regenerative Beam Extraction Method’ was published by Kenneth Le 
Couteur (Liverpool cyclotron) in 1953.

 The first successful extraction by this technique was in the Liverpool cyclotron in 
1954 reported by Albert Crewe and Le Couteur in 1955.

 At this stage, the emphasis was on inter-turn separation.

       James Tuck                  Lee Teng                   Kenneth Le Couteur             Albert Crewe
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Historical note (2)Historical note (2)
 In the 1950s, HEP synchrotrons were equipped with 

full-aperture, fast kickers.  Single-turn extraction was 
efficient, but for fixed-target experiments it 
overloaded the physics counters leading to lost data.  

 In 1961, Hugh Hereward addressed this problem in 
'The possibility of resonant extraction from the CPS', 
CERN-AR-Int-GS-61-5.  This proposal cites Tuck , 
Teng and Le Couteur.  At essentially the same time, 
C. L. Hammer and Lawrence Jackson Laslett 
published ‘Resonant Beam Extraction from an AG 
Synchrotron’, Rev. Sci. Instr. 32, 144-149 (1962).  

 The emphasis here was on extending the spill 
time in synchrotrons.  Hence a new name ‘slow 
extraction’.

Hugh Hereward

Jackson Laslett
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OverviewOverview
 For extraction, cyclotrons and synchro-cyclotrons 

work with the integer or half integer resonance.  This 
is consistent with a need for a large inter-turn 
separation and a very fast extraction*. 

 Synchrotrons work with the half integer or 1/3rd 
integer resonance. 
 The half integer resonance is usually associated with 

fixed-target physics and spills of a few milliseconds.

 The 1/3rd integer resonance is weaker and is used widely 
in medical machines for spills of a few seconds (a few 
106 turns).

 Higher-order resonances are not used because the 
extraction separatrices become too close together, the 
resonances get weaker and the transit time in the 
resonance gets longer.  

 This lecture will concentrate on the 1/3rd integer 
resonance.  

Half integer

1/3rd integer

1/4th integer

Phase space sketches

* In the 1980s, H- extraction replaced resonant extraction for high-intensity proton 
beams and the IBA Cyclone 30 became the de facto world standard cyclotron for 
isotope production.  
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Phase spacePhase space
 The full beauty of resonant extraction is only 

visible in phase space.
 The figure shows a 1/3rd integer extraction.

 In the central region, the beam is stable. At the 
very centre, the invariants of the motion are 
unperturbed ellipses.  At bigger amplitudes the 
ellipses take on a triangular shape.

 In the outer region, the beam is unstable.  The 
individual ions ‘lock’ onto the 3 separatices and 
gain amplitude turn after turn, while moving 
from one separatrix to the next.  

 The spiral step (inter-turn separation) and 
other geometric details determine the design, 
of the extraction elements and the 
interception losses.

 How the beam is moved across the last 
stable triangle into the unstable region is 
the job of the machine designer.  This 
determines the length and quality of the spill.
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Other descriptive views (1)Other descriptive views (1)
Steinbach diagram. 
 This diagram shows the radial 

position versus the oscillation 
amplitude.  In the example, a wide 
momentum stack is being 
accelerated into the resonance.  
The chromaticity is finite and 
positive.

 This diagram has the clear 
advantage of showing the inclined 
amplitude boundary between 
stability and instability.

There are other configurations for 
extraction, but this example illustrates the 
main features.

dN/dA

Normalised 
amplitude, A

A=(E/)

Stable region

Unstable 
region

Stack moving into 
resonance

Spill

p/p or X or Qx

Stopband

Qres

Charles Steinbach
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Other descriptive views (2)Other descriptive views (2)
Real space view

 The ‘Waiting’ beam is created by 
multi-turn injection in the inner half 
of the aperture away from the 3rd 
order resonance.

 A betatron core is used to 
smoothly accelerate the ‘Waiting’ 
beam into the resonance.

 The particles ‘locked’ in the 
resonance grows in steps of 3-
turns.  Starting with small steps, 
they extents outwards over several 
hundred turns.

 The beam enters the electrostatic 
septum with a final step of ~10 mm 
and is kicked onto the extraction 
trajectory.

This configuration corresponds to the 
last side.

Beam growing in resonance

Final step (10 mm) into septum

x

30-40 mm

Resonance

z

'Waiting' beam

Electrostatic septum

Beam grows in 3-turn steps
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Sextupole fieldsSextupole fields
 The radial 1/3rd integer or third-order resonance is driven by normal 

sextupole fields and can be treated as a perturbation to the linear 
machine.  

 The transverse fields in a normal sextupole magnet are well known

where

 For positively charged particles in an anticlockwise ring, the kicks given 
by a sextupole are,

                                                                 where
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Normalised coordinates (1)Normalised coordinates (1)  

 The use of normalised coordinates (X, Z) clarifies diagrams.  The 
correspondences are,

 The effect of a thin-lens sextupole in normalised co-ordinates appears as,

 where S is the normalised sextupole strength 
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Normalised coordinatesNormalised coordinates  (2)(2)
 Unless Z = 0, a sextupole couples the horizontal and vertical motions and 

the strength of the coupling is proportional to the ratio of the vertical and 
horizontal betatron amplitude functions (z/x) at the sextupole.

 For a horizontal extraction, Z is generally much smaller than X and, 
provided the vertical tune does not satisfy a resonance condition, the 
influence of the vertical motion can be neglected to first order.  

 Accepting this approximation the motion in the thin-lens sextupole 
becomes, 

   X Z Z X SX     0 2and



12

Basic theory of the resonance (1)Basic theory of the resonance (1)
 The transfer matrix Mn  for normalised co-ordinates, describing n turns in 

the machine is given by:

 Consider a particle with a horizontal betatron tune close to a third-
integer, i.e. Qx = m  1/3 + Q, where m is integer and |Q|<<1/3).  The 
tune increment Q is defined as the tune distance of the particle from 
the resonance, 

 The explicit transfer matrix for n turns in the unperturbed machine can 
then be written as:
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Basic theory of the resonance (2)Basic theory of the resonance (2)
 We want to find what happens over 3 turns.  Start by approximating the 

unperturbed machine as, 

 1 turn, M1, neglecting Q :

 2 turns,M2, neglecting Q :

 3 turns, M3, with = 6Q : 

where is the modified tune distance 

 The effect of a sextupole over 3 turns can now calculated by the linear 
addition of :
 3 turns + a sextupole placed after the 3rd turn,      M3 + Sextupole

 3 turns with a sextupole placed after the 2nd turn, M2 + Sextupole + M1 

 3 turns with a sextupole placed after the 1st turn,  M1 + Sextupole + M2

 Remembering : 
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Basic theory of the resonance (3)Basic theory of the resonance (3)
 Skipping the algebra, the final expressions for the change of position and 

divergence of the particle over three turns, known as the spiral step and 
spiral kick are,

Note that the  signs cancel and there is no fundamental difference between the 1/3rd 
and 2/3rd integer resonances.

 The time for three turns is short compared to the spill time and can be 
safely used as the basic time unit.  The changes occurring in this time are 
the smallest that need to be resolved.  Thus the subscripts are no longer 
needed and these results can be treated as continuous functions that are 
derived from a Hamiltonian H, 
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Kobayashi Hamiltonian (1)Kobayashi Hamiltonian (1)
 The Hamiltonian is time independent and a 

constant of the motion.  Contours of constant 
H show the particle trajectories in normalized 
phase space at the sextupole.

 The first term describes the unperturbed 
particle motion in the linear machine (S = 0).  
These trajectories are circles of radius (2H/) 
in normalized phase space.  The second term 
contains the perturbation that distorts the 
circular phase-space trajectories into a 
triangular form.  At a certain level of excitation, 
the triangle 'breaks' into open phase-space 
trajectories.  A change in sign of either the 
modified tune distance  or the normalized 
sextupole strength S is equivalent to a rotation 
of the phase-space trajectories by 180º.

 When H has the value [(2/3)3/S2], it factorizes 
into three straight lines, 
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Kobayashi Hamiltonian (2)Kobayashi Hamiltonian (2)

This is normalized phase 
space, the unperturbed 
trajectories are circles and
X is equivalent to X′ .

Hence, we can rotate the 
diagram to any position 
using the betatron 
phase advance and, in 
particular, a position 
suitable for extraction 
without altering its 
shape.  
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Note on resonancesNote on resonances
 If this were a lecture on resonances, a 

more advanced Hamiltonian would be used 
to study mixed horizontal and vertical 
resonances driven by normal and skew 
fields over a larger aperture in phase 
space, for example the illustration shows 
phase-space views generated by half-
integer resonances.

 We have used a simplified Hamiltonian, for 
a purely radial resonance.  The trajectories 
are intercepted within the physical aperture 
before distant stable islands can be formed 
to return the particles.  This truncated and 
simplified situation was used to get some 
basic parameters such as the spiral step.

Phase-space views half-integer 
resonance

Restricted view for extraction 
with pure radial resonance
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The virtual sextupole (1)The virtual sextupole (1)
 In most rings, sextupoles are mounted in dispersion regions for 

controlling the chromaticity.   These sextupoles are usually positioned so 
as to cause as little resonance excitation as possible, but this internal 
compensation is never perfect.  

 For resonant  extraction, we will also need a dedicated sextupole for 
exciting the resonance and this sextupole is best positioned in a zero-
dispersion region, so as not to disturb the chromaticity correction.

 The dedicated resonance sextupole, the residual excitation from the 
chromaticity sextupoles and any sextupole errors can be combined 
numerically into a virtual sextupole that fits the theory presented so far 
for a single magnet.

 For the third-order resonance 3Qx = n the driving term is,

using the earlier definition for S this gives,
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The virtual sextupole (2)The virtual sextupole (2)
 The virtual sextupole can be found by equating its driving term to the sum 

of all the driving terms around the ring.

 By separating the real and imaginary parts, the betatron phase and 
strength of the virtual sextupole can be found as,
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Configuring the extraction (1)Configuring the extraction (1)
 The lattice must be built so as to bring the electrostatic septum (ES) into 

a suitable position with respect to the virtual sextupole.

 The magnetic septum (MS) is then placed so as to maximize the gap 
between the end of the extraction separatrix and the segment of 
extracted beam.

 Typically, the electrostatic septum wires are 0.1 mm diameter and the 
gap for the magnetic septum is 20 mm. 

Phase advance n

At Electrostatic Septum

X

X’

Kick

X

X’

Gap

At Magnetic SeptumAt Virtual Sextupole

X

X’

Phase advance 5/4+2n  
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Configuring the extraction (2)Configuring the extraction (2)
 Let us return to an earlier example 

showing a beam moving into a 
resonance.  

 The large amplitude particles enter 
the resonance first.  Particles with 
smaller amplitudes must wait until 
they move to a Q value closer to the 
resonance.

 This means that during the extraction 
there is a range of amplitudes being 
extracted and each amplitude follows 
the theory laid out so far. 

 All separatrices terminate at the 
same radial position, but with a 
wide range of angles.  The septum 
can only be aligned longitudinally 
at one angle.  Hence, this leads to 
large interception losses.

dN/dA

Normalised 
amplitude, A

A=(E/)

Stable region

Unstable 
region

Stack moving into 
resonance

Spill

p/p or X or Qx

Stopband

Qres



22

Hardt condition (1)Hardt condition (1)
 The Hardt condition is constraint on the 

lattice optics that superimposes the 
extraction separatrices at a given point 
in the machine.  

 The first step is to generalized the 
Kobayashi Hamiltonian for dispersion 
and then to derive the general 
separatrix equation.  This would add 
too much theory to this lecture, so we 
will jump directly to the conclusion.

  is the phase advance from a reference 
point to the ES,  is an angle that 
defines the separatrix at the reference 
point (see next slide) and (Dn, D′n) is 
the normalized dispersion vector.

    Q
S

DD 


4
sincos nn

Extreme cases of the largest amplitude and 
the zero amplitude separatrices after the 

Hardt condition has been applied. 
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Hardt condition (2)Hardt condition (2)
 The angle  is defined by the perpendicular form for a straight line.  If the 

reference point is the virtual sextupole then  = 

 The dispersion function is a property of the lattice.  If the lattice already 
exists, or is determined by other factors, this could be a severe 
disadvantage.

 For optimized operation the extraction separatrix should be at /4 in the 1st 
quadrant that is (-. 

 The sextupole strength cannot be used as a variable, since it determines 
the spiral step and therefore the horizontal size of the extracted beam.

 For small, low-energy machines working below transition, the chromaticity 
should be negative to ensure the stability of the coasting beam.  However, 
the chromaticity can still be varied over a wide range.

y

xh 

Angle  is measured 
anticlockwise from x-axis 

to perpendicular h 
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Getting to the magnetic septumGetting to the magnetic septum

 The aperture between the electrostatic and magnetic septa is checked visually using 
a graphical method developed by C. Steinbach.  

 The phase-space areas between the maximum and the zero-amplitude separatrices 
are marked in blue as well as the extracted beam segment.

ES MS
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Widening the scope (1)Widening the scope (1)
 Moving the beam. This method has the advantage of leaving the optical 

parameters of the machine constant, and hence also those of the 
resonance:
 Acceleration-Driven.  The beam is accelerated towards the stationary 

resonance by a betatron core, or by stochastic noise, or possibly by a phase 
displacement or a RF micro-bucket acceleration system.

 RF ‘knockout’.   The beam is excited by transverse stochastic noise or RF 
excitation at the revolution frequency, so that its betatron amplitudes grow.  
The chromaticity is set to zero, or a low value, so that the resonance line acts 
as a threshold in amplitude above which the ions become unstable [1].

 Moving the resonance.  This method is not recommended as it alters 
the optics of the machine:
 Quadrupole-driven. The tune of the machine is changed so that the 

resonance region moves towards the beam. 

 Sextupole-driven.  The resonance excitation is changed by increasing the 
sextupole strength.  This method is included only for academic completeness.
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Widening the scope (2)Widening the scope (2)
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A ‘strip spill’ (1)A ‘strip spill’ (1)
 For mathematical convenience, the origin of 

the Hamiltonian is shifted to the upper fixed 
point and the extraction is considered via 
this fixed point.

 The extraction process can be studied by 
considering what happens when the ‘last 
stable triangle’ shrinks by a small step.  

 When this happens a thin strip of particles 
that were previously stable now find 
themselves outside, in the unstable region.

 In the lower figure, only one of the three 
sides of the triangle is considered. The 
black arrows show the general direction of 
movement of the particles.  The grey 
arrows show the movement of the 
separatrices.
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A ‘strip spill’ (2)A ‘strip spill’ (2)
 In the translated frame of reference, the equations of motion become:

Time is dimensionless and is measured as the number of sets of three turns.  
Thus, an extraction time of 100 equals 300 revolutions.

 Extracted particles will follow paths of constant H close to the 
separatrices. The trajectories come directly from the initial conditions 
(X0,Y0) substituted into the Hamiltonian (1). 

 Close to the fixed point O (|X|, |Y| << h) the third-order terms in X and Y can 
be neglected.  Thus:
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 Substituting (5) into the earlier expression for dX/dt  (2) gives,

Fortunately, Eqn (6) is a standard form and can be integrated.  

 Within the strict assumptions made earlier (|X|, |Y| << h) , the result is only 
valid close to O, but, since the particle approaches the separatrix 
asymptotically the third-order terms in the Hamiltonian cancel out, so they 
can also be neglected far from O along the outgoing separatrix and the 
integration can be extended right up to the electrostatic septum.

 This covers the essential mathematics for calculating extracted particles.  
The finer details can be found in Ref. CERN/PS 99-010 (DI).  We will now go 
directly to the results.  

A ‘strip spill’ (3)A ‘strip spill’ (3)
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Transit time (1)Transit time (1)
 The mathematics of the ‘strip spill’ can tell us how long it takes for a 

particle to leave the machine – the transit time.  

 The transit time is split into two parts:

 (i) The time to travel from O to the electrostatic septum, and 

 (ii) The time to move along the side of the stable triangle from an arbitrary 
point towards O.

 In the first instance this done under static conditions i.e. while the stable 
triangle remains constant in size and position and then these 
expressions must be modified to take into account the dynamic 
conditions of a shrinking stable triangle.  

 For convenience, the motion in X is measured in units of h, the motion in 
Y is measured in units of the length of the side of the stable triangle and 
the position of the ES is expressed in units of h,

nhEShYYhX B  ;32; 00000 
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Transit time (2)Transit time (2)
 The final result for the Transit time from a point on the side of the triangle to the ES 

under static conditions is:

 If the shrink rate of the last stable triangle is taken into account we have,

 
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Time profile of a ‘strip spill’Time profile of a ‘strip spill’
 The basic results for the transit 

time with an estimate of the 
particle distribution can be 
used to predict the time profile 
of the spill from an elementary 
‘strip’ of particles sitting along 
the side of the last stable 
triangle.

 Assuming all the details in Ref. 
CERN/PS 99-010 (DI), a typical 
strip spill has a time profile 
as shown i.e. 
 A narrow spike

 Followed by a flat tail.

 The spike arrives at

 The length of the flat tail is t0.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1
1

4

1
1

9

1
2

3

1
2

8

1
3

2

1
3

7

1
4

1

1
4

6

1
5

0

1
5

5

1
6

0

1
6

4

1
6

9

1
7

3

1
7

8

1
8

2

1
8

7

1
9

2

1
9

6

2
0

1

2
0

5

2
1

0

2
1

4

2
1

9

2
2

3

Ultimately, it will be possible to integrate over the 
elementary strips from all the different momenta 

that become unstable at any one time to form what 
is known as the ‘band spill’.3
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Time profile of a ‘band spill’Time profile of a ‘band spill’
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Emittance of the spillEmittance of the spill

Electrostatic 
Septum (ES)

X

Y

B

C

O

Initial co-ordinates 
of particle:

(X0, Y0)

Extracted beam segment
‘Bar of charge’

The extracted beam segment known 
as the ‘bar of charge’ has a small 

phase-space area (emittance) 
compared to the original beam. Comparison of the phase-space volumes of the 

‘waiting’ beam and the spill.

t

p

Trev

Tspill

Emittance
in ring

p/p ring Phase-space 
volume of the 

‘waiting’ beam

Phase-space 
volume of the 

spill

Emittance 
in spill

Acceleration

p/p  spillspill/ring ≈ (Trev/Tspill)(p/pring/p/pspill)

Typically Trev ≈ 1ms  and Tspill ≈ 1s.
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Thank you for your attention.Thank you for your attention.


