FROM RESEARCH TO INDUSTRY

LARGE SC MAGNET SYSTEMS

CERN ACCLERATOR SCHOOL Pierre VEDRINE

4 MAY 2013

www.cea.fr

Overview of large scale applications of superconductivity

Accelerator magnets: review of the four major projects (Tevatron, HERA, RHIC, LHC), magnet parameters, construction choices, operation experience and performance.

Detector magnets: from the first bubble chambers to CMS and ATLAS.

Fusion magnets: review of machines built (Mirror MTF, T-15, Tore Supra, K-STAR, SST, EAST) and in construction (W7-X, ITER, JT60-SA)

OVERVIEW OF LARGE SCALE APPLICATIONS OF SUPERCONDUCTIVITY

FROM RESEARCH TO INDUSTRY

Large Scale Applications of Super-Conductivity				
Application	Major Technical Features			
Power Cables	higher current densities, smaller conductor diameters, lower transmission losses, (sice effect: oil-free)			
Current Limiters	highly non-linear super-normal-conductor transition, self-controlled current limitation			
Transformers	higher current densities, smaller size, ower weight, lower losses, (side effect: oil-free)			
Motors / Generators	higher current densities, higher magnetic fields, smaller size, lower weight, lower losses			
Magnets for RTD, Magnetic Energy Storage, Magnetic Separation, . NMR Spectroscopy, MRI, Magnetic Levitation Systems	higher current densities, higher & ultra-high magnetic fields, higher magnetic field gradients, smaller size, lower weight, lower losses persistent currents, ultra-high temporal field stabilities stranger levitation forces, larger air gass			
Cavities for Accelerators (based on LTS sheets or coatings)	lower surface resistances, higher qual ty factors, higher microwave-power handling capability			
Magnetic Bearings (based on HTS bulk material)	higher current densities, lower losses, stronger levitation forces, self controlled autostable levitation			

Possibility to generate very large volumes of (high) magnetic field using superconductors.

$$\mathsf{E}_{\mathsf{beam}} \cong \mathsf{B}_{\mathsf{dipole}} \cdot \mathsf{R}$$

Accelerator

$$\frac{\mathbf{S}}{\mathbf{B}} \propto \mathbf{B}_0^{\frac{3}{2}}$$

$$\frac{\Delta p}{p} \propto \frac{p}{qBL^2}$$

Detector

NMR/MRI

Performance factor ~ $B^3 R^2$

Fusion machine

- Basic parameters for the specification
 - . Field B, length L, radius R
 - . Field shape and homogeneity, field stability, radiation thickness, interaction length, etc...
- Parameters relevant for the physics
 - . B, BL (deflection), d^mB/d^mR (gradients), BL² (sagitta), BL² (momentum resolution), B³R², etc...
- Parameters relevant for the magnet designer
 - $B^2 R$ (mechanical forces)
 - . $B^2 R/\Delta R$ (stresses , protection in case of quench, ΔR : coil thickness)
- Parameters relevant for the ressource manager

Cost :
$$C = \alpha (RL)^{0.8} + \beta (B^2 R^2 L)^{0.7}$$
 (from A. Hervé)
 $C(M\$) = 0.5(E_s(MJ))^{0.662}$
 $C(M\$) = 0.4(B(T)V)^{0.635}$ (from Green and Lorant)

- **B** : intrinsic value : $B_c \sim 10$ T for NbTi

~ 20 T for Nb_3Sn

-Mechanical forces/stresses

. Forces must be held by the conductor and/or the external support structure

(coil thickness $\propto RB^2/(E/M) \propto RB^2 \rho/\sigma_h$ (ρ =density))

. Electrical insulation must also withstand the stress (shear stress in particular)

- Protection in case of quench

. Importance of the value of the stored energy per unit of cold mass (E/M ratio) peak temperature at homogeneous energy dump ($E = 0.5\mu_0 [B \cdot dV; E/M = H = \int C_p dT$)

. Necessity of fast quench propagation (active/passive propagation techniques, high RRR in stabilizer, energy extraction by external dump)

- Dimensions: . Manufacturing dimensions and tolerances, handling

. Road transportation $R_{\text{max}} \sim 3.5 \text{ m}$

- Enabling technologies : Conductor, insulation, cooling, manufacturing techniques

SC market repartition and evolution

From Conectus

New Markets for Large Scale & Electronics Applications of Superconductivity Conectus, March 2012										
Application	20	12	20	13	20	14	20	15	20	16
Magnets for New Medical Applications										
Fault Current Limiters										
Power Cables										
Rotating Electric Machines										
Magnetic Bearings & Levitation										
Magnetocardiography										
Digital Circuits										
Other Electronic Devices & Sensors										

New Large Scale & New Electronics Applications:

pre-commercial orders related to RTD activities, field tests and prototype operation

emerging market

established market

From Conectus

NMR/ MRI FOR THE FUTURE

Push the limits of NMR/ MRI systems

Varian 400 Mhz

Cea

Varian 900 Mhz

Bruker 950 Mhz

Bruker 1 Ghz

GE 1.5 T magnet (SHFJ/CEA)

Siemens 3 T magnet

GE 9.4 T 600 mm

(CEA)

0.1 mm Increase spatial and time resolution 0.1s

POWER CABLES

Cable System	AC	DC	
Cable System	Conventional	HTS	HTS
Voltage (kVrms)	275	66	130
Current (kA/phase)	1	3.3	12
Loss (kW/km)	740	200	20

CAS ON SUPERCONDUCTIVITY FOR ACCELERATOR | 4 MAY 2013

FAULT CURRENT LIMITERS

Superconductors switch to resistive state above critical current

Increased resistance limits current flow

Many FCLs demonstrated; commercialization beginning

Bifilar coil switching module

FROM RESEARCH TO INDUSTRY

WIND POWER GENERATORS

HTS generators reduce size and weight for 8-10 MW wind turbine Lowest cost of energy: lowest installed cost per MW, highest efficiency, longest maintenance interval Cea

ROTATING MACHINERY

• Less noise

TRANSPORTATION APPLICATION : MAGLEV

Maglev uses magnetic forces to levitate

Strong magnetic field are produced by superconducting coils, as in MRIs.

Japanese Railway Technical Research Institute (JR-RTRI) built a 40 km long track to test their Maglev in Yamanashi region, in Japan. It was on this track that the prototype MLX01 won the speed record for a train: 581 km/h

ACCELERATOR MAGNETS

DIPOLE MAGNETS

HERA B = 4.7 T Bore : 75 mm

TEVATRON B = 4.5 T Bore : 76 mm

CAS ON SUPERCONDUCTIVITY FOR ACCELERATOR | 4 MAY 2013 | PAGE 17

SSC

B = 6.6 T Bore : 50-50 mm

Cea

FUSION MAGNETS

Cea

ACCELERATOR MAGNETS

900 GeV proton/antiproton 6.3 km ring collider at Fermilab IL

Commissioning 1983 Closed 2011

Cea

TEVATRON

CCC

TEVATRON MAGNETS

774 6.1-m-long dipole magnets

216 1.7-m-long quadrupole magnets

	DIPOLE	QUADRUPOLE
Operating temperature (K)	4.6	4.6
Central field (T)	4.4	
Gradient (T/m)		75.8
Field length (m)	6.11	1.679
Inner coil diameter (mm)	76.2	88.9
Number of coil layers	2	2
Superconducting material	NbTi	NbTi
Collar material	Stainless steel	Stainless steel
Yoke	warm	warm
Cryostat length (m)	6.4	2.31
Total number	774	216

Strand diameter	0,68 mm
Filament diameter	9 µm
Cu/Sc	1,8
Jc @ 5T, 4.2 K	1800 A/mm ²
Nb of strands	23
Cable dimensions	1.372/1.067 x 7.671 mm

FROM RESEARCH TO INDUSTRY

PICTURES OF TEVATRON MAGNETS

Image by courtesy of Fermi National Accelerator Laboratory CAS ON SUPERCONDUCTIVITY FOR ACCELERATOR | 4 MAY 2013 | PAGE 23

TEVATRON DIPOLE QUENCH PERFORMANCES

All magnet were measured under two different excitation cycles (different ramp rates).

30 GeV conventional electron ring and an intersecting 920 GeV proton ring built at DESY (Deutsches Elektronen-SYnchrotron near Hamburg

Commissioning 1990 closed 2007

HERA MAGNETS

	DIPOLE	QUADRUPOLE
Operating temperature (K)	4.5	4.5
Central field (T)	4.68	
Gradient (T/m)		91.2
Field length (m)	8.82	1.861
Inner coil diameter (mm)	75	75
Nominal current (A)	5027	5027
Number of coil layers	2	2
Superconducting material	NbTi	NbTi
Filament diameter (mm)	14	19
Collar material	Al-alloy	Stainless steel
Yoke	cold	cold
Cryostat length (m)	9.77	3.98
Total number	422	224

Strand diameter	0,84 mm
Filament diameter	14 μm
Cu/Sc	1,8 mm
Jc @ 5.5 T, 4.2 K	> 2200 A/mm2
Nb of strands	24
Cable dimensions	1.67/1.28 x 10 mm

CAS ON SUPERCONDUCTIVITY FOR ACCELERATOR | 4 MAY 2013 | PAGE 26

10

PICTURES OF HERA MAGNETS

SC magnet testing

Reference magnets

Training is negligible: maximum quench current reached after few quenches.

Measurements of quench currents at 4.75 K, Mean $(\pm \sigma)$: Dipoles 6458 A $(\pm 114 \text{ A})$; Quads: 7383 A $(\pm 148 \text{ A})$ Weakest: Dipole: 6154 A, Quad: 6518 A

Main collider composed of two independent 87 km rings of 20 TeV for protons.

Injector complex includes a 600 MeV Linac, a 12 GeV rapid-cycling Low Energy Booster, a 200 GeV Medium Energy Booster, and a **2 TeV superconducting High Energy Booster (HEB) (10,8 km ring)**.

Cancelled Octobre 1993

Construction site

FROM RESEARCH TO INDUSTR

SSC MAGNETS

	SSC Dipoles		
	Collider	HEB	
Operating temperature (K)	4.35	4.35	
Central field (T)	6.7	6.7	
Field length (m)	15.2	12.3	
Inner coil diameter (mm)	50	50	
Number of coil layers	2	2	
Superconducting material	NbTi	NbTi	
Collar material	Stainless steel	Stainless steel	
Yoke	cold	cold	
Total number	7634	512	

	SSC Quadrupoles		
	Collider/LBL	HEB	
Operating temperature (K)	4.35	4.35	
Gradient (T/m)	204	186	
Field length (m)	5.07	1.6	
Inner coil diameter (mm)	40	50	
Number of coil layers	2	2	
Superconducting material	NbTi	NbTi	
Filament diameter (mm)	6	6	
Collar material	Stainless steel	Stainless steel	
Yoke	cold	cold	
Total number	1564	318	

Strand diameter	0,648/0,808 mm
Filament diameter	8 µm
Cu/Sc	1,8 mm
Jc @ 5T, 4.2 K	> 2750 A/mm2
Nb of strands	30/30/36
Cables dimensions	1.33/1.15 x 12.3 mm 1.062/1.268 x 9.73 mm 1.05/1.26 x 11.7 mm

Test results from 18, 50 mm aperture, SSC dipole prototypes

No or very little training to 6600 A (operating current). All the magnets tested reached a plateau current very close to the short sample current.

RELATIVISTIC HEAVY ION COLLIDER RHIC

Relativistic Heavy Ion Collider at Brookhaven National Laboratory accelerates and collides an extremely wide range of particles, from protons up to gold ions in the energy range 30 to 100 GeV/u, with two separate rings of 3,8 km.

Commissioning 2000

~07

RHIC ARC MAGNETS

	RHIC		
	Dipole	Quadrupole	
Operating temperature (K)	4.6	4.6	
Central field (T)	3.45		
Gradient (T/m)		71.8	
Field length (m)	9.46	1.13	
Inner coil diameter (mm)	80	80	
Number of coil layers	1	1	
Superconducting material	NbTi	NbTi	
Collar material	none	none	
Yoke	cold	cold	
Cryostat length (m)	9.728	3.023	
Total number	372	4920N SI	

Strand diameter	0,648 mm
Filament diameter	6 µm
Cu/Sc	2;25
Jc @ 5T, 4.2 K	2750 A/mm2
Nb of strands	30
Cable dimensions	1.166 x 9.73 mm

PICTURES OF RHIC MAGNETS

Images by courtesy of Brookhaven Accelerator Laboratory

Cea

RHIC MAGNET QUENCH PERFORMANCES

LARGE HADRON COLLIDER

LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight
LHC ARC MAGNETS

LHC DIPOLE : STANDARD CROSS-SECTION

	LHC		
	Dipole	Quadrupole	
Operating temperature (K)	1.9	1,9	
Central field (T)	8,36		
Gradient (T/m)		223	
Field length (m)	14,2	3,1	
Inner coil diameter (mm)	56	56	
Number of coil layers	2	2	
Superconducting material	NbTi	NbTi	
Collar material	none	None	
Yoke	cold	Cold	
Total number	1232	386	

cea

LHC CABLE PARAMETERS

	Dipole Inner layer	Dipole Outer Layer, Quadrupole
Diameter (mm)	1.065	0.825
Copper to Superconductor Ratio	1.6	1.9
Filament size (μm)	7	6
Number of filaments	8900	6500
RRR	>70	>70
Twist pitch (mm)	25	25
Critical current density (A/mm2)		
10 T, 1.9 K	>1530	
7 T, 1.9 K		>2100

	Dipole	Dipole	Quadrupole
	Inner layer	Outer Layer	
Number of strands	28	36	28
Cable dimension			
Thin edge (mm)	1.736	1.362	1.362
Thick edge (mm)	2.064	1.598	1.598
Width (mm)	15.1	15.1	11.6
Transposition pitch (mm)	115	100	95
Keystone angle (°)	1.3	1	1.3
Critical current Ic(A)			
10T, 1.9 K	>13750		
9T, 1.9 K		>12950	>10060
dlc/dB (A T-1)	>4800	>3650	>3040

CAS ON SUPERCONDUCTIVITY FOR ACCELERATOR | 4 MAY 2013 | PAGE 38

FROM RESEARCH TO INDUSTRY

PICTURES OF LHC MAGNETS

Quadrupole

LHC MAGNET INSTALLATION

Most of the magnets reached the nominal current of 11850 A (about 86% of I_{ss}) with two quenches.

Histogram of the number of quenches to reach 8.33 Tesla (11850

DETECTOR MAGNETS

Two main types of large, superconducting detector magnets: solenoids (e.g., ALEPH and CMS at CERN) and toroids (e.g., ATLAS at CERN).

+ Very good momentum resolution at large angle, compact and efficient structure.

- requires an iron yoke, inefficient for small-angle particles.

+ No field along the axis, magnetic field always transversal to the particle momentum, low fringe field, best momentum resolution at low angle.

 Very inhomogeneous magnetic field, high peak field on the conductor, complicated magnet structure.

FROM RESEARCH TO INDUSTRY

EARLY BUBBLE CHAMBER MAGNETS

First superconducting bubble chamber magnet constructed at Argonne National Laboratory by John Purcell 1968

Split pair solenoid with vertical axis and gap to allow beam entry

Bath cooled coils – NbTi copper stabilised conductor operated in cryostable mode

Low current density ~ 8A/mm^2

	Argonne	Fermilab	Cern
	12 ft BC	15 ft BC	BEBC
	1968	1972	1972
Field (T)	1.8	3	3.5
Winding ID (m)	4.8	4.3	4.7
Stored Energy MJ	80	400	800

Cea BEBC - BIG EUROPEAN BUBBLE CHAMBER

BEBC cooling power at 4K ~ 900W equivalent to ~ 0.5MW at 300K

Corresponding power for a resistive version ~ 60MW

BEBC magnet 1967 750 MJ

FROM RESEARCH TO INDUSTR

ALUMINUM STABILIZED CONDUCTORS

CMS reinforced conductor

Example

ATLAS Conductor 65 kA at 5 T

1.25mm dia. NbTi/Cu strand,

2900A/mm² at 5T, 4.2 K

40 strands Rutherford cable,

Co-extrusion with high purity AI (RRR>1500) (AI for low density and high RRR)

Inter-metallic bonding Cu-Al necessary

size 57 x 12 mm², 56 km

Name	ALEPH	DELPHI	CLEO2	ZEUS	H1
Accelerator	LEP	LEP	CESR	HERA	HERA
Laboratory	CERN	CERN	Cornell	DESY	DESY
Designed by	Saclay	RAL	Cornell Oxf.	Milan Un.	RAL
Manufactured by	Saclay	RAL	Oxford Inst.	Ansaldo	RAL
Inner Bore (m)	4.96	5.2	2.88	1.72	5.2
Outer Bore (m)	5.98	6.2	3.48	2.22	6.08
Winding Length (m)	6.35	6.8	3.48	2.5	5.16
Overall length (m)	7	7.4	3.78	2.8	5.75
Conductor (mm2)	35 x 3.6	24 x 4.5	16 x 5	15 x 4.3	26 x 4.5
Stabiliser	AI	AI	AI	AI	AI
Cold Mass (t)	25	25	7	3.4	
Conductor mass (tons)	8	7		2.4	7
Current (A)	5000	5000	3300	5000	5500
Design field (T)	1.5	1.2	1.5	1.8	1.2
Stored energy (MJ)	137	108	25	16	120
Cooling method	Thermo	Forced flow	Thermo	Forced flow	Forced flow
	siphon	pumps	siphon	pumps	pumps
Radiation length (X0)	2	7.4		0.9	4
Year of completion	1987	1988	1988	1989	1989

FROM RESEARCH TO INDUSTRY

ALEPH-DELPHI-H1 Solenoids RAL and Saclay 1988

FROM RESEARCH TO INDUSTRY

LHC DETECTOR MAGNETS...THE GIANTS !

CMS

Largest Solenoid – 4T, 2.7 GJ, 7m dia, 12m long

ATLAS TOROIDS

Largest field volume – 8200 m3 self contained field (no yoke) open structure 1.55 GJ, 20 m dia, 25 m long

End Cap Toroid (8 coils, 4 T peak, 250 MJ,)

5 m 2.5 m Central Solenoid

(2 T, 39 MJ)

ATLAS magnet system

	Barrel	End Cap	
Torus inner bore (m)	9.6	0.8	
Outer diameter (m)	19.3	10.6	
Overall length (m)	26	5.6	
Number of coils	8	8	
Total Amp x turns (MA)	24	22	
Stored Energy (MJ)	1200	350	
Operating current (kA)	20	20	
Peak field (T)	3.8	4	
Total Weight (t)	800	240	
Conductor			
Overall size (mm2)	70 x 11	70 x 7	
Туре	Rutherford cable +		
	pure AI coextruded		
Cooling	Indirect cooling with flow of pressurized supercritical helium 4.5 K		

Cea ATLAS BARREL TOROID MANUFACTURING

BT coil manufacture at Ansaldo

BT coil encasing at CERN

Cold test of individual BT coil at CERN CAS ON SUPERCONDUCTIVITY FOR ACCELERATOR | 4 MAY 2013 | PAGE 53

Cryostating at CERN

Descent of 8th Barrel Toroid coil (4 August 2005)

ATLAS BARREL TOROID FINAL ASSEMBLY

Installation of ATLAS magnet system (BT & CS) at the bottom of CERN pit (November 2005)

ATLAS END CAP TOROID

ATLAS END CAP TOROID INSTALLATION

ATLAS CENTRAL SOLENOID

- Diameter 2.4 m 5.3 m long
- 2.0 T & 38 MJ
- 9 km of conductor
- Weight 6 t

High strength pure aluminium stabilizer AI-0.1wt%Ni alloy cold work of around 20 - 2.5% in area reduction after co-extrusion RRR > 500, YS > 85 Mpa AI-strip quench propagator

2 T @

7600 A

ATLAS CENTRAL SOLENOID IN THE PIT...

FROM RESEARCH TO INDUSTRY

Cea

ATLAS MAGNET SYSTEM INSTALLED

CMS SOLENOID

Yoke (Barrel: 6000 t, End Cap Disks: 2x2000 t)

Solenoid (4 T, 2.7 GJ, 220 t)

CMS Solenoidal Coil

- Central field : 4 T
- Nominal current: 20 kA
- Stored energy: 2.7 GJ
- Length : 12.5 m
- Internal diameter : 6 m
- Weight: 220 t

Conductor

- Pure Al + high strength alloy 6082
- YS > 250MPa @ 4K

6082 Al Alloy Reinforcement

• RRR 1400

Electron Beam Welding Connection

4 layers reinforced conductor

CAS ON SUPERCONDUCTIVITY FOR ACCELERATOR | 4 MAY 2013 | PAGE 62

32 strands Rutherford Type Cable

99.999% Pure Al Stabilizer

CMS COIL WINDING

Conductor manufacturing

Winding mandrel

CMS COIL WINDING

wrapping

CAS ON SUPERCONDUCTIVITY FOR ACCELERATOR | 4 MAY 2013 | PAGE 64

CMS SOLENOID ASSEMBLY IN THE DETECTOR

Yoke reception at CERN (June 2002)

Magnet insertion into barrel yoke (Fall 2005)

Lowering of the central part of the CMS detector to the bottom of its CERN pit (Feb. 2007)

FUSION MAGNETS

SUPERCONDUCTING TOKAMAK HISTORY

Magnetic Mirror SC coils in the early 70's and early 80s

Large tokamak SC experiment T-15, Tore Supra 1988

Baseball I and II, hot plasma confined by magnetic mirrors. 1965

MIRROR FUSION TEST FACILITY

The Mirror Fusion Test Facility (MFTF) at Lawrence Livermore Laboratory (now Lawrence Livermore National Laboratory)

Two 400-ton yin-yang magnets.

607

Major plasma radius :	2.5 m
Minus plasma radius :	0.75 m
magnetic field at the plasma centre	2 T
Maximum magnetic field on the conductor	7.68 T
Operating current	5775 A
Number of coils:	2
Total lengtht of superconductor :	~ 50 km
Total weight of magnet:	~ 341 t
Total magnetic energy :	409 MJ

Completed and cancelled 1986

Superconductor	NbTi
Conductor type	monolithic + copper stabilized
	12.4 mm x 12.4 mm
Filament diameter	200 µm
Number of filament	480
Copper ratio	6.7
Maximum field	7.68 T
Conductor current	5 775 A
Critical current	10 kA @ 7.5 T, 4.2 K
Discharge voltage	1 kV
Cooling system	4.3 K, 1.3 bars helium bath
Cryogenic power	1.1 MW

T-15 TOKAMAK - KURCHATOV INSTITUTE

FROM RESEARCH TO INDUSTR

Cea Tore Supra - Cea Cadarache

Major plasma radius :	2.25 m
Minus plasma radius :	0.70 m
Diameter :	11.5 m
Height :	7.2 m
Internal vacuum vessel diameter :	1.80 m
Toroidal magnetic field at the plasma centre	4.5 T
Maximum magnetic field on the conductor :	9.0 T
Operating current	1400 A
Average diameter of a magnet coil :	2.60 m
Number of TF coils:	18
Weight of superconductor :	~ 45 t
Total weight of magnet:	~ 160 t
Total magnetic energy :	600 MJ

In operation since 1988
TORE SUPRA COIL

TF system	Tore Supra
Superconductor	NbTi
Conductor type	monolithic bare conductor 2.8 mm x 5.6 mm
Nbr of double pancakes	468
Conductor current	1.4 kA
Discharge voltage	0.5 kV
Cooling system	Superfluid helium bath
Cryogenic power	1.1 MW

Double pancakes

Conductor

NEW SUPERCONDUCTING TOKAMAKS

EAST: R = 1.7m, 2MA, 2006

KSTAR: R = 1.8m, 2MA, 2008

2008

Cer

EXPERIMENTAL ADVANCED SUPERCONDUCTING TOKAMAK (EAST)

Chinese Academy of Sciences Institute of **Plasma Physics - HEFEI**

Major plasma radius :	1.7 m
Minus plasma radius :	0.4 m
Diameter :	7.6 m
Height :	10 m
Toroidal magnetic field at the plasma centre	3.5 (4) T
Maximum magnetic field on the conductor :	5.8 (6,5) T
Operating current	14.3 (16.4) kA
Operating temperature	4.2 K (3.8 K)
Number of TF coils	16
Total length of CICC of TF system:	~ 19 km
Total weight of magnet:	~ 160 t
Total magnetic energy :	300(390) MJ

EAST TF COILS

Superconductor	NbTi
Configuration of CICC	$(2SC + 2Cu) \times 3 \times 4 \times 5$ +1 copper cable core
Conductor dimension (mm × mm)	20.4 × 20.4
Number of superconducting strands	120
Number of copper strands	120 + 21
Diameter of superconducting strands (mm)	0.87
Diameter of copper strands (mm)	0.98
Jacket material	316 LN
Operating current, Iop (kA)	14.3
Ratio of lop/lc	0.28
Current sharing temperature, Tcs (K)	6.08
Temperature margin (K)	1.88
Upper limited current, Ilim (kA)	18.1

SST-1

Institute for Plasma Research, Bhat, Gandhinagar

Major plasma radius :	1.1 m
Minus plasma radius :	0.2 m
Diameter :	4.4 m
Height :	2.6 m
Toroidal magnetic field at the plasma centre	3 T
Maximum magnetic field on the conductor :	5.1 T
Operating current	10 kA
Average diameter of a magnet coil	1.8 m
Number of TF coils	16
Number of PF coils	9
Total length of CICC of TF system:	~ 19 km
Total weight of magnet:	~ 160 t
Total magnetic energy :	56 MJ

SST-1 TF COILS

Superconductor	NbTi
Configuration of CICC	3× 3× 3 × 5
Conductor dimension (mm × mm)	14.8 × 14.8
Number of superconducting strands	135
Cu/NbTi	5
Diameter of superconducting strands (mm)	0.86
Jacket material	304 L
Operating current, Iop (kA)	10
Ratio of Iop/Ic	0.28

KSTAR

Korea Superconducting Tokamak Advanced Research at the National Fusion Research Institute in Daejon, South Korea.

Major plasma radius :	1.8 m
Minus plasma radius :	0.5 m
Diameter :	8.8 m
Height :	8.6 m
Toroidal magnetic field at the plasma centre	3.5 T
Maximum magnetic field on the conductor :	7.2 T
Operating current	35.2 kA
Average diameter of a magnet coil :	
Number of TF coils	16
Number of PF coils	6
Total length of CICC of TF system:	~ km
Total weight of magnet:	~ 270 t
Total magnetic energy :	470 MJ

Completed in 2007; first plasma in July 2008

KSTAR TF COIL

Superconductor	Nb3Sn
Configuration of CICC	(2Sc+1Cu)x3x3x3x6
Conductor dimension (mm × mm)	25.65 × 25.65
Number of superconducting strands	324
Number of copper strands	162
Diameter of superconducting strands (mm)	0.81
Diameter of copper strands (mm)	0.81
Jacket material	Incoloy Alloy 908
Operating current, Iop (kA)	35.2 kA
Critical current density @12T, 4.2K	> 750 A/mm2
Operating margin	4.8 K
Helium fraction	0.34

Central Solenoid - Nb $_3$ Sn CICC with Incoloy Alloy 908 Jacket 25 kA Poloidal Field Coils - NbTi CICC with modified 316LN Jacket

Japan Atomic Energy Agency, Naka Fusion for Energy, Europe

Major plasma radius :	3.1 m
Minus plasma radius :	1.15 m
Toroidal magnetic field at the plasma centre	2.68 T
Maximum magnetic field on the TF conductor :	6.5 T
Operating current	25.7 kA
Operating temperature	4.6 K
Number of TF coils	18
Total weight of magnet:	~ 1300 t
Total magnetic energy :	1060 MJ

First plasma 2019

JT60-SA TF COIL

Conductor

Cea

NbTi CICC Jacket 316 LN th 2 mm Vf: 32% 324 NbTi strands+ 162 Cu strands

JT60-SA CS+PF COILS

CS 7.7 m			
		CS	EF
	Weight (t)	120	375
	Strand	Nb ₃ Sn	NbTi
	Conductor	cable-in-	conduit
	B _{max} (T)	10	6.1
	T _{op} (K)	4.6	5.0
EF c	oils		
←11.6 m>			

WENDELSTEIN 7-X

C27

Stellarators use a single coil system with no longitudinal net-current in the plasma and hence without a transformer (continuous operation and inherent stability).

Cea

Cerrorian Next Step Towards Fusion Energy : Iter

Tore Supra
25 m³
400 s
1,5 MA
4.2 T
~ 0
Q ~ 0
0%

JET 80 m³ 30 s 5 MA 3.5 T Q ~ 1 10 %

ITER 800 m³ 400 s-1000 s 15 MA 5.3 T $\sim 16 MW_{th} \sim 500 MW_{th}$ Q ~ 10 70 %

DEMO ~ 1000 - 3500 m³

 $\sim 2000 - 4000 \, MW_{th}$ Q ~ 30 80 to 90 %

First plasma in 2020, Operation in 2027

Typical Density: 10²⁰ m⁻³

ITER MAGNET SYSTEM SHARING

FROM RESEARCH TO INDUSTRY

ITER COILS

	P	21/2	69
	TF	CS	PF
Number of Coils	18 JP	1	6 vidensies bit
Dimension	14x9 m	12x4 m	8 to 24 m
Conductor Type	Nb₃Sn CIC	Nb ₃ Sn CIC	NbTi CIC
Quantity Total Weight Sc Strand Weight	88 km 826 t 384 t	42 km 728 t 122 t	65 km 1224 t 224 t
Operating Current	68 kA	46 kA	52 kA
Operating Temperature	5 K	4.5 K	4.5 K
Peak Field	11.8 T	13.0 T	Up to 6.0 T (P6)
Stored Energy	41 GJ	6.4 GJ	4 GJ
Total Weight (Incl. Supports)	6540 t	974 t	2163 t

FROM RESEARCH TO INDUSTR

Cea

ITER TF COIL

	· · ·	DP insulation	Holes for VPI
			Cover Plate
		Conductor	Radial Plate
		Radial plate	
	Section of nose		
	Coil Casing High strength 316LN 0.2% V.5 > 1000MPa		
		Maximum magnetic field on the conductor :	11.8 T
		Operating current	68 kA
		Dimensions of a magnet coil :	16.5 m x 9 m
		Number of TF coils	18
		Operatin temperature:	~ 5 K
		Max. operatin voltage	7 kV
	Courtesy of ITER	Total magnetic energy :	41 GJ
· ·		Total weight	5362 t

Cea

ITER TF CONDUCTOR

Superconductor	Nb₃Sn
Configuration of CICC	((2Sc+1Cu)×3×5×5 +core) ×6
Conductor dimension (mm)	43.7
Number of superconducting strands	900
Number of copper strands	522
Diameter of superconducting strands (mm)	0.82
Diameter of copper strands (mm)	0.81
Jacket material	316 LN
Operating current, Iop (kA)	68 kA
Critical current/strand@12T, 4.2K	> 190 A
Operating margin	0.8 K
Helium fraction	33 %

Nb₃Sn bronze route CAS ON SUPERCONDUCTIVITY FOR ACCELERATOR | 4 MAY 2013 | PAGE 93

ITER CS COIL

Cea

Number of CS modules Magnetic energy in CS coil (GJ) Operating current (kA) Maximum field (T) Weight (t)	6 21 41.8/46 13.5/12.8 1000
Superconductor	Nb3Sn
Configuration of CICC	(2Sc+1Cu)x3x4x4x6
Conductor dimension (mm)	49 x 49
Number of superconducting strands	576
Diameter of superconducting strands (mm)	0.83
Jacket material	316 LN
Operating current, Iop (kA)	46 kA

Helium fraction

33.5 %

ITER PF Coils

Number of PF coils	6
Maximum diameter (m)	24
NbTi conductor	
Magnetic energy in PF coils (GJ)	4
Operating current (kA)	52
Maximum field (T)	6.5
Weight (t)	2163

	the second se
Cabling layout	3 sc x 4 x 4 x 5 x 6
Twist direction	Right hand
Cable twist pitches	45/85/145/250/450 mm
Sub-cable and cable wrap thickness	0.05 and 0.1 mm
Central spiral OD/ID	12/10 mm
Spiral and wraps material	304L or 316 L
Jacket material	316 L
Final conductor outer dimension	53.8 mm

Important developments in the technology over the last 40 years for the large scale applications of the superconductivity :

- Field strength Scale Field volume Stored energy
- Conductors advances in scale, strength, current
- Coil winding and assembly
 - technology materials impregnation bonding
 - engineering scale + accuracy

•Next step will be to use Nb₃Sn and HTS materials to increase the field level

•Need for a strong R&D to reinforce conductor mechanical strength and protect the coils against quenches.

Many thanks for contribution of material

- Jean-Luc Duchateau (CEA)
- Arnaud Devred (ITER)
- François Kircher (CEA)
- Elwyn Baynham (RAL)
- Akira Yamamoto (KEK)
- Lucio Rossi (CERN)
- Luca Bottura (CERN)
- Paolo Ferracin (CERN)

Commissariat à l'énergie atomique et aux énergies alternativesDSMCentre de Saclay | 91191 Gif-sur-Yvette CedexIrfuT. +33 (0)1 69 08 71 28 | F. +33 (0)1 69 08 69 29SACM

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019