






Normalise magnetic field to momentum: 

Dipole Magnets: 

define the ideal orbit  
homogeneous field created  
by two flat pole shoes 

convenient units:  

Example LHC: 
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field map of a storage ring dipole magnet 
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  „normalised bending strength“ 

2πρ = 17.6 km  
        ≈ 66%   

rule of thumb: 



Focusing Properties – Transverse Beam Optics 

general solution: free harmonic oszillation 

Classical Mechanics: 
pendulum 

there is a restoring force, proportional  
to the elongation x:  
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F = m * d
2x
dt 2

= −k * x

Ansatz 

Storage Ring: we need a Lorentz force that rises as a function 
of the distance to the design orbit 

required:     focusing forces to keep trajectories in vicinity of the ideal orbit  

    linear increasing Lorentz force 

    linear increasing magnetic field  



normalised quadrupole field: 

gradient of a  
quadrupole magnet: 

what about the vertical plane: 
    ... Maxwell   

LHC main quadrupole magnet 

simple rule: 



Example: 
 heavy ion storage ring TSR 

Separate Function Machines: 

Split the magnets and optimise  
them according to their job:  

bending, focusing etc  

 only terms linear in x, y taken into account   dipole fields    
                                                                           quadrupole fields 

* man sieht nur  
dipole und quads  linear 



Equation for the vertical motion: 

no dipoles … in general …  

quadrupole field changes sign 
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Equation for the horizontal motion: 
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Hard Edge Model: * 
… this equation is not correct !!! 

bending and focusing fields … are functions  
of the independent variable  „s“ 

 ! 
Inside a magnet we assume constant focusing  
properties ! 



Differential Equation of harmonic oscillator   …  with spring  constant K 

Ansatz: 

general solution:  linear combination of two independent solutions  

Define …  hor. plane: 

            … vert. Plane: 

general solution: 



Hor. Focusing Quadrupole  K > 0: 

For convenience expressed in matrix formalism: s = s0 
s = s1 

determine a1 , a2  by boundary conditions: 



hor. defocusing quadrupole:  

drift space:   
                       K = 0  

!     with the assumptions made, the motion in the horizontal and vertical planes are  
       independent  „ ... the particle motion in x & y is uncoupled“   

s = s1 s = 0 

Ansatz: 

Remember from school: 



focusing lens  

dipole magnet 

defocusing lens  

Transformation through a system of lattice elements 

combine the single element solutions by multiplication of the matrices 

x(s) 

s 

court. K. Wille 

                          0 

typical values  
in a strong  
foc. machine: 
x ≈ mm, x´  ≤ mrad 
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in each accelerator element the particle trajectory corresponds to the movement of a  
harmonic oscillator „ 



Tune: number of oscillations per turn 

            64.31 
 59.32 

Relevant for beam stability:  
                               non integer part 

LHC revolution frequency:  11.3 kHz 



Question: what will happen, if the particle performs a second turn ?  
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... or a third one or ... 1010 turns 
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Astronomer Hill:   
                differential equation for motions with periodic focusing properties 

 „Hill‘s equation“ 

Example: particle motion with  
periodic coefficient 

equation of motion: 

   restoring force  ≠ const,                                     we expect a kind of quasi harmonic       
   k(s) = depending on the position s                    oscillation:  amplitude & phase will depend    
   k(s+L) = k(s),   periodic function                      on the position s in the ring. 



General solution of Hill´s equation: 

β(s) periodic function given by focusing properties of the lattice ↔ quadrupoles  

ε, Φ = integration constants determined by initial conditions 

Inserting (i) into the equation of motion …  

Ψ(s) = „phase advance“ of the oscillation between point „0“ and „s“ in the lattice. 

For one complete revolution: number of oscillations per turn „Tune“ 

(i) 



The Beta Function 

Amplitude of a particle trajectory:  

Maximum size of a particle amplitude    

β determines the beam size  
( ... the envelope of all particle  
trajectories at a given position  
“s” in the storage ring. 

It reflects the periodicity of the 
magnet structure. 
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x(s) = ε * β(s) *cos(ψ(s) +ϕ)



general solution of 
Hill equation 

 from (1) we get 

Insert into (2) and solve for ε 

* ε is a constant of the motion  … it is independent of „s“ 
* parametric representation of an ellipse in the x x‘ space 
* shape and orientation of ellipse are given by α, β, γ 



Beam Emittance and Phase Space Ellipse 

x´ 

x 

●

●

●

●

●

●
x(s) 

s

Liouville: in reasonable storage rings  
area in phase space is constant. 

               A = π*ε=const  

ε  beam emittance = woozilycity of the particle ensemble, intrinsic beam parameter,  
                                 cannot be changed by the foc. properties.  
Scientifiquely speaking: area covered in transverse x, x´ phase space … and it is constant !!!  



Particle Tracking in a Storage Ring 

Calculate x, x´ for each linear accelerator  
element according to matrix formalism  

plot x, x´as a function of „s“  

● 



… and now the ellipse:  
  note for each turn x, x´at a given position „s1“ and plot in the  

          phase space diagram 



particel trajectory: 

max. Amplitude: x´ at that position …? 

… put         into 

* The optical functions determine the shape  
and orientation of the phase space ellipse.  

A high β-function means a large beam size  
and a small beam divergence. 
   … et vice versa !!! 

! 
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ε = γ(s) x 2(s) + 2α(s)x(s) ′ x (s) + β(s) ′ x 2(s)
x
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and solve for x´  

* 





single particle trajectories, N ≈ 10 11  per bunch 

Gauß  
Particle Distribution: 

particle at distance 1 σ from centre  
                                ↔ 68.3 % of all beam particles 

aperture requirements:  r 0 =  12 * σ 

LHC:  
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β =180m
ε = 5*10−10mrad
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Beam Emittance corresponds to the area covered in the  
x, x´ Phase Space Ellipse 

But so sorry ...  ε ≠ const ! 

●

the beam emittance  
shrinks during  
acceleration   ε ~ 1 / γ 
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pdq∫ = mc γβxdx∫ = mcγβ ′ x dx∫

ε 

Liouville: Area in phase space is constant. 

for convenience (i.e. because we are lazy bones) we use in accelerator theory: 

where βx= vx / c   and 
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γ =1 1− v
2

c 2



1.)  A proton machine … or an electron linac … needs the highest aperture at injection energy !!! 
      as soon as we start to accelerate the beam size shrinks as γ -1/2 in both planes. 

2.) At lowest energy the machine will have the major aperture problems,  
       here we have to minimise  

3.) we need different beam optics adopted to the energy:  
     A Mini Beta concept will only be adequate at flat top.  

LHC injection  
optics at 450 GeV 

LHC mini beta  
optics at 7000 GeV 



Example: HERA proton ring 

injection energy: 40 GeV        γ = 43 
flat top  energy: 920 GeV        γ = 980 

emittance ε (40GeV)   = 1.2 * 10 -7 

                 ε (920GeV) = 5.1 * 10 -9 

7 σ beam envelope at E = 40 GeV  

… and at E = 920 GeV  



. ρ 

xβ 

Closed orbit for Δp/p > 0 

Matrix formalism: 

Dispersion 
 Example: homogeneous dipole field 

xβ 
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C = cos( k s) S =
1
k
sin( k s)

C'= dC
ds

S'= dS
ds





p2-Bunch 

p1-Bunch 
IP 

± σ  
10 11 particles 

10 11 particles 

Example:  Luminosity run at LHC 



A mini-β insertion is always a kind of special symmetric drift space. 
 greetings from Liouville 

at a symmetry point β is just the ratio of beam dimension and beam divergence. 
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LHC Collimator Upgrade Project:  
installation of new high field dipoles 

“cold collimator” 

Nb3Sn sextupole coefficient 



 Catastrophy !  

● 

Effect of a strong ( !!! ) Sextupole … 

„dynamic aperture“ 

Again: the phase space ellipse  
 for each turn write down – at a given  

    position „s“ in the ring – the  
    single partilce amplitude x  
    and the angle x´... and plot it. 
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