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Lectures 1, 2 and 3: summary

In Lecture 1, we derived expressions for the radiation damping

times and equilibrium emittances in an electron storage ring.

In Lecture 2, we derived expressions for the natural emittance

in storage rings with different lattice styles, in terms of the

number of cells and the beam energy.

In Lecture 3, we discussed the need for sextupoles to correct

the natural chromaticity in a storage ring, and considered the

impact of sextupoles on the dynamic aperture and beam

lifetime.
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Lecture 4: beam instabilities

In this final lecture on Storage Ring Design, we shall discuss

the interaction of the beam with the vacuum chamber and the

components that it contains.

We shall see that interactions between the beam and its

surroundings can make the beam unstable.

Instabilities of different kinds place important limits on the

beam intensity that can be achieved (without degrading the

beam quality) in a storage ring.

As well as having important implications for the design and

operational performance of light sources, instabilities provide an

introduction to wake fields and impedances, which can be used

to model certain synchrotron radiation effects (e.g. CSR).
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Multi-bunch and single-bunch instabilities

Broadly speaking, instabilities in electron storage rings can be

classified as multi-bunch or single-bunch.

Single-bunch instabilities occur within individual bunches,

irrespective of the presence (or absence) of other bunches in

the ring. Time scales tend to be of order of a single turn or

less; such instabilities are difficult to address using feedback

systems.

Tracking simulation of longitudinal phase space distribution in a storage ring
with wake fields, and (left to right) increasing bunch population.
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Multi-bunch instabilities

We shall begin by considering multi-bunch instabilities. In this

type of instability, coherent motion of one bunch affects other

bunches in the storage ring. Time scales of the growth of such

instabilities tend to be of order several turns or tens of turns;

such instabilities can be mitigated using fast feedback systems.

“Grow-damp” measurements of multibunch instability in the ALS, from
J. Fox et al, “Multi-bunch instability diagnostics via digital feedback systems
at PEP-II, DAΦNE, ALS and SPEAR”, Proceedings of PAC’99, New York.
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Wake functions

The electromagnetic fields generated by a charged particle (or

bunch of particles) moving through an accelerator vacuum

chamber are very complex.

However, the significant effects can generally be represented by

a wake function, that describes the force on one particle from

the fields generated by a particle some distance ahead of it.

For example, the change in the

energy of a particle that follows

a point-like bunch with popu-

lation NA through a particular

component may be written:

∆EB = −e2NA W‖(zB−zA), (1)

where W‖(z) is the longitudinal

wake function for the compo-

nent.
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Longitudinal wake function

If we normalise both sides of Eq. (1) by the beam energy E0,

we obtain the change in the energy deviation:

∆δB = −e2NA

E0
W‖(zB − zA), (2)

Note that the wake function W‖(z) has units of volts per

coulomb (in SI units).
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Transverse wake function

As well as longitudinal forces, there are transverse forces arising

from the electromagnetic fields around particles, that lead to

transverse deflections.

The transverse forces in a particular component are described

by a transverse wake function W⊥(z), defined so that:

∆py,B = −e2NA

E0
yA W⊥(zB − zA). (3)

Note that the transverse wake function W⊥(z) has units of

volts per coulomb per meter (in SI units).
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Example: resistive wall wake functions

For some very simple cases, expressions for the wake functions

may be derived by solving Maxwell’s equations analytically.

For example, the “resistive wall” wake functions for a straight

beam pipe of length L, circular cross section of radius b, and

conductivity σ are:

W‖(z) =
1

2πb

√

Z0c

4π

c

σ
· L

√

−z3
, W⊥(z) = − 2

πb3

√

Z0c

4π

c

σ
· L√−z

. (4)

However, more generally, one needs to use a modelling code

(“Maxwell solver”) to compute the wake functions numerically

for a given component.

We will not discuss the details of computing wake functions:

we shall assume they are known, and will just consider the

effect that they have on the beam dynamics.
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Motion with wake forces: two-bunch model

As an example, consider two bunches in a storage ring, with

bunch B a distance ∆s � C0 behind bunch A (where C0 is the

ring circumference).
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Motion with wake forces: two-bunch model

Since bunch A is a long way behind bunch B, we assume we

can neglect the effect of the wake fields induced by bunch B.

Bunch A then performs betatron oscillations with equation of

motion:

ÿA + ω2
β yA = 0. (5)

Note that a dot indicates a derivative with respect to time.

For bunch B, there are two contributions to the transverse

force: one from the magnets giving the usual betatron

oscillations, and the other from the wake field from bunch A.

Using Eq. (3), the wake function W⊥ (for the full ring) gives a

transverse deflection over a section of length ∆C:

∆py,B = −e2NA

E0
yA W⊥(−∆s)

∆C

C0
. (6)
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Motion with wake forces: two-bunch model

Taking into account the focusing effects of the magnets (which

lead to the betatron oscillations) and the force from the wake

field generated by bunch A, the equation of motion for bunch

B is:

ÿB + ω2
β yB = −e2NA c

E0T0
yA

(

t−∆s

c

)

W⊥(−∆s), (7)

where T0 is the revolution period of the ring.

Note that the position of bunch A has to be evaluated at the

time that it generated the wake field experienced by bunch B.
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Motion with wake forces: two-bunch model

Assuming that bunch A only performs betatron motion (and

does not experience any wake field effects), and neglecting

damping effects from synchrotron radiation etc., the motion of

bunch A can be written:

yA(t) = yA,0 cos(ωβt). (8)

Substituting into Eq. (7), the motion of bunch B is given by:

yB(t) = −yA,0
t

τ
sin(ωβt), (9)

where:

1

τ
=

1

2ωβ

e2NA c

E0T0
W⊥(−∆s). (10)

We see that the amplitude of the oscillation of bunch B grows

linearly with time: the motion is unstable, and the bunch will

eventually be lost from the beam pipe.
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Motion with wake forces: many-bunch model

A more interesting case is one where the ring contains many

bunches. To simplify things, we shall assume the bunches are

equally spaced, and all have the same charge.

We should also take into account the fact that wake fields can

persist over many revolution periods.

The equation of motion of bunch number n is then:

ÿn + ω2
β yn =

−e2N0 c

E0T0

∑

k

M−1
∑

m=0

ym

(

t− kT0 −
m− n

M
T0

)

W⊥(−kC0 −
m− n

M
C0),

(11)

where M is the total number of bunches, and C0 = cT0 is the

ring circumference.

The summation over m accounts for the multiple bunches, and

the summation over k accounts for multiple turns.
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Motion with wake forces: many-bunch model

Solving the equation of motion (11) is not as bad as we might

fear, at least if we are prepared to make some approximations.

We try a solution of the form:

yµ
n(t) ∝ exp

(

2πi
µn

M

)

exp(−iΩµt) . (12)

Actually, equation (12) represents a set of solutions, with the

members of the set indexed by µ.

From the right hand side of equation (12), µ gives the phase

advance in the transverse displacement between successive

bunches.

Each bunch performs oscillations with frequency Ωµ as it

moves around the ring.
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Motion with wake forces: many-bunch model

The mode number µ gives the phase
advance in the transverse position be-
tween successive bunches.

The figure on the left shows the 8
(transverse) modes possible with 8
bunches, from µ = 0 (all bunches in
phase) at the top, through to µ =
7 (phase advance 2π × 7/8 from one
bunch to the next) at the bottom.

The real part of Ωµ gives the oscillation
frequency of each bunch as it moves
around the ring. Because of the wake
fields, the frequency may be different
from the nominal betatron frequency
ωβ.

The imaginary part of Ωµ gives the
growth or damping rate of the oscil-
lations for the specified mode.
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Motion with wake forces: many-bunch model

If we observe the bunches com-

ing past at a fixed point in the

ring, we see that each mode has

associated with it a different os-

cillation frequency.

If a component in the ring has

an electromagnetic mode with

a frequency close to that of a

particular beam mode, then the

electromagnetic mode may res-

onate with the beam mode.

The effect of the resonance can

be to drive both the electromag-

netic mode and the beam mode

to very large amplitudes.
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Motion with wake forces: many-bunch model

If we assume that the frequency shift from the wake fields is

small, i.e.:

|Ωµ − ωβ| � ωβ, (13)

then substituting the trial solution (12) into the equation of

motion (11) gives:

Ωµ − ωβ ≈ −i
Me2N0c

4πE0T0νβ

∞
∑

p=−∞
Z⊥

(

[pM + µ]ω0 + ωβ

)

, (14)

where νβ is the betatron tune.

This is written in terms of the impedance, which is defined as

the Fourier transform of the wake function:

Z⊥(ω) =
i

c

∫ ∞

−∞
e−iωz

c W⊥(z) dz. (15)

(Note that the units of Z⊥(ω) are ohms per metre, in SI units).
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Wake function and impedance

Calculating the impedance in a storage ring requires knowledge

of the detailed design of all components in the vacuum

chamber (including the chamber itself).
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A simple impedance model: the broad-band resonator

Usually, only an approximate impedance model can be

developed.

To investigate the effects of impedances, simplified models can

be used. One such model represents the wake field as a

damped oscillation:

W⊥(z) =
cRs

Q

ωr

ω̄r
e

αz
c sin

(

ω̄rz

c

)

, (16)

where:

α =
ωr

2Q
, and ω̄r =

√

|ω2
r − α2|. (17)

This leads to the resonator impedance:

Z⊥(ω) =
c

ω

Rs

1 + iQ(ωr/ω − ω/ωr)
. (18)
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Example of a broad-band resonator, with Q = 5

Storage Ring Design 20 Part 4: Beam Instabilities

Multibunch instability growth rate

From equation (14):

Ωµ − ωβ ≈ −i
Me2N0c

4πE0T0νβ

∞
∑

p=−∞
Z⊥

(

[pM + µ]ω0 + ωβ

)

,

the imaginary part of Z⊥ leads to a tune shift, while the real

part leads to growth (or damping) of the oscillations.

For a resonator, the impedance is largest at frequencies close

to the resonant frequency. We expect to see the largest growth

rate for:

(p + Mµ)ω0 + ωβ ≈ −ωr. (19)

The dominant term in the summation in equation (14) has:

p ≈ −
(ωr + ωβ)

Mω0
− µ

M
. (20)

Storage Ring Design 21 Part 4: Beam Instabilities



Multibunch instability growth rate

Since 0 ≤ µ < M , for large M there is likely to be a mode for

which the resonance condition (19) is closely satisfied for some

integer value of p.

In this case (for a resonator impedance):

Z⊥
(

[pM + µ]ω0 + ωβ

)

≈ Z⊥(−ωr) =
cRs

ωr
. (21)

Then, the exponential growth rate of the amplitude of the

resonant mode is:

1

τµ
= Im(Ωµ) ≈

Me2N0c

4πE0T0νβ

cRs

ωr
. (22)

Note that the growth rate is proportional to the total current in

the ring (I0 = MeN0/T0). As current is injected into the ring, at

some point the growth rate will exceed the damping rate (from

radiation, feedbacks...), and the beam will become unstable.
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Physical interpretation of the impedance

The physical significance of the impedance is probably best

understood in terms of the longitudinal dynamics.

Recall that the longitudinal wake function W‖(−z) determines

the change in energy of particle B that is a distance z behind

particle A (which has charge eNa):

∆EB = −e2NA W‖(zB − zA). (23)

If we consider the wake field generated by a longitudinal charge

distribution, with line density eλ(z), then the change in energy

of a particle at position z within the charge distribution will be

given by:

∆E(z) = −e2
∫ ∞

−∞
λ(z′)W‖(z − z′) dz′. (24)
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Physical interpretation of the impedance

The energy change associated with the different frequency

components in the charge distribution is obtained by a Fourier

transform:

∆Ẽ(ω) =
∫

e−iωz
c ∆E(z)

dz

c
(25)

= −e2
∫ ∫

e−iωz
c λ(z′)W‖(z − z′)

dz′

c

dz

c
(26)

= −e2c
∫ ∫

e−iωz′
c λ(z′) e−iωz′′

c W‖(z
′′)

dz′

c

dz′′

c
. (27)

The last line follows by making the substitution z = z′+ z′′.

Notice that this can be written:

∆Ẽ(ω) = −e2c λ̃(ω)Z‖(ω), (28)

where λ̃ and Z‖ are the Fourier transforms of the charge

distribution λ and the wake function W‖, respectively.
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Physical interpretation of the impedance

Now we define Ṽ to be the energy loss (in frequency space) per

unit charge:

Ṽ (ω) = −∆Ẽ(ω)

e
, (29)

and Ĩ(ω) to be the current spectrum:

Ĩ(ω) = ecλ̃(ω). (30)

Then, equation (28) becomes:

Ṽ (ω) = Ĩ(ω)Z‖(ω). (31)

In other words, Z‖ performs the function we would expect of an

impedance, in relating the voltage to the current in frequency

space.
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Feedback systems

At low currents, radiation damping can be sufficient to prevent

the growth of multibunch instabilities.

But at the currents required by third-generation synchrotron

light sources, feedback systems are commonly required.
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Single-bunch instabilities

As well as coupling the motion of different bunches, wake fields

can couple the motion of different particles within individual

bunches.

As a result, the charge distribution within individual bunches

can be modified, and with sufficient numbers of particles, can

become unstable.

We can use simplified models to understand how short-range

wake fields can lead to single-bunch instabilities.

We shall discuss the microwave instability, for which we only

need to consider the longitudinal dynamics.
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Example of a longitudinal instability in the Los Alamos PSR

From C. Beltran, A.A. Browman and R.J. Macek, “Calculations and
observations of the longitudinal instability caused by the ferrite inductors at
the Los Alamos Proton Storage Ring”, Proceedings of the 2003 Particle
Accelerator Conference, Portland, Oregon (2003).
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The Vlasov equation

Neglecting damping effects (such as synchrotron radiation),

Liouville’s theorem tells us that the particle density Ψ in phase

space is conserved:

dΨ

dt
= 0. (32)

In the longitudinal phase space, this is expressed by the Vlasov

equation:

∂Ψ

∂t
+ θ̇

∂Ψ

∂θ
+ δ̇

∂Ψ

∂δ
= 0, (33)

where Ψ = Ψ(θ, δ; t) is the particle density in phase space, and

θ and δ are dynamical variables.

θ = 2πs/C0 is an angle describing the position of a particle

around the ring, and δ = E/E0 − 1 is the energy deviation of a

particle.
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The Vlasov equation

If we know θ̇ and δ̇, then we can (in principle) solve the Vlasov

equation to find how the phase space distribution of particles

within a bunch evolves over time.

This will tell us, for example, whether the distribution is stable

or not.

Generally, solving the Vlasov equation is difficult, and requires

(computationally expensive) numerical techniques. But by

making some approximations, we can obtain some useful

analytical results.
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Solving the Vlasov equation: perturbation approach

First of all we write down an expression for θ̇, which is just the

rate at which particles move around the ring:

θ̇ = (1− αpδ)ω0. (34)

Here, αp is the momentum compaction factor, and ω0 is the

(nominal) revolution frequency.

Finding δ̇ in the presence of wake fields is more complicated.

To simplify things, we will ignore energy changes from

synchrotron radiation and RF cavities.

The energy changes from wake fields then depend on the

charge distribution around the ring, which determines the

current spectrum.
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Solving the Vlasov equation: perturbation approach

Let us assume that the charge distribution takes the form:

Ψ(θ, δ; t) = Ψ0(δ) + ∆Ψ(δ) ei(nθ−ωnt), (35)

where ∆Ψ(δ) represents a perturbation to a distribution that is

otherwise uniform around the ring.

Note that the perturbation takes the form of a wave: n is an

integer that gives the number of wavelengths around the ring.

Our goal is to find the frequency ωn for a given n: the

imaginary part of ωn will indicate the stability of the

perturbation.
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Solving the Vlasov equation: perturbation approach

Let us normalise the particle distribution so that:
∫ ∞

−∞
Ψ0(δ) dδ = 1. (36)

Since the perturbation contains a single frequency ωn, we can

immediately write down the current spectrum (ignoring the DC

component):

Ĩ(ω) = 2πI0 δ̄(ω − ωn)
∫

∆Ψ(δ) dδ, (37)

where δ̄(ω − ωn) is a Dirac delta function.
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Solving the Vlasov equation: perturbation approach

Using Eq. (31), the energy change over one turn is given by:

∆E(z)

e
= − 1

2π

∫

Ĩ(ω)Z‖(ω) eiωz
c dω, (38)

where z is the longitudinal coordinate of a particle with respect

to a reference particle moving around the ring at the speed of

light.

Substituting for Ĩ(ω) from Eq. (37), and using the fact that for

particles moving with speed c:

z ≈ θ

2π
C0 − ct, (39)

we find:

δ̇ ≈ −ω0

2π

I0
E0/e

(
∫

∆Ψ(δ) dδ

)

Z‖(ωn) ei(nθ−ωnt). (40)
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Solving the Vlasov equation: perturbation approach

We now have explicit expressions for θ̇ [Eq. (34)] and δ̇

[Eq. (40)].

If we substitute these expressions into the Vlasov equation

(33), and keep terms only up to first order in the perturbation

∆Ψ(δ), we find:

iZ‖(ωn)
ω0

2π

I0
E0/e

(
∫

∆Ψ(δ) dδ

)

∂Ψ0(δ)/∂δ

(nω − ωn)
= ∆Ψ(δ), (41)

where ω = (1− αpδ)ω0.

We cannot solve this directly for ωn, because the perturbation

∆Ψ(δ) is unknown. However, we notice that if we integrate

both sides over δ, then we can cancel the integral over the

perturbation...
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The dispersion relation

The resulting equation is known as the dispersion relation:

iZ‖(ωn)
ω0

2π

I0
E0/e

∫

∂Ψ0(δ)/∂δ

(nω − ωn)
dδ = 1. (42)

Although we have not “solved” the Vlasov equation, we have

derived from it an integral equation (the dispersion relation) for

the frequency of a perturbation with a given wavelength.

The imaginary part of the frequency will tell us if the

perturbation is damped, or anti-damped.
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Solutions to the dispersion relation: “cold” beam

The relationship between ωn and n (which is found from the

dispersion relation) depends on the energy distribution Ψ0(δ).

As a simple example, let us consider the case of a “cold”

beam, in which all particles have zero energy deviation. The

energy distribution is a delta function:

Ψ0(δ) = barδ(δ). (43)

Integrating by parts, we find that:

∫

∂Ψ0(δ)/∂δ

(nω − ωn)
dδ =

∫

Ψ0

(nω − ωn)2
n

∂ω

∂δ
dδ =

nω0αp

(nω0 − ωn)2
. (44)
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Solutions to the dispersion relation: “cold” beam

We then find from the dispersion relation (42):

ωn = nω0 ±

√

√

√

√iZ‖(ωn)
I0

E0/e

nω2
0αp

2π
. (45)

Except for the case that the impedance Z‖(ωn) has complex

phase 3π/2, there is always a solution for the frequency that

has a positive imaginary part.

From equation (35):

Ψ(θ, δ; t) = Ψ0(δ) + ∆Ψ(δ) ei(nθ−ωnt),

we see that the beam is always unstable. Physically, this is

because there is no process in our model that will damp a

mode that is driven by the impedance.
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Solutions to the dispersion relation: Gaussian energy spread

A more realistic situation is one in which the beam has a

Gaussian energy spread:

Ψ0(δ) =
1√
2πσδ

e
− δ2

2σ2
δ . (46)

Substituting this into the dispersion relation gives:

i
Z‖(ωn)

n

1

(2π)3/2

I0
E0/e

1

αpσ2
δ

∫

ζ e−ζ2/2

ζ + ∆n
dζ = 1, (47)

where:

∆n =
ωn − nω0

nω0αpσδ
. (48)
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Solutions to the dispersion relation: Gaussian energy spread

Let us write equation (47) as:

1

(2π)3/2

I0
E0/e

1

αpσ2
δ

Z‖(ωn)

n
=



i
∫

ζ e−ζ2/2

ζ + ∆n
dζ





−1

. (49)

Note that an instability occurs if ωn, and hence ∆n, has a

positive imaginary part.

The right hand side, evaluated for all real values of ∆n, defines

a boundary in the complex plane.

The left hand side may be evaluated for some mode n and over

a range of assumed values for ωn, to generate a line in the

complex plane.

If part of this line lies on the unstable side of the boundary

defined by the right hand side of (49), then it is possible that

the mode may be unstable.
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Solutions to the dispersion relation: Gaussian energy spread

As an example, consider a resonator impedance. In the

longitudinal case, this is given by:

Z‖(ω) =
Rs

1 + iQ(ωr/ω − ω/ωr)
. (50)
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Solutions to the dispersion relation: Gaussian energy spread

In the complex plane, we draw

the line (stability boundary) de-

fined by:

x + iy =



i
∫

ζ e−ζ2/2

ζ + ∆n
dζ





−1

(51)

for Im(∆n) = 0, in black.

We draw the line defined by:

x+iy =
1

(2π)3/2

I0
E0/e

1

αpσ2
δ

Z‖(ω)

n
(52)

for all ω, (and selected values of

the various parameters) in red.
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Solutions to the dispersion relation: Gaussian energy spread

For:
1

(2π)3/2

I0
E0/e

1

αpσ2
δ

Rs

n
≈ π

6
, (53)

the lines just touch: all the modes have frequencies with

negative (or zero) imaginary part.

This implies that if:

1

(2π)3/2

I0
E0/e

1

αpσ2
δ

Rs

n
<

π

6
, (54)

then all the modes will be stable.

For a given magnitude of the impedance (i.e. value of Rs), it

appears that modes with a small value of n are more likely to

be unstable.
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The Keil-Schnell Criterion

The broad-band resonator model is not always a good

approximation for the impedance in storage rings.

Since an accurate model for the impedance is not usually

known until late in the design stage (if at all!), the quantity

Rs/n is often replaced by an indicative value, denoted Z/n.

Also, the stability boundary can be replaced by a circle with

radius 1/
√

2π: this is a conservative approximation.

The stability condition is then written:

Z

n
< 2π

E0/e

I0
αpσ

2
δ . (55)

This is known as the Keil-Schnell criterion. It ought not be

taken as a strict quantitative limit on the beam stability:

rather, it provides a convenient way for comparing impedances

(characterised by a single number, Z/n) between different rings.
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Landau damping

Recall that a “cold” beam (with zero energy spread) was

always unstable in the presence of an impedance.

Now we have found that a beam with a non-zero energy spread

can be stable, as long as the impedance is not too large.

The energy spread improves stability, because of the

momentum compaction: particles with different energies move

around the ring at different rates.

Storage Ring Design 45 Part 4: Beam Instabilities



Landau damping

The combination of energy spread and momentum compaction

means that any modulation on the charge density tends to get

smeared out: the larger the energy spread, or the larger the

momentum compaction factor, the faster the smearing.

An instability will only occur if the modulation grows faster

than it is smeared out. The momentum compaction provides a

damping mechanism, sometimes referred to as Landau

damping.
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Bunched beams

Our model is based on a “coasting” beam, i.e. a beam in

which charge is uniformly distributed around the ring

(neglecting a small modulation).

In electron storage rings, the beam will be bunched because of

the RF cavities. However, our model can still be applied if we

consider modes with:

n >
C0

σz
, (56)

where C0 is the ring circumference, and σz is the bunch length.

Modes with smaller n cannot appear, because the wavelength

of the density modulation would be larger than the length of a

bunch.
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Bunched beams

If the mode number n is very large, so that n � C0/σz, then

from point of view of the development of an instability, there is

little difference between a bunched beam and a coasting beam.

To make an estimate for the stability criterion in this case, we

simply modify the Keil-Schnell criterion by replacing the

average current in the ring, I0, by the peak current in a bunch:

Î =
eNc√
2πσz

, (57)

where N is the bunch population.

Making this modification gives the Keil-Schnell-Boussard

criterion for stability in a bunched beam:

Z

n
< (2π)

3
2
E0/e

eNc
αpσzσ

2
δ . (58)
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Microwave instability

The model we have developed is based on perturbation theory.

This means we can tell (in principle) whether an initial (small)

density modulation will be damped or anti-damped by the

impedance of the ring; but we cannot describe the dynamics in

any more detail.

We do, however, expect the insta-

bility to have a clear threshold. Be-

low a particular bunch charge, the

longitudinal emittance should damp

to (approximately) the value deter-

mined by the synchrotron radiation.

Above the threshold bunch charge,

we expect to see an increase in the

longitudinal emittance; in fact, the

longitudinal distribution may never

properly reach equilibrium.
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Microwave instability

The instability threshold is visible in tracking simulations...

Energy spread and bunch length as functions of bunch population in the ILC
damping rings, with two different impedance models.
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Microwave instability

...and in observations in storage rings:

Y.-C. Chae et al, “Measurement of the longitudinal microwave instability in
the APS storage ring,” Proceedings of PAC 2001, Chicago.
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Microwave instability

The main impact of the microwave instability is to increase the

energy spread.

For third generation synchrotron light sources, this may not be

too serious. But it could make it difficult to operate an FEL.

The timescale of the microwave instability generally puts it

beyond the reach of feedback systems. To stay below the

instability threshold it is necessary to:

• design the storage ring with appropriate values for the

energy, bunch charge, momentum compaction factor,

bunch length and (natural) energy spread;

• stay within a specified “impedance budget” in the design

and manufacture of components within the vacuum

chamber.
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Final remarks

There are many different varieties of beam instabilities and

(more generally) collective effects.

In this lecture, we have considered just two of them, as

illustrative examples:

• (transverse) coupled bunch instability;

• (longitudinal) single bunch instability (microwave

instability).

Understanding and control of instabilities is critical part of

storage ring design and operation, especially where beam

quality is important (for example, where the storage ring

includes an FEL).

Our understanding of instabilities continues to develop with

new observations, new theories, and new modelling techniques.
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