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SR Applications 2

Tunable x-rays offer elemental specificity
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SR Applications 3

X-rays can pick materials apart: layer-by-layer
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SR Applications 4

Rich “multiplet structure” reveals local bonding
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SR Applications 5

The Search Light Effect

K-edge probe empty p orbitals
no large
absorption absorption

lL-edge probe empty d ormitals
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SR Applications 6
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SR Applications 7

(a) d-Orbital occupation  (b) Spin moment

(c) Orbital moment

No=(+1 )/C |m=pg(-A+2B)/C| m,=-2p,{4 +B)/3C
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SR Applications 8

Scanning Trangmission X-ray Microscopy
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SR Applications 9
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Diffraction

Qﬁ crystal

x-rays‘

An X-ray diffraction pattern of a
crystallized enzyme. The pattern of
spots (called reflections) can be used to
determine the structure of the enzyme.

diffraction
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Photoelectron Spectroscopy

* Perturbation Theory gives Fermi’s Golden Rule for
transition probability
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Photoelectron Spectroscopy

— CO adsorption
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Absorption
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Polarization and Selection Rules
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X-ray Dichroism

X-ray Linear Dichroism
Stohr et al., Phys. Rev. Lett. 47, 381 (1981)
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Resonant Inelastic X-ray Scattering (RIXS)

Absorption Elastic Emission Inelastic Emission
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Inelastic Photon-Phonon Scattering

S(Q,) Dynamic Structure Factor

Courtesy C. Masciovecchio -ELETTRA
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Coherent Imaging

e 5 um

Figure 4. Full-field mode.

Figure 3. Scanning mode
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FIG. 2. Three images of a magnesium oxide cube taken with x rays of
energy of ~1280 eV. The scale bar is 2 um. The images were generated
from data acquired in a single STXM scan of the sample: (a) absorption
image obtained from the sum signal, (b) the X component of the first-
moment signal, and (c) the ¥ component of the first-moment signal.

FIG. 3. Three images of a cluster of 1 um diameter polystyrene spheres
taken with x rays of energy of ~520 eV. The scale bar is 2 um. The images
were generated from data acquired in a single STXM scan of the sample: (a)
absorption image obtained from the sum signal, (b) the X component of the
first-moment signal, and (c) the ¥ component of the first-moment signal.

Fig. 4. X-ray microscope images of a Siemens star test
pattern (smallest feature size, 400 nm period). Left, image
obtained without a condenser; strong diffration artifacts
are visible. Center, image with a condenser but with inter-
ference artifacts present. Right, image with a condenser
and with interference artifacts removed by source vibra-
tion. No image processing, but dark image subtraction was
performed on the data.
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What Keeps Bugs from Being Bigger?

Does the tracheal system actually limit
how big insects can be? A recent article
based on research carried out at X-ray
Operations and Research beamline 1-1D at
the Argonne Advanced Photon Source
(APS), and published in the Proceedings
of the National Academy of Sciences,
helps confirm this hypothesis and
provides a specific explanation for what
limits size in beetles: the constriction of
the tracheal tubes leading to the legs.

This study is a first step toward
understanding what controls body size in
insects. It’s the legs that count in the
beetles studied here, but what matters
for the other hundreds of thousands of
beetle species, and millions of insect
species overall, is still an open question.

Alexander Kaiser, C. Jaco Klok, John J. Socha, Wah-Keat Lee, Michael C. Quinlan, and Jon F. Harrison, “ Increase in
tracheal investment with beetle size supports hypothesis of oxygen limitation on insect gigantism,” Proc. Nat. Acad. Sci.
USA 104(32), 13198 (August 7, 2007).
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The Initiation of Bacterial DNA Replication

et

At the beginning of replication, ATP binds
with DnaA, causing it to change from a
monomer to a large oligomeric complex
consisting of DnaA monomers bound to a
series of DnaA "boxes" (9-base-pair
sequences). Although this DnaA/DnaA-box
interaction is highly conserved in all
bacteria, the mechanism by which ATP
activates DnaA oligomerization has been
poorly understood. However, University of
California, Berkeley, researchers using ALS
Beamline 8.3.1 have determined the
structure of ATP-bound DnaA from the
bacterium Aquifex aeolicus. Using data
collected from a single crystal, they
assembled a high-resolution model of an
ATP-bound DnaA molecule using an ATP
analog (AMP-PCP). Each asymmetric unit
contains four structurally similar DnaA
molecules arranged in a head-to-tail
manner.
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Publication about this research: J.P. Erzberger,
M.L. Mott and J.M. Berger, "Structural basis for
ATP-dependent DnaA assembly and
replication-origin remodeling," Nat. Struct.
Mol. Biol. 13, 665 (2006).




Direct Evidence of Dirac Fermions in Graphite

Near H Near K
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An electron moving through a conventional solid is often
described as having a small but finite effective mass (m*) ) P Py °
that takes into account the drag on its momentum from © © ©

the surrounding crystal lattice as well as from —_—
interactions with other particles. The energy (E) of such
an electron depends quadratically on its momentum (p),
as given by the equation E = p2/2m*. In graphene,
however, it has been discovered that electrons behave
as if they are massless, "relativistic" particles (like
photons traveling in free space at the speed of light) that
exhibit a linear dispersion relationship given by the
equation E =vk, where the wavenumber (k) represents
momentum and the Fermi velocity (v) stands in for the ©
speed of light. Because these electrons obey the Dirac
equation—a description of fermions (e.g., electrons)
that combines quantum mechanics with special relativity
—they are called Dirac fermions.
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Publication about this research: S.Y. Zhou, G.-H. Gweon,
J. Graf, AV. Federov, C.D. Spataru, R.D. Diehl, Y.
Kopelevich, D.-H. Lee, S.G. Louie, and A. Lanzara, "First
direct observation of Dirac fermions in graphite,"
Nature Physics 2, 595 (2006).
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Surface Orbital 'Roughness’ in Colossal Magnetoresistive Oxide

et

Transition metal oxide compounds containing a mixed-
valence of Mn3+ and Mn4+, known as manganites,
represent an ideal system to address the role of the surface,
because all the relevant degrees of freedom - charge, spin
and orbital - play an active role in determining the ground
state. In particular, the orbital structure is very important
for determining both the magnetic and electronic
properties of the manganites. As a result, manganites are
exquisitely sensitive to perturbations, and hence can be
expected to exhibit relatively large surface effects. In the
November 18, 2007 issue of Nature Materials, researchers
from the Institute of Materials Structure Science, KEK
(Japan), the Institut Neel/Université Joseph Fourier
(France), Brookhaven National Laboratory, and Ames
Laboratory, describe how the orbital structure at the
surface is considerably rougher than that found in the bulk.
These researchers used grazing incidence surface x-ray
scattering at beamline X22C at the National Synchrotron
Light Source and uCAT/X-ray Operations and Research
beamline 6-1D-B at the APS, to observed the first signal of
the surface x-ray scattering from the ordering (or lack
thereof) of the Mn3+ 3d electron orbitals. Quantitative
modeling of the newly discovered “orbital truncation rods,
which result from the arrangement of orbitals at the
surface, shows that the Mn d orbitals order parallel to the
surface over a length scale only one-fourth of that found
previously found in the bulk. Perpendicular to the surface,
this orbital layer is quite rough, with “orbital steps”
deviating from the average surface height by one-half the
length of the chemical unit cell.

”n
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See: Y. Wakabayashi, M.H. Upton, S. Grenier, J.P.
Hill, C.S. Nelson, J.-W. Kim, P.J. Ryan, A.l. Goldman,
H. Zheng, and J.F. Mitchell, "Surface effects on the
orbital order in the single layered manganite

La0.55r1.5Mn0O4" Nature Materials advance online

publication. Published online November 18, 2007.
(d0i:10.1038/nmat2061)




Locating atoms in a quasi-crystals

The discovery of the icosahedral phase of Cd5.7Yb by
Tsai and co-workers [2] was a breakthrough. Indeed this
is the first binary quasicrystal, which makes structural
analysis much simpler. There is also good contrast for X-
ray scattering between the Cd and Yb atoms. Finally,
there are two so-called periodic approximants, which
can be synthesised with chemical compositions and
atomic structure very close to that of the principal
guasicrystal. The structure of the approximant crystals is
described by a periodic packing of a large structural unit
with icosahedral symmetry, whose external shell is a
triacontahedron. This forms an atomic cluster which is
chemically extremely well ordered, with Yb atoms sitting
on the vertices of an icosahedron. The clusters are
densely packed and connected along the 2-fold and 3-
fold axis, where they interpenetrate.

The structure of the icosahedral CdYb quasicrystal has

been solved using X-ray diffraction data collected on the
ESRF -D2AM beamline (BMO02).

H. Takakura (a), C.P. Gomez (b), A. Yamamoto (c), M. de Boissieu (d), A.P. Tsai (b), Atomic
structure of the binary icosahedral Yb-Cd quasicrystal, Nature Materials 6, 58-63 (2007).
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Photon parameters versus experiments
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