1.) the basic ideas

Lorentz force

\[\vec{F} = q \left(\vec{E} + \vec{v} \times \vec{B} \right) \]

\text{typical velocity in high energy machines:}

\[v \approx c \approx 3 \times 10^8 \text{ m/s} \]

Example:

\[B = 1 \text{ T} \quad \rightarrow \quad F = q \times 3 \times 10^8 \frac{m}{s} \times 1 \frac{Vs}{m^2} \]

\[F = q \times 300 \frac{MV}{m} \]

\text{technical limit for el. field}

\[E \leq 1 \frac{MV}{m} \]

Bernhard Holzer, CERN
The ideal circular orbit

condition for circular orbit:

\[F_L = e v B \]
\[F_{\text{centr}} = \frac{\gamma m_0 v^2}{\rho} \]

\[\frac{\gamma m_0 v^2}{\rho} = e v B \]

\[\frac{p}{e} = B \rho \]

B \rho = "beam rigidity"

old greek dictum of wisdom:
if you are clever, you use magnetic fields in an accelerator wherever it is possible.
2.) The Magnetic Guide Field

Dipole Magnets:

define the ideal orbit
homogeneous field created by two flat pole shoes

Normalise magnetic field to momentum:

\[
\frac{p}{e} = B \rho \quad \rightarrow \quad \frac{1}{\rho} = \frac{e B}{p}
\]

Example LHC:

\[
\begin{align*}
B &= 8.3 \, \text{T} \\
p &= 7000 \frac{\text{GeV}}{c}
\end{align*}
\]

Convenient units:

\[
B = [T] = \left[\frac{V_s}{m^2} \right] \quad p = \left[\frac{\text{GeV}}{c} \right]
\]

\[
B = 1 \ldots 8 \, \text{T}
\]

\[
\frac{1}{\rho} = e \frac{8.3 \frac{V_s}{m^2}}{7000 \times 10^9 \frac{eV}{c}} = \frac{8.3 \times 3 \times 10^8 \frac{m}{s}}{7000 \times 10^9 \frac{m^2}{s}}
\]

\[
\rho = 2.81 \, \text{km}
\]
Focusing Properties and Quadrupole Magnets

classical mechanics: pendulum

there is a restoring force, proportional to the elongation x:

\[m \frac{d^2 x}{dt^2} = -c \cdot x \]

general solution: free harmonic oscillation

\[x(t) = A \cdot \cos(\omega t + \phi) \]

this is how grandma‘s Kuckuck‘s clock is working!!!

Storage Rings: linear increasing Lorentz force to keep trajectories in vicinity of the ideal orbit

linear increasing magnetic field

\[B_y = g \cdot x \quad B_x = g \cdot y \]

\[F(x) = q \cdot v \cdot B(x) \]

as in the dipole case we normalise to the beam rigidity

\[k = \frac{g}{B \rho} = \frac{g}{p / q} \]

LHC main quadrupole magnet

\[g \approx 25 \ldots 220 \ T/m \]

Bernhard Holzer, CAS
4.) The equation of motion:

Linear approximation:

* ideal particle → design orbit

* any other particle → coordinates x, y small quantities
 \(x, y \ll \rho \)

→ magnetic guide field: only linear terms in x & y of B have to be taken into account

Taylor Expansion of the B field ... normalised to momentum \(p/e = B\rho \)
and only terms linear in x, y taken into account
dipole fields / quadrupole fields

\[
\frac{B(x)}{p/e} = \frac{B_0}{B_0\rho} + \frac{g \cdot x}{p/e} + \frac{1}{2!} \frac{e g'}{p/e} + \frac{1}{3!} \frac{e g''}{p/e} + \ldots
\]

= \frac{1}{\rho} + k \cdot x

Separate Function Machines:

Split the magnets and optimise them according to their job:

* bending, focusing etc

Example:

heavy ion storage ring TSR

Bernhard Holzer, CAS
Equation of Motion:

Remember:

Hamiltonian for ideal particle, $\delta = 0$

$$H = \frac{p_x^2 + p_y^2}{2} - \frac{x^2}{2\rho(s)^2} + \frac{k_1(s)}{2}(x^2 - y^2)$$

with k and ρ representing the normalised quadrupole and dipole fields

putting into Hamiltonian equations

$$\frac{\partial H}{\partial x} = -\frac{dp_x}{ds}, \quad \frac{\partial H}{\partial p_x} = \frac{dx}{ds}$$

we get the equation of motion

$$\frac{d^2x}{ds^2} + \left\{ \frac{1}{\rho(s)^2} - k_1(s) \right\} * x = 0, \quad \frac{d^2y}{ds^2} + k_1(s) * y = 0$$

... see e.g. Goldstein p 241
Equation of Motion:

In linear approximation (x, y << ρ and only dipole & quadruple fields) we can derive a differential equation for the transverse motion of the particles.

* **Equation for the horizontal motion:**

\[x'' + x \left(\frac{1}{\rho^2} - k \right) = 0 \]

Under the influence of the focusing fields from the quadrupoles „k“ and dipoles 1/ρ² the transverse movement of the particles inside looks like a harmonic oscillation.

* **Equation for the vertical motion:**

\[\frac{1}{\rho^2} = 0 \quad \text{no dipoles ... in general} \ldots \]

\[k \leftrightarrow -k \quad \text{quadrupole field changes sign} \]

\[y'' + k \ y = 0 \]

... mmmppfff ... just another differential equation but it does not look sooo comfortable.

Bernhard Holzer, CAS
5.) Solution of Trajectory Equations

Define ... hor. plane: \(K = 1/\rho^2 - k \)
... vert. Plane: \(K = k \)

\[x'' + K \, x = 0 \]

Differential Equation of harmonic oscillator ... with spring constant \(K > 0 \) \(\rightarrow \) focusing case

Ansatz: \(x(s) = a_1 \cdot \cos(\omega s) + a_2 \cdot \sin(\omega s) \)

general solution: linear combination of two independent solutions

\[x'(s) = -a_1 \omega \sin(\omega s) + a_2 \omega \cos(\omega s) \]

\[x''(s) = -a_1 \omega^2 \cos(\omega s) - a_2 \omega^2 \sin(\omega s) = -\omega^2 x(s) \quad \omega = \sqrt{K} \]

general solution:

\[x(s) = a_1 \cos(\sqrt{K} s) + a_2 \sin(\sqrt{K} s) \]
Hor. Focusing Quadrupole $K > 0$:

\[
x(s) = x_0 \cdot \cos(\sqrt{|K|} s) + x'_0 \cdot \frac{1}{\sqrt{|K|}} \sin(\sqrt{|K|} s)
\]

\[
x'(s) = -x_0 \cdot \sqrt{|K|} \cdot \sin(\sqrt{|K|} s) + x'_0 \cdot \cos(\sqrt{|K|} s)
\]

For convenience expressed in matrix formalism:

\[
\begin{pmatrix}
 x \\
 x'
\end{pmatrix}
_{s_1}
=
M_{foc}
*
\begin{pmatrix}
 x \\
 x'
\end{pmatrix}
_{s_0}
\]

\[
M_{foc} = \begin{pmatrix}
 \cos(\sqrt{|K|} s) & 1/\sqrt{|K|} \sin(\sqrt{|K|} s) \\
 -\sqrt{|K|} \sin(\sqrt{|K|} s) & \cos(\sqrt{|K|} s)
\end{pmatrix}
_{s_0}
\]

Bernhard Holzer, CAS
hor. defocusing quadrupole:

\[x'' - K \, x = 0 \]

Remember from school:

\[f(s) = \cosh(s) \quad , \quad f'(s) = \sinh(s) \]

Ansatz:

\[x(s) = a_1 \cdot \cosh(\omega s) + a_2 \cdot \sinh(\omega s) \]

drift space:

\[K = 0 \]

\[x_1 = x_0 + x'_0 \cdot l \]

Ansatz:

\[\sinh(s) , \quad \cosh(s) \]

\[\left(\begin{array}{cccc} \cosh \sqrt{|K|} & l & 1 & \sinh \sqrt{|K|} \\
 \sqrt{|K|} & \sinh \sqrt{|K|} & \sqrt{|K|} & \cosh \sqrt{|K|} \end{array} \right) \]

\[M_{\text{defoc}} = \left(\begin{array}{cc} 1 & l \\
 0 & 1 \end{array} \right) \]

Bernhard Holzer, CAS
Combining the two planes:

Clear enough (hopefully ... ?): a quadrupole magnet that is focussing in one plane acts as defocusing lens in the other plane ... et vice versa.

hor foc. quadrupole lens

matrix of the same magnet in the vert. plane:

\[
M_{\text{foc}} = \begin{pmatrix}
\cos(\sqrt{|K|}l) & \frac{1}{\sqrt{|K|}} \sin(\sqrt{|K|}l) \\
-\sqrt{|K|} \sin(\sqrt{|K|}l) & \cos(\sqrt{|K|}l)
\end{pmatrix}
\]

\[
M_{\text{defoc}} = \begin{pmatrix}
\cosh(\sqrt{|K|}l) & \frac{1}{\sqrt{|K|}} \sinh(\sqrt{|K|}l) \\
\sqrt{|K|} \sinh(\sqrt{|K|}l) & \cosh(\sqrt{|K|}l)
\end{pmatrix}
\]

\[
\begin{pmatrix}
x \\
x'
\end{pmatrix}_{f} = \begin{pmatrix}
\cos(\sqrt{|k|}l) & \frac{1}{\sqrt{|k|}} \sin(\sqrt{|k|}l) \\
-\sqrt{|k|} \sin(\sqrt{|k|}l) & \cos(\sqrt{|k|}l)
\end{pmatrix} \begin{pmatrix}
0 & 0 \\
0 & 0
\end{pmatrix} \begin{pmatrix}
x \\
x'
\end{pmatrix}_{i}
\]

! with the assumptions made, the motion in the horizontal and vertical planes are independent „... the particle motion in x & y is uncoupled“ !
Transformation through a system of lattice elements

combine the single element solutions by multiplication of the matrices

\[
M_{\text{total}} = M_{QF} \times M_{D} \times M_{QD} \times M_{\text{Bend}} \times M_{D^*} \ldots.
\]

\[
\begin{pmatrix}
 x \\
 x'
\end{pmatrix}_{s_2} = M(s_2, s_1) \times \begin{pmatrix}
 x \\
 x'
\end{pmatrix}_{s_1}
\]

in each accelerator element the particle trajectory corresponds to the movement of a harmonic oscillator „

typical values in a strong foc. machine:
\[x \approx \text{mm}, x' \leq \text{mrad}\]
6.) Orbit & Tune:

Tune: number of oscillations per turn

64.31
59.32

Relevant for beam stability: non integer part

LHC revolution frequency: 11.3 kHz

\[f_q = 0.31 \times 11.3 = 3.5 \text{kHz} \]
First turn steering "by sector:"

- One beam at the time
- Beam through 1 sector (1/8 ring), correct trajectory, open collimator and move on.
LHC Operation: the First Beam

Beam 1 on OTR screen
1st and 2nd turn

Bernhard Holzer, CAS
Question: what will happen, if the particle performs a second turn?

... or a third one or ... 10^{10} turns
7.) The Beta Function

General solution of Hill’s equation:

\[
\psi(s) = \int \sqrt{\epsilon} \sqrt{\beta(s)} \cdot \cos(\psi(s) + \phi) \, ds
\]

\(\epsilon, \phi \) = integration constants determined by initial conditions

\(\beta(s) \) periodic function given by focusing properties of the lattice ⇔ quadrupoles

\(\beta(s + L) = \beta(s) \)

Inserting (i) into the equation of motion …

\[
\Psi(s) = \int_0^s \frac{ds}{\beta(s)}
\]

\(\Psi(s) = \text{“phase advance” of the oscillation between point “0” and “s” in the lattice.} \)

For one complete revolution: number of oscillations per turn \(\text{“Tune”} \)

\[
Q_y = \frac{1}{2\pi} \int_0^s \frac{ds}{\beta(s)}
\]
The Beta Function

Amplitude of a particle trajectory:

\[x(s) = \sqrt{\varepsilon} \times \sqrt{\beta(s)} \times \cos(\psi(s) + \varphi) \]

Maximum size of a particle amplitude

\[\hat{x}(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \]

\(\beta\) determines the beam size (... the envelope of all particle trajectories at a given position “s” in the storage ring.

It reflects the periodicity of the magnet structure.

Bernhard Holzer, CAS
8.) Beam Emittance and Phase Space Ellipse

general solution of Hill equation

\[
\begin{align*}
(1) \quad x(s) &= \sqrt{\varepsilon} \sqrt{\beta(s)} \cos(\psi(s) + \phi) \\
(2) \quad x'(s) &= -\frac{\sqrt{\varepsilon}}{\sqrt{\beta(s)}} \left\{ \alpha(s) \cos(\psi(s) + \phi) + \sin(\psi(s) + \phi) \right\}
\end{align*}
\]

from (1) we get

\[
\cos(\psi(s) + \phi) = \frac{x(s)}{\sqrt{\varepsilon} \sqrt{\beta(s)}}
\]

Insert into (2) and solve for \(\varepsilon\)

\[
\varepsilon = \gamma(s) x^2(s) + 2\alpha(s)x(s)x'(s) + \beta(s)x'^2(s)
\]

* \(\varepsilon\) is a constant of the motion ... it is independent of ,,s“
* parametric representation of an ellipse in the \(x \times x'\) space
* shape and orientation of ellipse are given by \(\alpha, \beta, \gamma\)

Bernhard Holzer, CAS
Beam Emittance and Phase Space Ellipse

\[\varepsilon = \gamma(s) x^2(s) + 2\alpha(s)x(s)x'(s) + \beta(s) x'^2(s) \]

Liouville: in reasonable storage rings area in phase space is constant.

\[A = \pi \varepsilon = \text{const} \]

\(\varepsilon \) beam emittance = woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties.

Scientifiquely speaking: it is the area covered in transverse x, x' phase space … and it is constant !!!
Particle Tracking in a Storage Ring

Calculate x, x' for each linear accelerator element according to matrix formalism

plot x, x' as a function of "s"
Phase Space Ellipse

particle trajectory:
\[x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cos \{ \psi(s) + \phi \} \]

max. Amplitude:
\[\hat{x}(s) = \sqrt{\varepsilon \beta} \quad \text{determine } x' \text{ at that position …} \]

… put \(\hat{x}(s) \) into
\[\varepsilon = \gamma(s) x^2(s) + 2\alpha(s)x(s)x'(s) + \beta(s)x''(s) \]

and solve for \(x' \)
\[\varepsilon = \gamma \cdot \varepsilon \beta + 2\alpha \sqrt{\varepsilon \beta} \cdot x' + \beta x'' \]
\[\rightarrow \quad x' = -\alpha \cdot \sqrt{\varepsilon / \beta} \]

\[A \text{ high } \beta\text{-function means a large beam size and a small beam divergence.} \]
\[\text{… et vice versa !!!} \]

\[\star \text{ In the middle of a quadrupole } \beta = \text{maximum, } \alpha = \text{zero} \quad \left\{ \begin{array}{c} x' = 0 \end{array} \right\} \]

… and the ellipse is flat

Bernhard Holzer, CAS
Phase Space Ellipse

\[\begin{align*}
\epsilon &= \gamma(s) x^2(s) + 2\alpha(s)x(s)x'(s) + \beta(s)x'^2(s) \\
\Rightarrow \quad \epsilon &= \frac{x^2}{\beta} + \frac{\alpha^2 x^2}{\beta} + 2\alpha \cdot xx' + \beta \cdot x'^2 \\
\end{align*} \]

... solve for \(x' \)

\[x'_{1,2} = \frac{-\alpha \cdot x \pm \sqrt{\epsilon \beta - x^2}}{\beta} \]

... and determine \(x' \) via:

\[\frac{dx'}{dx} = 0 \]

\[x' = \sqrt{\epsilon \gamma} \]

\[x = \pm \alpha \sqrt{\frac{\epsilon}{\gamma}} \]

shape and orientation of the phase space ellipse depend on the Twiss parameters \(\beta, \alpha, \gamma \)

\[\begin{align*}
\alpha(s) &= -\frac{1}{2} \beta'(s) \\
\gamma(s) &= \frac{1 + \alpha(s)^2}{\beta(s)} \\
\end{align*} \]
Emittance of the Particle Ensemble:

\[x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cdot \cos(\Psi(s) + \phi) \]

\[\hat{x}(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \]

Gauß Particle Distribution:

\[\rho(x) = \frac{N \cdot e}{\sqrt{2\pi}\sigma_x} \cdot e^{-\frac{1}{2}\frac{x^2}{\sigma_x^2}} \]

particle at distance \(1\ \sigma\) from centre \(\leftrightarrow 68.3\%\) of all beam particles

single particle trajectories, \(N \approx 10^{11}\) per bunch

LHC:

\[\beta = 180\ m \]

\[\varepsilon = 5 \times 10^{-10}\ m\ rad \]

\[\sigma = \sqrt{\varepsilon \beta} = \sqrt{5 \times 10^{-10}\ m \times 180\ m} = 0.3\ mm \]

aperture requirements: \(r_0 = 12 \times \sigma\)

Bernhard Holzer, CAS
13.) Liouville during Acceleration

\[\varepsilon = \gamma(s) x^2(s) + 2\alpha(s)x(s)x'(s) + \beta(s)x'^2(s) \]

Beam Emittance corresponds to the area covered in the \(x, x' \) Phase Space Ellipse

Liouville: Area in phase space is constant.

But so sorry ... \(\varepsilon \neq \text{const} \) !

Classical Mechanics:

phase space = diagram of the two canonical variables

position & momentum

\[x \quad \quad p_x \]
According to Hamiltonian mechanics:
phase space diagram relates the variables x and p_x

Liouville's Theorem:
$$\int p_x \, dx = \text{const}$$

for convenience (i.e. because we are lazy bones) we use in accelerator theory
x' instead of p_x

$$x' = \frac{dx}{ds} = \frac{dx}{dt} \frac{dt}{ds} = \frac{\beta_x}{\beta} = \frac{p_x}{p}$$

where $p \sim p_s$

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \quad ; \quad \beta_x = \frac{\dot{x}}{c}$$

$$\int x' \, dx = \int \frac{p_x}{p} \, dx \propto \text{const} \frac{1}{m_0 c \cdot \gamma \beta}$$

$$\Rightarrow \quad \varepsilon = \int x' \, dx \propto \frac{1}{\beta \gamma}$$

the beam emittance shrinks during acceleration
$$\varepsilon \sim 1 / \gamma$$

Bernhard Holzer, CAS
Nota bene:

1.) A proton machine ... or an electron linac ... needs the highest aperture at injection energy !!!
 as soon as we start to accelerate the beam size shrinks as $\gamma^{-1/2}$ in both planes.

$$\sigma = \sqrt{\varepsilon \beta}$$

2.) To confuse the students we introduce often a "normalized" emittance ε_n
 ... which is energy independent

$\varepsilon_n = \varepsilon_0 \cdot \beta \gamma$

Example: HERA proton ring

injection energy: 40 GeV $\gamma = 43$

flat top energy: 920 GeV $\gamma = 980$

$\varepsilon_n = 5.0 \times 10^{-6}$ mrad
$\varepsilon_0 (40\text{GeV}) = 1.2 \times 10^{-7}$ mrad
$\varepsilon_0 (920\text{GeV}) = 5.1 \times 10^{-9}$ mrad

7 σ beam envelope at $E = 40$ GeV

... and at $E = 920$ GeV

Bernhard Holzer, CAS
11.) Résumé

1.) Beam rigidity

\[\frac{P}{e} = B \rho \]

2.) Equation of motion

\[x'' + x \left(\frac{1}{\rho^2} - k \right) = 0 \]
\[y'' + k \ y = 0 \]

3.) Transfer matrix foc. quadrupole

\[M_{\text{foc}} = \begin{pmatrix} \cos(\sqrt{K} s) & \frac{1}{\sqrt{K}} \sin(\sqrt{K} s) \\ -\sqrt{K} \sin(\sqrt{K} s) & \cos(\sqrt{K} s) \end{pmatrix} \]

defoc. quadrupole

\[M_{\text{defoc}} = \begin{pmatrix} \cosh \sqrt{|K| l} & \frac{1}{\sqrt{|K|}} \sinh \sqrt{|K| l} \\ \sqrt{|K|} \sinh \sqrt{|K| l} & \cosh \sqrt{|K| l} \end{pmatrix} \]

drift

\[M_{\text{drift}} = \begin{pmatrix} 1 & l \\ 0 & 1 \end{pmatrix} \]

4.) general solution of Hill’s equation

\[x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cdot \cos(\psi(s) + \phi) \]

5.) Tune

\[Q_s = \frac{1}{2\pi} \int \frac{ds}{\beta(s)} \]

6.) Emittance as phase space ellipse

\[\varepsilon = \gamma(s) x^2(s) + 2\alpha(s)x(s)x'(s) + \beta(s) x'^2(s) \]
Bibliography:

1.) P. Bryant, K. Johnsen: *The Principles of Circular Accelerators and Storage Rings*
Cambridge Univ. Press

3.) Peter Schmüser: *Basic Course on Accelerator Optics, CERN Acc. School: 5th general acc. phys. course CERN 94-01*

4.) Bernhard Holzer: *Lattice Design, CERN Acc. School: Interim.Acc.phys course,
http://cas.web.cern.ch/cas/ZEUTHEN/lectures-zeuthen.htm
cern report: CERN-2006-002*

5.) A. Chao, M. Tigner: *Handbook of Accelerator Physics and Engineering,

6.) Martin Reiser: *Theory and Design of Chargged Particle Beams*
Wiley-VCH, 2008

7.) Frank Hinterberger: *Physik der Teilchenbeschleuniger, Springer Verlag 1997*

8.) Mathew Sands: *The Physics of e+ e- Storage Rings, SLAC report 121, 1970*

9.) D. Edwards, M. Syphers: *An Introduction to the Physics of Particle Accelerators, SSC Lab 1990*