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The CERN Accelerator School

16 hours of compact lectures summarized in 2 hours.

Only possible by leaving out most of the mathematics and
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Dinner Dinner




go.e

The CERN Accelerator School

Basics:

- Lorentz-Force, Maxwell’s Equations
- Phenomenology of Special relativity, formulae for relativistic beams
- simple examples of E-fields and B-fields, multipole expansion of B-fields

Linear Optics:
- Hamiltonian formalism—> derivative of Hill's equation from Hamiltonian
Hamiltonian in different Coordinate Systems, weak focusing

- linear optics: motion of single particle in a lattice, phase space plots
- trajectory, closed orbit, dispersion, weak focusing
- strong focusing, tune, chromaticity
- linear Imperfections, down-feed, coupling

- “A taste” of non-linear dynamics

Liouville’s Theorem:

- Definition of emittance
- emittance preservation in conservative systems
- filamentation due to non-linearities

Phenomenology of Collective Effects:

- Space Charge
- Touschek and Intrabeam Scattering
- Wakefields

H.Schmickler, CERN

Slides partially or fully taken from
the lecturers in Budapest:
S. Sheehy
W. Herr
B. Holzer

G. Franchetti
A. Wolski
R. Tomas
F. Tecker
V. Kain (Erice 2017)



o
cm Relativity: historical background A

The CERN Accelerator School

Assume a frame at rest (5) and another frame (5’) moving in

x-direction with velocity v = (v/,0,0)
v=v’

Galilei transformation

Galilei transformation between ¥’ = T — Uyt

observers in the rest frame and = ¥

in @ moving frame o=

describes well classical p— ¢

mechanics:

- Severe problems with

eIectrodynamics Galilei transformations relate observations in two frames moving relative
(end 19t centu ry) to each other (here with constant velocity v, in x-direction).

Only the position is changing with time

H.Schmickler, CERN 4



The CERN Accelerator School A

Lorentz transformation

xr — vt

g = . = ~y» (&— wi)
! Definition of relativistic factors
v
y’ = 6‘7’ = ;
gl = 1 1
V- a v — Pr
= =3 (—(2) (1—(*_2)

Transformation for constant velocity v along x-axis
Time is now also transformed

Note: for v < ¢ it reduces to a Galilei transformation !

It seems, in the beginning Lorentz did not believe in this description...but Einstein did....

H.Schmickler, CERN 5



m Proper Length and Proper Time
Time and distances are relative :

The CERN Accelerator School

™ 7 is a fundamental time: proper time 7

% The time measured by an observer in the frame of the event

% From frames moving relative to it, time appears longer

™ £ is a fundamental length: proper length £
» The length measured by an observer in the frame of the event

™ From frames moving relative to it, it appears shorter

Accelerator related examples:

muon lifetime: in its restframe the muon decays in about 2 - 107¢s
we measure a lifetime y times longer

Relativistic electron with 1 GeV/c momentum (f = 0.99999987):
bunchlength in lab-frame: o, = in rest frame of electron: yo,
length of an object (magnet, distance between magnets)
lab frame: L = L/, in frame of electron



cm More conseqguences A

Conservation of transverse momentum
—> A moving object in its frame S’ has a mass m’ =™/,

my ~ 1 2 1
Or m = ymg = = Mo+ -MyV (—2) (approximation for small v)
1Y) 2 c
1-(2)
c
Multiplied by c?:
2 ~ 2 1 2 2
mce = mgycC +Em0v = moc“+T

Interpretation:

—> Total energy E is E=m-c
- For small velocities the total energy is the sum of the kinetic energy plus the rest energy
- Particle at rest has rest energy E, = m * c?

2

- Always true (Einstein) E = m - ¢? = ym, - ¢?

H.Schmickler, CERN 7



)
cm Relativistic momentum p =mv = ymyv=ym,Bc

The CERN Accelerator School

From page before (squared):

2 _ 2.4 _ 2. 2.4_(_1 2 4_ (1=B*+B% 2 4 _ 222\ 2 4

E‘ = m°c* = y*my“c —(1_ﬂ2)moc—( - ymy“c* =(1+y“p“)my“c
&

E? = (myc?)? + (pc)? mmmm) - = J(meo)? + p2

Or by introducing new units [E] = eV ; [p] =eV/c ; [m] = eV/c? E? = mo2 +p?

1

09r
0.8r

Due to the small rest mass i
electrons reach already Ser

the speed of light with 05
0.4+

relatively low kinetic
energy, but protons only in
the GeV range

0.3r

0.2

——electron (E=0.511 MeV)
—— proton (E,=938 MeV)

(9,01 6,1 ' 1 ' 10 100 1000 10000
Kinetic Energy [MeV]

0.1r

H.Schmickler, CERN 8



m For those, who really want to calculate...

The CERN Accelerator School Collect the formulae: useful kinematic relations

cp T E vy
B = T \/1_ﬂ2 v
/ \/(_%T \/ (1+ELO)2 ( E ) fy
cp = cp VT(2E, +T) E?— E2 | Egy/72—1
E, = —:1‘2’_1 T/(v—1) E2 — c2p2 E/~
G = cp/ EoB 1+ T/E, E/E, 7y

Kinematic relations - logarithmic derivatives
B P I E ~— «

5 _ ds 1dp 1 ar 1 &
B B 72 p eytly T (B1)? v
dp ~2dB dp - dT’ 1 dn
A 3 ~ Y/ (y+DIF | w7
dl’ __ dg 1\dp dT ~  d~
F= |0+ )F | 1+3)F T e
dE 2(1 22 dp 1. x el d~y
T=| BY% fee (1=l &
dy (1/3 dp  dB 1\ dT d~y
T=1 —1),73 > 75 | U-2)%F W

H.Schmickler, CERN 9



o
m Electromagnetic Fields and forces onto charged particles

The CERN Accelerator School

* Described by Maxwell’s equations and by the Lorentz-force

* Lots of mathematics, we will only “look” at the equations

* Only electric fields can transfer momentum to charged particles
- EM cavities for acceleration = F. Tecker

* Magnetic fields are used to bend or focus the trajectory of charged particles
—> construction of different types of accelerator magnets

* Also electrostatic forces can bend and focus beams; but since the forces are
small we often neglect this part

Integral form

/E-M:Q
S

€0

fﬁ~dr= 1o (I—i—eo‘(l / E~d/¥>
r ot Js

Differential form Laventz force
Vel = L .
- £ typical velocity in high energy machines:
V-B=0 Example:
) Vs
VxE:—d—B B=1T -— F=q:i=3:l=108”—1=i=l—i
ot s om
: MV
2 o 9 = F =q#300—
V x B = py <j+60EE> 9 m
H_J
equivalent el. field E

H.Schmickler, CERN

ﬁzq*?ﬂ+ﬁ><§))
o

v=c=3%10°/

technical limit for el. field

Eslﬂ
m

10



m But: for specific cases we also use electrostatic elements !

The CERN Accelerator School

Separators for electron and positron beams in the same vacuum chamber

|

LEP ZL separator .

H.Schmickler, CERN 11

CESR separator

SPS ZX separator



We need real magnets in an accelerator...not any
arbitrary shapes of magnetic fields, but nicely

classified field types by making reference to a
multipole expansion of magnetic fields:

In the usual notation:

bn are “normal multipole coefficients” (LEFT)
and an are “skew multipole coefficients” (RIGHT)
‘ref’ means some reference value

n=1, dipole field

n=2, quadrupole field
n=3, sextupole field

Images: A. Wolski, https://cds.cern.ch/record/1333874




Images: Ted Wilson, JAI Course 2012 20 Image: Danfysik




m Back to relativity: transformation of fields into a moving frame

The CERN Accelerator School Use Lorentz transformation of /" and write for components:

Lecture of

!/ __ ko
By = B By = Bo W. Herr

E; =v(Ey —v - B,) Bz// =By + = + Ez)
E,=v(E,+v- By) B, =v(B.—-% Eu)

C

Example Coulomb field: (a charge moving with constant speed)
T=1 T>>1

A

i -

Y

> In rest frame purely electrostatic forces

> In moving frame E transformed and B appears

H.Schmickler, CERN 14



o
cm Transverse Beam Dynamics A

The CERN Accelerator School

??? high intensity beam described in 6D phase space??? No...

Starting point:

- Single particle in single magnetic element

- complete decoupling of long., hor.& ver. motion
- particle with nominal momentum

My first accelerator:
- Single particle in many magnetic elements
- circular structure: synchrotron
- twiss parameters, orbit, tune...
15

Off-momentum particle:

- Dispersion

- Momentum compaction

- Chromaticity...a taste of non-linearities

Finally a beam of many particles (not too many!)
- emittance

- Liouville’s theorem

- adiabatic damping and radiation damping

H.Schmickler, CERN



o
cm Linear Optics — Hamiltonian (1/3) A

The CERN Accelerator School

A little reminder of classical mechanics:

- Take a set of “canonical conjugate variables” (g, p in a single one dimensional case)
q is called the generalized coordinate and p the generalized momentum

Construct a function H, which satisfies the dynamical equations of the system:

dg . OH ; op . OH
ot 1T Y aPT

- H “=the Hamiltonian “ of the system is a constant of motion
(= H does not explicitly depend on t) .

- The Hamiltonian of a system is the total energy of the system: H=T +V
(sum of potential and kinetic energy)

Proof: =1
U aHaH i 8H< E)H) o

B Z‘ax,ap, Z‘BpI  Ox;

Used x instead of q just to test your attention
H.Schmickler, CERN 16



o
cm Linear Optics — Hamiltonian (2/3)

The CERN Accelerator School

This leads immediately to the question:
What are canonically conjugate variables?
* Complete answer: Lecture of W.Herr later this course

Short answer:

Several combinations are possible, the most relevant for us are

- X (space) and p (momentum)

- E (energy) and t (time).

We can learn most of the physics, when we construct quantities from these
canonical variables, which are constants of motion (energy, action...)

* Hint to a more complete answer:

- Describe the particle motion by a Lagrange function of generalized coordinates and generalized velocities and
time.
- define an action variable and assume that nature is made such that the action between any two points of
particle motion is stationary

- This is fulfilled for Lagrange functions satisfying the Euler-Lagrange equation

- And this leads finally to the definition of generalized momenta instead of generalized velocities, the definition
of the Hamiltonian function and then to the two equations of motion as shown on the last slide.

H.Schmickler, CERN 17



o
m Recall: what is the “action” variable; what is phase space

The CERN Accelerator School

Phase Space
f__' pA

/" I sl i - ° ° X

gt _:f“_'—’ﬂ_ R ) N

° q
ty

Define action ”S”:=j p dq

ty

“Stationary” action principle:= Nature chooses path from t; to t, such that the
action integral is a minimum

Warning: We often use the term phase space for the 6N dimensional space defined
by x, X’ (space, angle), but this the “trace space” of the particles.
At constant energy phase space and trace space have similar physical interpretation

H.Schmickler, CERN 18



0
m Linear Optics — Hamiltonian (3/3) A

The CERN Accelerator School

Example: Mass-spring system

1 2 k
H=T+V=-kx2+Z =
2 2m
Hamiltonian formalism to obtain the equations of motion: m

ox . OH p

— =X =-—=—0rp=mx =mv
ot op m P EW)
6 ,,,,,,,,
6 . 0H R
oP _ p=——= -kx . — ' 2 e
6t 0x i G m—— 11 % ,,,,,
N 0.5
) . - ' ] {‘/ 2N {0 pkams)
We are used to start with the force equation:
F = ma = mx = - kx RS s
With the well known sinusoidal solution for x(t). ™

x (m)
Instead we look at the trajectory of the system in a phase space.
In this simple case the Hamiltonian itself is the equation of the ellipse.

H.Schmickler, CERN 19



o
m A further look at phase-space plots

The CERN Accelerator School

EQ)
6 ,,,,,,,,
5 ..........
T T T T T 4
..... - 3 SEESEAS
- = “ 4 1 5
i y “ {05
_ L[] : 0 p(kgmis)
Increasing t
- - -1
03 -02 -01 0 0.1 2 0.3
x (m)

- The particle follows a in phase space a trajectory, which has an elliptic shape.

- Inthe example, the free parameter along the trajectory is time ( we are used to express the space-
coordinate and momentum as a function of time)

- This is fine for a linear one-dimensional pendulum, but it is not an adequate description for transverse
particle motion in a circular accelerator
- we will choose soon “s”, the path length along the particle trajectory as free parameter

- Any linear motion of the particle between two points in phase space can be written as a matrix

transformation: (;‘,)(s)= (Ccl Z) (;C,)(SO)

. . . . A 1
- In matrix annotation we define an action “J” as product J:= - (;‘,)(S) (;‘,)(so).
- Jisa motion invariant and describes an ellipse in phase space. The area of the ellipse is 27/

Later we will define the emittance of a beam as the average action variable of all particles...

but for the moment we stick to single particles ... and we follow them through magnetic elements.




The CERN Accelerator School

o
m‘ , Particle Motion through accelerator components ‘

. . . T X _fa b\ x
Linear treatment: matrix multiplication (x,)(s)— (C d) (x')(SO)

More general treatment: application of a map: (;‘,)(S)= M (;‘,)(50)

the map can be any function of x and x’, but must not depend on the input parameters x (s,) and x’(s;);

* the map must be symplectic (= more details: again W. Herr this course)
(by the way: every matrix is a map, but not every map is a matrix)

Following a particle through various elements is equivalent to multiplying the maps.

First (simple) case:

A drift space (one dimension only) of length L, starting at position s and
endingats + L

TX(s+L),X'(s+L)

[xshx(s)

S s+L

The simplest description (1D, using x, x’) is (should be in 3D of course):

()n) - ) - 0)

H.Schmickler, CERN 21



-
m‘ , Back to the Hamiltonian for a moment: ‘

The CERN Accelerator School

So far we have been switching from time-dependent variables to s-dependent variables without
paying attention to it:

In a linear 1 D motion this is a equivalent since s= vt

But if we want to describe motion transverse to a curved reference line,

au_n

we must use “s” as independent variable. At every moment we have perpendicular to the tangent
vector of the particle trajectory a transverse Cartesian coordinate system.

,aXiS,
6y' T L4+
is aililE
y’ax [ | =
S 6 | /"//’ |
| [ w/‘-//w/ SRR Y [
y-axis | || R~
T ELP T DN X~ae;
: il NITRTEN .~
4 211 [[2] 2| 3] o] s| el N
3 r—ik‘ '\4\‘ \
R T T
) T x-axis
{ ¢ AN
-6 5 -4 .3 2 2 34 5 3 1 5
| ‘ R
-4 |




Hamiltonian for a (ultra relativistic, i.e. y > 1|, g = 1) particle in an
electro-magnetic field is given by (any textbook on Electrodynamics):

H(X,p,t)=c \/(ﬁ— eA(Z, 1)) + m3c? + eD(X.1) (ugly...)

where A(X, 1), O(X.¢) are the vector and scalar potentials (i.e. the V)

Using canonical variables (2D*’) and the design path length s as

independent variable (bending field B, in y-plane) and no electric fields:

kinematic duetot — s normalized
A /-—-’\-—:\ P
3 X X" Adx;y)
H = l+— \/(l+())-—p—p-+—+ - -
P 2p° Bop

duetot —
NG

S
\ Y
) -

where p = VE2/c2 — m?c? total momentum, 6 = (p — py)/po is relative
momentum deviation and A (x, y) (normalized) longitudinal (along s)
component of the vector potential.

"’ Only transverse fields now, skipping several steps (see e.g. S. Sheehy, CAS Budapest 2016)..

H.Schmickler, CERN
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The CERN Accelerator School

Where are we now?

- we describe every element in the trajectory of a particle with the corresponding Hamiltonian.

- we describe the particle motion through an element by a matrix (map) multiplication onto its phase-
space vector.

- we generate more complex accelerator configurations by multiplying the maps of the induvial
elements.

- we have changed the coordinate system and describe now the trajectory of a particle as a function of
“s” and not of “t”.

- But: we are still treating single particles in a single passage through an accelerator component.

What comes next?

- We show that Hill’s equations come naturally out of the Hamiltonian formalism
- We look at transverse focusing...in particular a FODO lattice
- We look again and again at phase space diagrams.

H.Schmickler, CERN 24



A first application - the simplest possible:
Keeping only the lower orders (focusing) and 6 = 0 we have:

~ Py + P_% ¥ N ki(s)
-2 20%(s) 2

9

9,
¢ — )

H

Putting it into Hamilton’s equations (for x, ditto for y):

oH  dp, OH dx
ox  ds op, ds £

it follows immediately:

12.’ | [2 )
g ( 2 kl(S)> £ =" “2 4 ki(s)y = 0

d s? d s>

Hill’'s equations are a direct consequence of Hamiltonian treatment
of EM fields to lower orders




go.e

The CERN Accelerator School

Hamiltonians of some machine elements (3D)

In general for multipole »n:

1
Il +n

p: + DS
201 +5)

H,, _ Re [(k,, 45 ik,(,S))(X + iy)”“]

We get for some important types (normal components k%, only):

: —x0 2 2 + p?
dipole: - . +x7+u
0 202 2(1 +6) :
- 1 5 5 [):: +P;_>~ Suchat:ilefld (force) y
quadrupole: H = Ek'(x =¥+ 21+ 6) fre needfor -
I s Pr¥p
sextupole: H = —k(x’ —3xy7)+ =
g 32 =3t 50 6

H.Schmickler, CERN 26



m Weak focusing from dipoles

The CERN Accelerator School

2 2
—X0 2. + P,
dipole: H=-_2 S PP
P 2(1 + 6)
I 2 P% ) P%
uadrupole: H = gty s
M 2 EAETiTy

This means that we can construct a focusing circular accelerator based only on dipoles...
in particular when p is small.

This has been done in the 1950’s and it was called “ a weak focusing synchrotron”
For this evening (with a cold beer):

How about the vertical plane? There are no dipoles. Or why do the particles not fall down?

27



m We need stronger focusing....quadrupoles

The CERN Accelerator School

------
e
e,
ey
L
.
e
e,
.,
.,
e,
ey

1 n(Kp) e /\
Moe = cos(yIK[s) [N sin(JKs| L.

_\/MSin(\/mS) COS(\/WS) 0 U ___________

1
= 0 >> [ g ... focal length of the lens is much bigger than the length of the magnet
g

limes: lq —> 0 while keeping k1 =const

Negative = focusing
H.Schmickler, CERN 28



o
m The negative sign in the Hamiltonian makes the same
guadrupole defocusing the other plane.

The CERN Accelerator School

1 .
coshMl msmh\/m| s=0 s=s1

Maetoc = NI L
JRson K eon i€ )| \ [ ;
........................ j \ ]
1
f = T >> 1 g ... focal length of the lens is much bigger than the length of the magnet
g

limes: [ , —> 0 owhilekeeping kI  =const

Positive = defocusing H.Schmickler, CERN 29



The CERN Accelerator School KAI

Consider an alternating sequence of focussing (F) and defocussing (D)
guadrupoles separated by a drift (O)

sample trajectory

—
__,'-"
-

cell length

The transfer matrix of the basic FODO cell reads

I Oy, LY¥1 O%, L l+— L{l+—
M= 1 L Sl 1 b e 2t . 41
¥ o 1)F o 1 L . L I
t ANO 1 Af A0 1 = |

f? o 4f? )

H.Schmickler, CERN 30



o
m Transfer Matrix in 6-D !
The CERN Accelerator School

In order to calculate numbers one usually defines a FODO cell from the
middle of the first F-quadrupole up to the middle of the last F-quadrupole.

Hence the resulting transfer matrix looks a little different:

M= My (2fo) - Mp(L) - My(=fo) - Mp(L) - Mo(2fo)

" L
[ L= %(L+22fo) 0 0 0 O \
4%(/2—21”0) 1 —QL—fg 0 0 0 O
0 0 1—2L—]; —+£(L—-2fo) 0 O
0 0 —4§3(L+2f0) fl— QLf 0 O
0 0 0 0 1 ;#
\ 0 0 0 0 0 1

H.Schmickler, CERN 31
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The CERN Accelerator School

HHAHHHH

Let us consider the case L = 1m, fo = +/2m. Take a particle
with initial coordinates at the start of a FODO cell:

F=1mm; Pe=0; y=1mm, py,=20
Now track the particle through 100 FODO cells by applying the
transfer matrix

to the vector constructed from the
coordinates, and plot p, vs x, and py Vs y:

1 L 1 L
05 05 ]
o et - o Vd i
2 o C S8 a 1
o o SO L > ?
-0.5¢ -0.5¢
.1 t 1
1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
x [mm] y [mm]

H.Schmickler, CERN
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o
m‘ , More details on the Illustrating Example

The CERN Accelerator School

Imm

—— I
0.5} 1

p, [107]
v

>

-1 -0.5 0 0.5 1
X [mm]

0 —.54
—.2 —.15

H.Schmickler, CERN
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The CERN Accelerator School

What happens if we repeat the exercise, but starting the
FODO cell at the center of the drift before the (horizontally)
defocusing quadrupole? Again, we plot ellipses, but this time,
they are tilted:

1.5} ' ' ' ' ' ] 1.5}
1 1
* o? “\‘ ’,.
o8 J s
50 8t 20
Q)( ...‘. . ..o o_} L [ g "..
.0'5—( ......" ] 05 '.0...‘. )_
Sssensesed o el AL TPTeeTl g
1 1 .
-1.5}, , , ‘ ‘ ' & -1.5}, , ‘ ‘ ‘ . l
15 -1 -05 0 0.5 1 1.5 15 -1 05 0 0.5 1 1.5
X [mm] y [mm]
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The CERN Accelerator School AI

Evolution of the Phase Space Ellipse in a FODO Cell

1 1 1

' 2 D0 0!
1 [2 3 | [4 | [s L e [7
s (S| RS - | (et ST

3 4 ‘ 5

Oy || [ e N Q)‘ -
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cm Our first synchrotron A

The CERN Accelerator School

The previous example of 100 consecutive FODO cells describes very well a regular
transport line or a linac (in which we have switched off the cavities).

If we add dipoles into the driftspaces, the situation for the transverse particle motion
does not change (neglecting the weak focusing part).

So actually with the previous description we also describe a very simple regular

synchrotron.
The phase space ellipse we can compute provided we know the total transfer map

(matrix) M,
J==(5)(s0) () (s0+€) =3 () (so) Mot ()(so)

The phase space plots will look qualitatively the same as in the previous case.

Definition: trajectory (single passage) or closed orbit (multiple passages):

Fix point of the transfer matrix...in our cases so far the “0” centre of all ellipses.

H.Schmickler, CERN 36



O
m Courant — Snyder formalism / Twiss parameters A

The CERN Accelerator School

 Same beam dynamics

* Introduced in the late 50’s by

* The classical way to parametrize the evolution of the phase space
ellipse along the accelerator

Basic concept of this formalism:
1) Write the transfer matrix in this form (2 dimensional case):

M=1cosu+S -Asinu

G D s= (5 O p)

2) M must be symplectic > By — a?=1

3) Four parameters: a(s); B(s); y(s)and u(s), with one interrelation (2)
- Three independent variables

4) Again, the preserved action variable J describes an ellipse in phase-space:
J = 5 (yx%+ 2axp + fp?)

H.Schmickler, CERN 37
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X

The Phase Space Ellipse

il
Jr = 5 (’7’;1?1172 + 2axxpr + /%pf) Area = 2nJ,
Apil‘
slope = — 1=
2'711:']1— 3 T
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‘ ‘ &0 Example: Propagation of twiss parameters along s between two focusing quadrupoles

The CERN Accelerator School

Vi C? —2SC  S* (A
(XJ :M*(X] M:(C Sj a| =|-cc’ sc'+cs’ =S5’ || a
Xls XI sO

c' g 5 .
y), Lc? -2sc  s? )\

And in Matrix-Annotation:

I _ T i ‘ 2
15 (a @) > =M 45, M o= C26o- 30 + 527 = ¥,

beam waist: ¢ = 0

1 . | . f e a .
Asoz(l/((; Z(())) I ()E)O ,800) =< /BO > l

e W0

Starting fromwaist & = 0 Using: ﬁ)/ — C(Z =1
1 0 1
=) () (% )6 DA (
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The CERN Accelerator School

4
cm Interpretation of the Twiss parameters (1/2) A

- 1) Horizontal and vertical beta function By (s):

w 4.3 Windows NT 4.0 version 8.23dl 010806 10.57.05

R A * Proportional to the square of the projection of the phase space
= 8 ellipse onto the space coordinate
;, * Focusing quadrupole = low beta values
3.04
2.84
; Although the shape of phase space changes along s, the rotation of the particle on
P the phase space ellipse projected onto the space co-ordinate looks like an harmonic

ic I6 I8 2.0
s(n

oscillation with variable amplitude: called BETATRON-Oscillation

x(s) = const - /B(s) - cos{u(s) + ¢}

P, [10°]
\

H.Schmickler, CERN 40



o
cm Interpretation of the Twiss parameters (2/2) A

The CERN Accelerator School

1dp a indicates the rate of change of B along s
2 ) a=— 2 ds a zero at the extremes of beta (waist)
3) U= fSZ 1 ds Phase Advance: Indication how much a particle
) s1 rotates in phase space when advancing in s

Of particular importance: Phase advance around a complete turn of a circular
accelerator, called the betatron tune Q (H,V) of this accelerator

1 C 1

=~ [“_ 1 gs
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o
cm Importance of betatron tunes

The CERN Accelerator School

If we include vertical as well as horizontal motion, then we find

that resonances occur when the tunes satisfy:
MaylVy + myty = £,

where my, my and £ are integers.

The order of the resonance is |mg| 4 |my|.

T > 59.35 T
&\’\T; ] i \m, ] O —

59.34]

59.331

59.32

50,31}

59.3

/

59.29

59.28

59.27

59.26

TTT [T T T T[T [T O T T T TIrT

-

\ \ 4

S AUTRUTY MY YAV P s N TR
83.25 64.26 64.27 64.28 64.29 64.3 64.31 64.32 64.33 64.34 64.35

Q

\

X

X

(a) Full tune diagram (b) Zoom around LHC Q working points

H.Schmickler, CERN

Integer values of the betatron
tunes or other multiple integer
combination can lead to particle
losses (resonances)

The tunes can be measured (see
lecture of R.Jones) and are
corrected by changing the
strength of the quadrupoles.

The couple (Q,Q, ) is called the
working point of the accelerator.
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o
m Slides on “off-momentum” particles in a synchrotron ‘

The CERN Accelerator School

What happens: A particle with a

. 5
momentum deviation § = ?p > 0 gets

bent less in a dipole.

Trajectory for >0

* In a weakly focusing synchrotron it would just
settle to another circular orbit with a bigger
diameter

* Inan alternate gradient synchrotron it is more
complicated: The focusing/defocusing is also
dependent on the momentum, so the resulting
orbit follows the optics of the accelerator.

" 1

4.5 Windows NT 4.0 version 8.23dl - . _09/08/06 09.31.13 ; 10=
3

Reference trajectory

B(m

We describe the dispersion as a function of s as D(s);
the resulting position of a particle is thus simply:

0\ "L10s

3.5
+1.00

3.0
+0.95
2.5
+0.90

Typical values of D(s) are some meters, with%p =103

[0 the orbit deviation becomes millimeters

+0.80

.75

= \/
0 02 T 04 06 08 Io " I? I'T 7 I6 T I8 .’.’.00
s(m)

e TS H.Schmickler, CERN 43



Measurement example

124 Hera P Hew BPM Display

HERA Standard Orbit

This gives also an example of an
orbit measurement.

hine : HERA |

- P P ~WL197 MX
£ orbit = Orb-Ref " Ref Mittelwert RMS-wert || Energie 3973 Ablage (mm) [ 0.348 . 5
Cassaoe <] [Sera o T More on this: again R.Jones (BI)
Urc| T &
hoiddn En= 3872 Zivet [ooo1 [om3 || G ps# [ 107.7/.00
Jan 28 15:30:16 2004 20040126 152912 dofe dpipAus| [ 0.110 || [geladen] hpidOn
Closed Orbit -+
—FEC Betriebsmode Setzen [~ Orhit-=OptieServer,
‘ Closed Orbit /Inj Trig - | ‘ standig [injMode | e | Less ‘ 1mal lesen |Bsraich|| v O”"tl‘

RA Di J bit
dedicated energy change of the stored beam HERA Dispersion Orbi

= closed orbit is moved to a TS

Printing ©Optionen  Korrekturen OFfsets  Save File  Select File  Set Optics  SetBunch  Spezial  Orbit View  Expert

dispersions trajectory 3

Har

El I
1
=T
|

Xp = D(s)*a—S S

o S B e L o i R

T = —Maschine : HERA-p i Pr ~NR344 MX
7 orbit [+ orbRer | T IRef Mittalwert RMS-wert Energie 39.73 Ablage (mm) [ 2.46

Closed Orbit  ~| [ scratcha =] % ihor | 2058 [ 23572 | Sieom L Status [ wrong tu

1 1
: Zivert. | . r !
hpidOn Ep = 39.745 [ o008 [ 7820 ||y i hpid0n (2
Feb 08 23.09:15 2008 2006-02.08 23:.07:15 g Aue 1482 || [geladen] hpid0n Rolease | T E




cm Momentum compaction factor A

The CERN Accelerator School

If a particle is slightly shifted in momentum it
will have a different orbit and the orbit length is
p different.

The “momentum compaction factor” is defined
© PP gas:

dL/ pdL
fe T dp / %= Tdp
p
<>_means that
the average is
1 ( D,(s) With p=2 in B (Dy)m | considered over
Aec = Zf (s) dsy straight sections Xe = R the bending
¢ P we get: magnet only

Typical numbers: a, = 1073..107%;*?/, =~ 1073 > 4L/, ~ 1076 ..1077

— Much more on this in long. dynamics (F. Tecker).






cm Finally: a beam

The CERN Accelerator School

We focus on “bunched” beames, i.e. many (10 1) particles bunched
together longitudinally (much more on this in the RF classes).

From the generation of the beams the particles have transversally a
spread in their original position and momentum.

- & Science & Technology REGEM ISIS &, o <o
. gt - L%
1S1=310A W@ Facilities Council
4-rms includes 94.2%
L Pepperpot Emittance Extraction
7
-2 w  Emittance profiles
S P e 14 pA §
© r i
E - ‘.
> 4 e 3 uA i
1 pA 100,
1-rms beam diameter = 22.4 mm g :
4-rms emittance 1.02 pi-mm-mrad s 5
0 uA i
-30 -20 -10 0 10 20 30 ;o
y (mm) 1.
] . Pepperpot image spots: hole T
Source: ISODAR (Isotope at rest experiment) positions (blue) and beam spots (red) “

~ 3/110/07 Simon Jolly, Imperial College 9
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@
(m Gaussian beam profile in x and p @

X
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(Af) Liouville’s Theorem (1/2) A

The CERN Accelerator School

1. All particle rotate in phase space with the same angular velocity (in the linear case)
2. All particle advance on their ellipse of constant action
3. All constant action ellipses transform the same way by advancing in

“w_
S

Physically, a symplectic transfer
Area, A = |e1 X e map conserves phase space

- \\ - volumes when the map is applied.
& %
= This is Liouville's theorem, and is a
property of charged particles
ch

moving in electromagnetic fields, in
Area, A’=le1 x bl the absence of radiation.

- Since volumes in phase space are preserved, (1)-(3) means That the whole beam

phase space density distribution transforms the same way as the individual constant
action ellipses of individual particles.
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cm Liouville’s Theorem (2/2)

The CERN Accelerator School

We now define the emittance of a beam as the average action of all particles!

- Since the action ] of a particle is constant and the phase space area A covered
by the action ellipse is A = 2m] , we can represent the whole beam in phase
space by an ellipse with a surface = 2w (J) *

- all equations for the propagation of the phase space ellipse apply equally
for the whole beam

Il In case we talk about a single particle, the ellipse we draw is “empty” and any particle
moves from one point to another; if we consider a beam, the ellipse is full of particles!!!

*  There are several different definitions of the emittance g, also different
normalization factors. This depends on the accelerator type, but the above
definition describes best the physics.

* Another often used definition is called RMS emittance
e = const * {(x?)(p?) — (xp)?> or &= const * (x*){x'?) — (xx')?
attention: the first definition describes well the physics, the second describes
what we eventually can measure
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cm Remarks
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&

1. We have already identified the action as a preserved
quantity in a conservative system < =2
the emittance of a particle beam is preserved in a
conservative beam line.

2. The sentence above is often quoted as Liouville’s
theorem, but this is incorrect. Liouville’s theorem
describes the preservation of phase space volumes,
the preservation of the phase space of a beam is then
just results from the Hamiltonian description.

3. We can identify the constant in the previous equation:

x(s) = e « \B(s) - cos{u(s) + ¢}

H.Schmickler, CERN 51



m More on beam emittance
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The reference momentum increases during acceleration
Py = ,B’Oyomc - P; = ,Blylmc (B,y relativistic parameters)

we can show: BoYo€o = P1 V1€1
So the transverse emittances scale with the product Sy

For this reason we define:

normalized emittance ey: = fy< and we call € the geometric emittance

The “shrinking” of the transverse emittance during acceleration is called
“adiabatic damping” (only € = const * (x?){x'?) — (xx')? scales with energy)

Other ways to influence the emittance (advanced subjects):
- make it bigger by error (injection errors....)
- make it smaller by cooling (stochastic cooling; electron-cooling....)

Not to be confused with:

Radiation damping = Reduction in emittance due to the emission of
photons as synchrotron radiation
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o
mhat do we normally measure from the phase-space ellipse?

The CERI

(x)d

Attention! The standard 2 D image of a
synchrotron light based beam image is
NOT a phase space measurement

7000

6000—

5000

4000

3000

2000

10001—

i

At a given location in the
accelerator we can measure
the position of the particles,
normally it is difficult to
measure the angle...so we
measure the projection of
the phase space ellipse onto
the space dimension:
—~>called a profile monitor

FITTING
Example: / 4 N\\\
'SPS.BWS.41677.H_ROT' & \\\
/ A
N o =./&B +D p/p
y \
/ \
/ \\
/I \
/ \
// .
d \
e N\
/ i / - "Eag Ny
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o
(m A first taste of non-linearities (1/6) A

* So far we have completely neglected the longitudinal plane
 Still, we will not couple the motion in the longitudinal and transverse plane
(advanced course), but we need to consider

. N A
“off momentum particles” with a longitudinal momentum p—p * 0.
0

* We already defined the Dispersion function, which describes the change in orbit
* Now we look at what happens to the focusing in the quadrupoles:

_'p =Py P= P P =P,

H.Schmickler, CERN 54



(Af) A first taste of non-linearities (2/6) I A

The CERN Accelerator School

* Due to the change in focusing strength of the quadrupoles with varying
momentum, particles have different betatron-tunes:
Definition: Chromaticity (H,V) := Dependence of tune on momentum

A . . .
AQ = Q' ?p or relative chromaticity € = %

* Is this bad? : Yes, the working point gets a “working blob”

* We need to correct. How?
i) Inserting a magnetic element where we have dispersion (this separates in space
particles with lower and higher momenta
ii) Having there a “quadrupole”, for which the strength grows for larger distances
from the centre: a sextupole

Dp

—=>()
P

@: ()

n
L
Jii
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C o’ D A first taste of non-linearities (3/6) A

We will have a high price to pay for this chromaticity correction!
- we have introduced the first non-linear element into our accelerator

The map M (no longer a matrix) of a single sextupole represents a “kick” in the
transverse momentum:

X X T — X,
=M* i 5
X') X') Pr +—> Dx — Ekng

We choose a fixed value k,L = - 600 m~ and we construct phase space
portraits after repeated application of the map.

We vary the phase advance per turn (fractional part of the tune) from

0.2 - 2m to 0.5 ‘2w
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o
Cm A first taste of non-linearities (4/6)

The CERN Accelerator School

pe = 0.202 x 27

3
[
«:C_J 0
=3 |
-3 0 3
X (mm)
pz = 0.402 x 27
3
g
:9 0
-3
3

pr = 0.252 x 27

i

pae = 0.330 x 27

10°%p,
o
e
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o
(m A first taste of non-linearities (6/6)

The CERN Accelerator School

1// / : ,/I'>X
/\L 2

-~
-

dipole perturbation
tune ~ integer

Px
N
,“”--_\\
N
-
- ———— \
-, A ~
# 1\’ \ 1

guadrupole perturbation

tune ~ half-integer

H.Schmickler, CERN

dipole perturbation
tune ~ half-integer

sextupole perturbation
tune ~ third-integer
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go.e
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Example:

Another useful example: Injection missteering

+ The emittance is the average action of all particles in the
beam:

By = ol )

* RMS emittance:

e = /o] = V@) — ez )2

kicker Mis-steered
S injected beam

]
U I

Injection oscillations = if beam is not injected on the closed orbit, beam
oscillates around closed orbit and eventually filaments (if not damped)

H.Schmickler, CERN
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Steering error — linear machine

What will happen to particle distribution and hence emittance?

0.0015
0.0010
p— | | Turn1:
| | Blue distribution:
& ~0.0005| | on axis injection —
e no error
= —0.0010 1
~0.0015} , 1 Red distribution:
e e injection on CO Injection with
-0.0020H . _; - . : g .
<> horizontal injection
~pioozs '™ ® Iniection error 1 error: mainly in x'
—_— <], >
_0'0038.003 —0.1002 —0.601 0.600 0.0101 0.0102 0.003

j‘/\le
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Steering error — linear machine

«  What will happen to particle distribution and hence emittance?

0.003

0.003 [ . : : . T
i i : e e injection on CO e e injection on CO
Turn 100 : — <} b -— TS
0.002 - 0.002) i |e e injection error | il @ @ injection error |-
_—] > —
0.001 - 0.001 b o B
|': |e ;
2 0.000 > 0,000 g
[ ]
: : : : : : [ ]
; f g i i g [ ) L
¥ .
-0.00 i ~0.0% 603 0 502 0 i001 0 ojoo 0 0;01 0 o;oz 0.003 i :
095 603 -0.002 -0.001 0.0 e e P e : : : 0.000 0.001 0.002 0.003
i'/ K i/ﬁ

 The beam will keep oscillating. The centroid will keep oscillating.
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Steering error — linear machine

How does <J,> behave for steering error in linear machine?

And what about the rms definition?

141 — P
- ms emittance
1.2}
__1lof
o
o
£
£ 08
E
" o6l How useful is <J,>?
v
0.4 ...see steering error with
non-linear machine
0.2
0oLt 1 : 1 :
0 | 200 400 600 800 1000
turn (\#)

Injection moment
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Steering error — non-linear machine

« What will happen to particle distribution and hence emittance?

0.003 T T
0.003 ' ; e e e injection on CO
: ; e e injection on e
Turn 1 00 — CES <JJ' =
0.002 | ; 1 L . -l @ @ injection error |
0.002 g | injection error " T
—_— <] > , .
OO0 |vsssasnisibatin :
0001 ——
S =
; 5 2
< 19000 > 0.000 © L
= P e
] [ ] ;
—0.001b i g POTORTO @
. -0.001f- .
§ °
> g ®
t $ L) 3
: o
0008 555 =0.002  —v.001 00086035 —0.002 =000 0,000 0.001 0.002 0,003 0.000 0.001 0.002 0.003
T/vm T/ vm

« The beamis filamenting....
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Steering error — non-linear machine

Phase-space after an even longertime

0.003

e e tracking

0.002 |-

0.001}

vim

0.000

F/

-0.001

-0.002

-0.098

003 -0.002 -0.001 0.000 0.001 0.002

.i‘/\ﬁ

0.003



Steering error — non-linear machine

 How does <J,> behave for steering error in non-linear machine?

« And what aboutthe rms emittance

14} —_—lL =

- ms emittance

1.2

1.0

0.8 |

0.6 {

<J, > (mm.mrad)

After filamentation: RMS
emittance = <J,>

0.4 {

0.2}

0'00 5(30 1000 1500 2000

turn (\#)



OO Linear Imperfections A
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* Up to now we have constructed an alternate —gradient focusing synchrotron
* We have a well chosen working point
* We have corrected chromaticity
* (We still cannot accelerate! - see F. Tecker (long. Dynamics)
* We assume:
- All magnetic elements have the calculated field strength and field quality
- All magnetic elements are in the right place and powered with the right polarity
* Reality tells us:
- Magnets have field errors, have other multipole components, have time varying
fields due to ripple in the connected power converter
- Magnets are wrongly mounted with horizontal and/or vertical offsets, rotations
or tilts
* These effects influence:
- the beta functions and phase advance around the ring (implicitly the tunes)
- the closed orbit
- the coupling between horizontal and vertical motion

* We need to diagnose and correct: Strong interaction between beam
measurements and corrections (see also R.Jones BDI talks)
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OO Dipole Errors

The CERN Accelerator School

error effect correction

change excitation current,
replace magnet

strength (k) [change in deflection

lateral shift |[none
tilt additional vertical deflection |corrector dipole magnet

B i i e

fiis

i e

AAAAdAAAAdddddaddddddd

0T e

Y PP R R EERERPRPRRRRY

H.Schmickler, CERN
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o
(A’) Quadrupole Errors (1/2)

T
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Note that F —kx and F, = ky making horizontal
dynamics totally decoupled from vertical.
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o
(A’) Quadrupole Errors 2/2 il

Error type effect on beam correction(s)
strength Change in focusing, Change excitation current,
“beta-beating” Repair/Replace magnet
Lateral shift Extra dipole kick Excitation of a corrector
dipole magnet
tilt Coupling of the beam Excitation of a additional
motion in the two planes “skewed quadrupoles (45°)
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An offset quadrupole is seen as a centered
quadrupole plus a dipole.




Beta-beating (1/2)

B O 0 O ey

IR NAaANGAaRInarniIrnarararsrdfd BT | Dipoles

| I | sing quads
.

Py
AL
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0 20 40 60 80 100 120 140 160
Longitudinal location [m]
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cm Beta-beating (2/2) E@"
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o
(A’) Quadrupole Errors 3/3
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Any tilted quadrupole is
seen as a normal
qguadrupole plus another
quadrupole tilted by 45°.
(skew quad)

Note that in a skew quad
F, =kyand F, = kx
produce coupling
between the xand y
planes

Additional skew quads in

an accelerator are used
to compensate coupling
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4 Coupling control is most important in synchrotron light
m sources, since small vertical emittance (yielding high

The CERN Accelerator School brightness of the photon beams) is predominantly achieved by AI

decoupling the x and y planes.
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Last not least: Sextupole errors (2/2)

i

Error type effect on beam correction(s)

strength Change in chromaticity Change excitation current,
correction, beta-beating Repair/Replace magnet

Lateral shift Extra quadrupole and skew | Compensation with
quadrupole, beat-beating, quadrupoles and skew
tune change, coupling quadrupoles, realignment

tilt Error in the chromaticity Excitation of a additional
correction “skewed sextupoles (45°)

H.Schmickler, CERN

A horizontally
(vertically)
displaced
sextupole is seen
as a centred
sextupole plus an
offset quadrupole
(skew quadrupole)
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dee, Correction summary
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Effect of dipole kicks (8; ; @;) on closed orbit (CO)

co(s) _ V/Bibi cos(r@ — [é(s) — 1)

Effects of strength error in quadrupoles

|- 1
AQ, ~ EﬁxAkiLia AQ, ~ —EﬁyAkiLi

[-beating from many sources:

%(5) 2 =+ 5(27TQ —2|¢(s) — i)

* Best correction: identify error source and repair(realignment; coil repair...)

* If not: Typically close to every quadrupole small dipole correctors are
installed. So by measurement campaigns and data analyses corrections
strength for these small dipoles and to (skew) quadrupoles are applied.

* More on this in the diagnostics lecture and the advanced part.
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(A Last not least: Collective effects A

The CERN Accelerator School

Collective effects:
= Summary term for all effects when the coulomb force of the particles in a bunch
can no longer be neglected; in other words when there are too many particles...

We distinguish:
i) self interaction of the particles within a bunch:

1) space charge effects
2) Intra beam scattering
3) Touschek scattering

leads to emittance growth and particle loss

ii) Interaction of the particles with the vacuum wall
-> concept of impedance of vacuum system

leads to instabilities of single bunches and multiple bunches

iii) Interaction of with particles from other counter-rotating beam
- beam-beam effects (= T.Pieloni this school)

Most is very advanced matter = here only concepts and buzz-words
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cm Space-charge Forces

The CERN Accelerator School

2l

In the rest frame of a bunch of charged particles, the bunch will expand
rapidly (in the absence of external forces) because of the Coulomb repulsion

between the particles.
The electric field around a single particle of charge ¢ at rest is a radial field:

g=1 _
dre, r

Applying a Lorentz boost along the z axis, with relativistic factor y; the field
becomes:

= q w B e q Y44 B = q Iz
X 4re, (x2+y2+}’222)3/2 y 47e, (x2+y2+72z2)m z ATE, (xz+y2+7,2zz)?/2

For large  the field is strongly suppressed, and falls rapidly away from z = 0.
In other words, the electric field exists only in a plane perpendicular to the

direction of the particle.
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cm Space Charge: Scaling with energy

The CERN Accelerator School

Example Coulomb field: (a charge moving with constant speed)

y=1 Y>> 1

Recall from
relativity

}‘* In rest frame purely electrostatic forces
v

} In moving frame E transformed and B appears

Electrical field : repulsive force between two charges of equal polarity
Magnetic field: attractive force between two paraIIeI currents

after some work: afl 1 m
F, = 5
27r60ﬁc 2#5060 V2 a

- space charge diminishes with 1/y2 scalmg

— each particle source immediately followed by a linac or RFQ for acceleration
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cm Space Charge Tune Shift @

The CERN Accelerator School

The tune spread from space-charge forces for particles in a Gaussian bunch
of N, particles and rms bunch length o; is given by:

AV o, 2reN0 § ’B."
y 3/2 2 3 (
2z)" e py?o,0,.+0,

where the integral extends around the entire circumference of the ring.

)ds

Since every particle in the bunch experiences a different tune shift, it is not
possible to compensate the tune spread as one could for a coherent tune
shift (for example, by adjusting quadrupole strengths).

Note that the tune spread gets larger for:
* larger bunch charges
« shorter bunches
» larger beta functions
* lower beam energy (very strong scaling!)
« larger circumference
« smaller beam sizes
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o0

The CERN Accelerator School

Space
charge
always
defocusing

necktie

“footprint”
of particles

with space

charge tune
shift.

The effect
dramatically
reduces at
higher
energies

40

r.oulnCKIe, CCNIN 81



Cm Intrabeam Scattering A

The CERN Accelerator School

Particles within a bunch can collide with each other as they perform betatron
and synchrotron oscillations. The collisions lead to a redistribution of the
momenta within the bunch, and hence to a change in the emittances.

If a collision results in the transfer of transverse to longitudinal momentum at
a location where the dispersion is non-zero, the result (after many scattering
events) can be an increase in both transverse and longitudinal emittance,

-
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cm Touscheck effect A

The CERN Accelerator School

The Touschek effect is related to intrabeam scattering, but refers to
scattering events in which there is a large transfer of momentum from the
transverse to the longitudinal planes. IBS refers to multiple small-angle
scattering; the Touschek effect refers to single large-angle scattering events.

If the change in longitudinal momentum is large enough, the energy

deviation of one or both particles can be outside the energy acceptance of
the ring, and the particles will be lost from the beam.
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O
Cm Interaction of beam with vacuum chamber

The CERN Accelerator School

Resistive wall effect: _—— —— -

Finite conductivity - -
Narrow-band resonators: _ |_| o
Cavity-like objects - _|_:3|7 -
Broad-band resonators: S — | e
Tapers, other non-resonant - —_— = i

structures
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o
cm Bunch in a conducting pipe with sudden change @

The CERN Accelerator School
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All together
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cm Impedance I@

Impedance

V(t) = Z,(w)I cos(wt) — Z;(w)I sin(wt)

1
1 _|_Q2 (M)Q

Zz(w) = —R ;2_w2

I = I cos(wt) 1+Q2( r )2

Zr(Ww) =R

The real (resistive) part dissipates energy, the imaginary part creates instabilities -



Consequences of impedances @

Energy loss on pipes = heating (important in a superconducting accelerator)
Tune shift

*

narrow
resonances Broad

Single bunch instabilities (head-tail) More on this:
_ ] o [ Feedback lecture on Wednesday
Multibunch instabilities
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“LIFE’S TOO SHORT DRINK WARM BEER!”

i = ¢ G‘
, '

REWHO

m f’l’

pre

We have discussed:

1) Back to school: relativity, EM fields, magnets...

2) Hamiltonian and canonical variables = equations of motion + invariants; map-approach
3) Single particle in various magnetic elements...action as invariant

4) multiple elements; circular accelerator

5) Twiss parameters

6) Finally a beam: emittance and emittance preservation

7) A taste of non-linearities

8) Linear imperfections (and some corrections)

9) Collective effects
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IN HIGH ENERGY PARTICLE
ACCELERATORS

Recommended reading:
* A. Wolski, Beam Dynamics in high energy particle accelerators,
Imperial College Press, ISBN 978-1-78326-277-9

* CAS proceedings and references therin



