
Nonlinear Dynamics - Methods and Tools

—

and a Contemporary (1985 +) framework

to treat Linear and Nonlinear Beam Dynamics

PART 3

What about a complicated arrangement, e.g. one that can only be

simulated by a computer program ?

r1

r2

initial final

Tracking

(black

Program

box)

A tracking program takes some input, e.g. initial coordinat es, and

produces (after some time) an output, e.g. final coordinates

Tracking particles with a computer code is the most reliable (and

flexible) method, but we cannot track every particle

But can we get an "effective Hamiltonian" (and therefore a No rmal

Form) for a huge and messy computer code ?

Coming down to the point: TPSA !

Truncated Power Series Algebra [EF1, EF2, AC1, MB, WH1] :

Extend operations on real numbers to act on truncated power

series

Output of the simulation is a Power Series of the computer

code !!

This allows a Normal Form analysis of the computer code !

Assume our tracking code has established the behaviour of a
particle starting at the position a (in phase space). But we cannot
track every particle ...

What can we infer for the behaviour of other particles ?

Recall the Taylor series:

f (a + ∆x) = f (a) +
∞∑

n=1

f (n)(a)
n!
∆xn

f (a + ∆x) = f (a) +
f ′(a)
1!
∆x1
+

f ′′(a)
2!
∆x2
+

f ′′′(a)
3!
∆x3
+ ...

The coefficients determine the behaviour of small deviation s
∆x from the reference a

f (a) is the "tracked particle", f (a + ∆x) is a "close particle"

If we truncate the expansion to the m-th order:

f (a + ∆x) = f (a) +
m∑

n=1

f (n)(a)
n!
∆xn

We can represent the function f (x) near a by the "sequence" of

coefficients (f (a), f ′(a), f ′′(a), ..., f (m)(a))

a

This vector is what we need to

understand the behaviour of

particles in the neighbourhood

of the particle starting at a

We have now an analytical solution for our problem

How to get these coefficients (derivatives) ?

Numerical differentiation

The problem getting the derivatives f (n)(a) of f (x) at a:

f ′(a) =
f (a + ∆x) − f (a)

∆x

Need to subtract almost equal numbers and divide by small

number.

For higher orders f ′′, f ′′′.., accuracy hopeless !

The way out: we use Truncated Power Series Algebra

(TPSA) (M. Berz, 1988 and [MB])

Truncated Power Series Algebra

The tracking of a particle in a complicated system relates th e

output numerically to the input:

z1 = (x, px, y, py, s, δ)1
tracking
=⇒ z2 = (x, px, y, py, s, δ)2

Can a tracking code directly produce an "analytic"

one-turn-map ??

For example the coefficients of a Taylor series ?

z1 = (x, px, y, py, s, δ)1
???
=⇒ z2 =

∑
C j(a)z j

1 =
∑

f (n)(a)z j
1

The answer is automatic differentiation

Step by step

1. Define a pair (q0, q1), with q0, q1 real numbers

1. Define a pair (q0, q1), with q0, q1 real numbers
2. Define operations on a pair like:

(q0, q1) + (r0, r1) = (q0 + r0, q1 + r1)} obvious !

c · (q0, q1) = (c · q0, c · q1) obvious !

(q0, q1) · (r0, r1) = (q0 · r0, q0 · r1 + q1 · r0) not obvious !

1. Define a pair (q0, q1), with q0, q1 real numbers
2. Define operations on a pair like:

(q0, q1) + (r0, r1) = (q0 + r0, q1 + r1)} obvious !

c · (q0, q1) = (c · q0, c · q1) obvious !

(q0, q1) · (r0, r1) = (q0 · r0, q0 · r1 + q1 · r0) not obvious !

3. And some ordering:

(q0, q1) < (r0, r1) if q0 < r0 or (q0 = r0 and q1 < r1)

(q0, q1) > (r0, r1) if q0 > r0 or (q0 = r0 and q1 > r1)

1. Define a pair (q0, q1), with q0, q1 real numbers
2. Define operations on a pair like:

(q0, q1) + (r0, r1) = (q0 + r0, q1 + r1)} obvious !

c · (q0, q1) = (c · q0, c · q1) obvious !

(q0, q1) · (r0, r1) = (q0 · r0, q0 · r1 + q1 · r0) not obvious !

3. And some ordering:

(q0, q1) < (r0, r1) if q0 < r0 or (q0 = r0 and q1 < r1)

(q0, q1) > (r0, r1) if q0 > r0 or (q0 = r0 and q1 > r1)

4. This implies something strange and something very strang e:

(0, 0) < (0, 1) < (r, 0) (for any positive r)

(0, 1) · (0, 1) = (0, 0) (0, 1) =
√

(0, 0)!!

This means that (0, 1) is between 0 and ANY real number
infinitely small !!!

We call this therefore "differential unit" ǫ
de f
= (0, 1)

(plays the role of ∆x in classical calculus ..)

Of course (q, 0) is just the real number q and we define "real part"
and "differential part" (a bit like complex numbers..):

q0 = R(q0, q1) and q1 = D(q0, q1)

With our rules we can further see that (useful formulae):

(1, 0) · (q0, q1) = (q0, q1)

(q0, q1) −1
=

(
1
q0
,−

q1

q2
0

)

Move from "classical" to "new" calculus

For example, a function f acts on the pair using our rules:

x
becomes
=⇒ (x, 0) and f (x)

becomes
=⇒ f (x, 0)

Adding the differential (a la "normal" calculus):

f (x) + ǫ
becomes
=⇒ f (x, 1)

The real part corresponds to:
R [f (x, q1)] = f (x) for any q1, i.e. also for R [f (x, 1)] = f (x)

What about the differential part D ?

D [f (x, q1)] in particular what is D [f (x, 1)] ???

Automatic Differentiation:

Key formula (without proof): for a function f (x):

D[f (x + ǫ)] = D[f ((x, 0) + (0, 1))] = D[f (x, 1)] = f ′(x)

An example instead:

f (x) = x2
+

1
x

then using school calculus:

f ′(x) = 2x −
1
x2

For x = 2 we get then:

f (2) =
9
2
, f ′(2) =

15
4

The miracle:

For x in:

f (x) = x2
+

1
x

we substitute: x → x + ǫ → (x, 1) = (2, 1) and use our rules:

f (2, 1) = (2, 1)2
+ (2, 1)−1

= (4, 4) + (
1
2
,−

1
4

)

= (
9
2
,

15
4

) = (f (2), f ′(2)) !!!

The computation of derivatives becomes an algebraic proble m, no
need for small numbers, exact !

If anything, remember that:

f (x, 1) = (f (x), f ′(x))

(x, 1)3
= (x3, 3x2)

sin(x, 1) = (sin(x), cos(x))

etc. ...

Higher orders:

1. The pair (q0, 1), becomes a "vector" of order N (just add more 0):

(q0, 1) (q0, 1, 0, 0, ...,0) ǫ = (0, 1, 0, 0, ...,0)

2. (q0, q1, q2, ...qN) + (r0, r1, r2, ...rN) = (q0 + r0, q1 + r1,, qN + rN)

3. c · (q0, q1, q2, ...qN) = (c · q0, c · q1, c · q2, ...c · qN)

4. (q0, q1, q2, ...qN) · (r0, r1, r2, ...rN) = (s0, s1, s2, ...sN)

with : si =

i∑

k=0

i!
k! (i − k)!

qkri−k

for example: s0 = q0r0, s1 = q1r0 + q0r1, s2 = q2r0 + 2 q1r1 + q0r2, ...

5. Note: (1, 0, 0, ...)·(q0, q1, q2, ...qN) = (q0, q1, q2, ...qN)

Examples:

(x, 0, 0, 0, ..)n
= (xn, 0, 0, 0, ..)

(0, 1, 0, 0, ..)n
= (0, 0, 0, ..,

n+1
︷︸︸︷

n! , 0, 0, ..)

(x, 1, 0, 0, ..)2
= (x2, 2x, 2, 0, ..)

(x, 1, 0, 0, ..)3
= (x3, 3x2, 6x, 6, ..)

And an exercise: (x, 1, 0, 0, ..)−3
= (?, ?, ?, ..)

f (x) f (x, 1, 0, 0, ..) = (x, 1, 0, 0, ..)−3
= (f0, f ′, f ′′, f ′′′, ..)

︸ ︷︷ ︸

next : multiply both sides with (x, 1, 0, 0)3

(1, 0, 0, ..) = (x, 1, 0, 0, ..)3 · (f0, f ′, f ′′, f ′′′, ...)

(1, 0, 0, ..) = (x3, 3x2, 6x, 6, ..) · (f0, f ′, f ′′, f ′′′, ...)

(1, 0, 0, ..) = (x3 · f0
︸ ︷︷ ︸

q0

, 3x2 · f0 + x3 · f ′
︸ ︷︷ ︸

q1

, 6x · f0 + 2 · 3x2 · f ′ + x3 · f ′′
︸ ︷︷ ︸

q2

, ...)

Easily solved by forward substitution:

1 = x3 · f0 → f0 = x−3

0 = 3x2 · f0 + x3 · f ′ → f ′ = − 3x−4

0 = 6x · f0 + 2 · 3x2 · f ′ + x3 · f ′′ → f ′′ = 12x−5

....

If you are bored or already fascinated:

Try: f (x) = ex

Hint:

e(x,1,0,0,0)
= e(x,0,0,0,0) + (0,1,0,0,0)

= e(x,0,0,0,0) · e(0,1,0,0,0)

Maybe try also: f (x) = sin(x), cos(x), ...

Note:

the vector (0, 1, 0, 0) is small, but (0, 2, 0, 0) is small, (0, 2, 5, 0) is

small, (0, 0, 2, 5, 0) is small ...

The key is: (0, x, y, z, ...) !

Can be extended to more variablesx, px:

x = (a, 1, 0, 0, 0...) ǫx = (0, 1, 0, 0, 0, ..)

px = (b, 0, 1, 0, 0...) ǫpx = (0, 0, 1, 0, 0, ..)

and get (with modified multiplication rules):

(q00, q10, q01, q20, ..) · (r00, r10, r01, r20, ..) = (s00, s10, s01, s20, ..)

with:

smn =

m∑

k=0

n∑

l=0

qkl · rm−k,n−l
m! n!

k! (m − k)! l! (n − l)!

f (x, px) =

(

f ,
∂ f
∂x
,
∂ f
∂px
,
∂2 f
∂x2
,
∂2 f
∂x∂px

, ...

)

(a, b)

Note: no panic, all this is (easily) done on a computer

What is the use of that:

simulation

code

a f(a)

(a, 1, 0, 0,..) (f(a), f’(a), f’’(a), ...)

Assume we have written a complex simulation code (maybe more

than 100000 lines ..)

1. We replace all standard operations with our new definition s

2. We push the vector f (x) = (a, 1, 0, 0, 0...) through the algorithm as if it

is a vector in phase space

3. We extract a truncated Taylor map with the desired accurac y and to

any order

How to proceed:

Replacing the operations with a new definition is very easy
using polymorphism of modern languages (e.g. C++,

FORTRAN 95,..) and operator overloading, see following

example

We have a Taylor map, i.e. analytical representation of a

computer code (somewhat metaphorically) !!!

The resulting map can be used for tracking in a computer

program

Normal form analysis on Taylor series is much easier: the

coefficients are directly related to the various aberration s !!

What is the use of that:

Demonstrate with simple examples (FORTRAN 95):

First show the concept

Simple FODO cell

Normal form analysis of the FODO cell with octupoles

All examples and all source code in:

Website: http://cern.ch/Werner.Herr/CAS2017/DA

Small DA package provided by E. Forest

Courtesy E. Forest for the small DA package used here ...

Look at this small example: f (a) = sin(π6)

PROGRAM DATEST1
use my_own_da
real x,z, dx
my_order=3
dx=0.0
x=3.141592653/6.0 + dx
call track(x, z)
call print(z,6)
END PROGRAM DATEST1

SUBROUTINE TRACK(a, b)
use my_own_da
real a,b
b = sin(a)
END SUBROUTINE TRACK

PROGRAM DATEST2
use my_own_da
type(my_taylor) x,z, dx
my_order=3
dx=1.0.mono.1 ! this is our (0,1)

x=3.141592653/6.0 + dx
call track(x, z)
call print(z,6)
END PROGRAM DATEST2

SUBROUTINE TRACK(a, b)
use my_own_da
type(my_taylor) a,b
b = sin(a)
END SUBROUTINE TRACK

Key: operations on "real" are overloaded, changing the decl aration

Look at the results:

(0,0) 0.5000000000000E+00 (0,0) 0.5000000000000E+00
(1,0) 0.8660254037844E+00
(0,1) 0.0000000000000E+00
(2,0) -0.2500000000000E+00
(0,2) 0.0000000000000E+00
(1,1) 0.0000000000000E+00
(3,0) -0.1443375672974E+00
(0,3) 0.0000000000000E+00
(2,1) 0.0000000000000E+00
(1,2) 0.0000000000000E+00

We have sin(π6) = 0.5 all right, but what is the rest ??

Look at the results:

(0,0) 0.5000000000000E+00 (0,0) 0.5000000000000E+00
(1,0) 0.8660254037844E+00
(0,1) 0.0000000000000E+00
(2,0) -0.2500000000000E+00
(0,2) 0.0000000000000E+00
(1,1) 0.0000000000000E+00
(3,0) -0.1443375672974E+00
(0,3) 0.0000000000000E+00
(2,1) 0.0000000000000E+00
(1,2) 0.0000000000000E+00

sin(
π

6
+ ∆x) = sin(

π

6
) + cos(

π

6
)∆x1 −

1
2

sin(
π

6
)∆x2 −

1
6

cos(
π

6
)∆x3

What is the use of that:

We have used a simple algorithm here (sin) but it can be anything very

complex (try: sin(x)
x using the DA package provided on the webpage)

We can compute nonlinear maps as a Taylor expansion of anything

the program computes

Simply by:

Replacing regular (e.g. REAL) types by TPSA types (my_taylo r)

Variables x, p are automatically replaced by (x, 1, 0, ..) and

(p, 0, 1, 0, ..) etc.

Operators and functions (+,−, ∗,=, ..., exp, sin, ...) automatically

overloaded, i.e. behave according to new type

What is the use of that:

Assume the Algorithm describes one turn, then:

Normal tracking:

Xn = (x, px, y, py, s, δ)n Xn+1 = (x, px, y, py, s, δ)n+1

Coordinates after one completed turn

TPSA tracking:

Xn = (x, px, y, py, s, δ)n Xn+1 =
∑

C jX
j
n

Taylor coefficients after one completed turn

The C j contain useful information about behaviour

Taylor map directly used for normal form analysis

Demo 1:

Track through 8 FODO cells:

QF - DRIFT - QD - DRIFT

Now we use three variables:

x, p, ∆p = (z(1), z(2), z(3))

Thin lenses:

Quadrupole treated as →
Lq

2
− K1 −

Lq

2

program ex1

use my_own_da
use my_analysis
type(my_taylor) z(3)
type(normalform) NORMAL
type(my_map) M,id

real(dp) L,DL,k1,k3,fix(3)

! set up initial parameters
my_order=4 ! maximum order 4
fix=0.0 ! fixed point
id=1
z=fix+id

! set up lattice parameters
LC=62.5 ! half cell length
DL=3.0 ! quadrupole length
kf= 0.00295278 ! strength
kd=-0.00295278 ! strength

do j = 1,8 ! track through 8 FODO cells

z(1) = z(1)+DL/2*z(2)

z(2) = z(2)-kf*DL*z(1)/(1 + z(3))

z(1) = z(1)+DL/2*z(2)

9

>

>

=

>

>

;

! track through F quadrupole

z(1)=z(1)+LC*z(2) ! drift of half cell length

z(1) = z(1)+DL/2*z(2)

z(2) = z(2)-kd*DL*z(1)/(1 + z(3))

z(1) = z(1)+DL/2*z(2)

9

>

>

=

>

>

;

! track through D quadrupole

z(1)=z(1)+LC*z(2) ! drift of half cell length
enddo

call print(z(1),6)
call print(z(2),6)
M=z ! overloads coefficient with the map
normal=m ! overloads map with normal form
write(6,*) normal%tune, normal%dtune_da
end program ex1

The result is (single cell):
(0,0,0) 0.9369211296691E-01
(0,0,1) -0.9649503806747E-01

(1,0,0) 0.9083165810508E-01
(0,1,0) 0.1667704101367E+03

(1,0,1) 0.1238115392391E+01
(0,1,1) -0.3527698956093E+02
(1,0,2) -0.1567062442887E+01
(0,1,2) 0.3478356898518E+02
(1,0,3) 0.1896009493384E+01
(0,1,3) -0.3429014840944E+02

(1,0,0) -0.5139797664004E-02
(0,1,0) 0.1572511594903E+01
(1,0,1) 0.1027959532801E-01
(0,1,1) -0.5648018984066E+00
(1,0,2) -0.1541939299201E-01
(0,1,2) 0.5570922019106E+00
(1,0,3) 0.2055919065602E-01
(0,1,3) -0.5493825054146E+01

From the elements in the Taylor ex-

pansion, the result for the matrix per

cell:

∆x f = 0.09083∆xi + 166.77∆pi

∆p f = −0.00514∆xi + 1.5725∆pi

The output from the normal form

analysis are (per cell !):

Tune = (0,0,0) = 0.093692

Chromaticity = (0,0,1) = -0.096495

The "defined assignment": M = z, makes a map M out of the

coefficients z

The "defined assignment": NORMAL = M, makes a normal form

NORMAL out of the map M

In FORTRAN95 derived "type" plays the role of "structures" i n C, and

NORMAL contains:

NORMAL%tune is the tune Q

NORMAL%dtune_da is the detuning with amplitude
dQ
da

NORMAL%R, NORMAL%A , NORMAL%A**-1 are the matrices

R, A, A−1 from the normal form transformation and we get α, β, γ ...

real z(3) type(my_taylor) z(3)

M = z

NORMAL = M

Polymorphism at its best !

What about dipoles ??

Of course they are described by a matrix a, but:

Only useful in full 3D (x, px, y, py, z, δ)

They do not change the reference orbit

Focusing terms in the matrix

The path length difference z relative to the design orbit has

changed: a.k.a. dispersion

To think about it tonight: why did I not use sextupoles to

correct the chromaticity in my example ?

asee e.g. C. Iselin, Part. Acc. Vol.17 (1985) pp. 143

 160

 180

 200

 220

 240

 260

 280

 300

 320

 0 200 400 600 800 1000

be
ta

x

s

beta function from tracking
Optics from TPSA
Optics from MAD

βmax ≈ 300 m, βmin ≈ 170 m

exercise 1 in the optics course ! (ex1.f90 in the package)

program ex1_oct

use my_own_da

use my_analysis

type(my_taylor) z(3)

type(normalform) NORMAL

type(my_map) M,id

real(dp) L,DL,k1,k3,fix(3)

! set up initial parameters

my_order=4 ! maximum order 4

fix=0.0 ! fixed point

id=1

z=fix+id

! set up lattice parameters

LC=62.5 ! half cell length

DL=3.0 ! quadrupole length

kf= 0.00295278 ! strength

kd=-0.00295278 ! strength

do j = 1,8 ! track through 8 FODO cells

z(1) = z(1)+DL/2*z(2)

z(2) = z(2)-kf*DL*z(1)/(1 + z(3))

z(1) = z(1)+DL/2*z(2)

9

=

;

! track through F quadrupole

z(2)=z(2)-k3*z(1)**3/(1 + z(3)) ! add octupole kick

z(1)=z(1)+LC*z(2) ! drift of half cell length

z(1) = z(1)+DL/2*z(2)

z(2) = z(2)-kd*DL*z(1)/(1 + z(3))

z(1) = z(1)+DL/2*z(2)

9

=

;

! track through D quadrupole

z(1)=z(1)+LC*z(2) ! drift of half cell length

enddo

call print(z(1),6)

call print(z(2),6)

M=z ! overloads coefficient with the map

normal=m ! overloads map with normal form
write(6,*) normal%tune, normal%dtune_da

end program ex1_oct

The result is:

(0,0,0) 0.9369211296691E-01

(0,0,1) -0.9649503806747E-01

(2,0,0) 0.5383744464902E+02

(0,2,0) 0.5383744464902E+02
(0,0,2) 0.1009289258270E+00

(2,0,1) 0.2116575633218E+02

..........

(1,0,0) 0.9083165810508E-01

(0,1,0) 0.1667704101367E+03

(1,0,1) 0.1238115392391E+01

(0,1,1)-0.3527698956093E+02

(3,0,0)-0.1578216232118E+01

(2,1,0)-0.1429958442579E+02

(1,2,0)-0.4318760015031E+02

..........

(1,0,0)-0.5139797664004E-02

(0,1,0) 0.1572511594903E+01

(1,0,1) 0.1027959532801E-01

(0,1,1)-0.5648018984066E+00

(3,0,0)-0.1505298087837E-01

Linear matrix as before, but effects of the

octupole.

The output from the normal form analysis

are (per cell !):

Tune = (0,0,0) = 0.093692

Chromaticity = (0,0,1) = -0.096495

Detuning with amplitude = (2,0,0) = 53.74 !

This was trivial - now a (normally) hard one

x’

x’

1

2

x

x
1

2

R

R

A

B

The exact map:

p2 = sin(x′2) = − B
R

x2 = A − R(1 − cos(x′2)) = A − R(1 −
p

1 − p2
2)

A = R · p1 = R · sin(x′1)

B = R(1 − cos(x′1)) + x1 = R(1 −
p

1 − p2
1) + x1

A 900 bending magnet ..

How to apply Differential Algebra here ...

Start with initial coordinates in DA style:

x1 = (0, 1, 0, ...)

p1 = (0, 0, 1, ...) and have:

A = (0, 0,R, 0, ...)

B = (0, 1, 0, 0, 0,R, 0, ...)

After pushing them through the algorithm:

x2 = (0, 0,R,− 1
R , 0, 0, 0...) = (0, ∂x2

∂x1
,
∂x2
∂p1
,
∂2x2
∂x2

1
,
∂2x2
∂x1∂p1

, ...)

p2 = (0,− 1
R , 0, 0, 0,−1, 0...) = (0, ∂p2

∂x1
,
∂p2
∂p1
,
∂2 p2
∂x2

1
,
∂2 p2
∂x1∂p1

, ...)

Automatically evaluates all nonlinearities to any desired order
..

How to apply Differential Algebra here ...

Start with initial coordinates in DA style:

x1 = (0, 1, 0, ...)

p1 = (0, 0, 1, ...) and have:

A = (0, 0,R, 0, ...)

B = (0, 1, 0, 0, 0,R, 0, ...)

After pushing them through the algorithm:

x2 = (0, 0,R,− 1
R , 0, 0, 0...) = (0, ∂x2

∂x1
,
∂x2
∂p1
,
∂2x2
∂x2

1
,
∂2x2
∂x1∂p1

, ...)

p2 = (0,− 1
R , 0, 0, 0,−1, 0...) = (0, ∂p2

∂x1
,
∂p2
∂p1
,
∂2 p2
∂x2

1
,
∂2 p2
∂x1∂p1

, ...)

Automatically evaluates all nonlinearities to any desired order
..

Some we know ...

Linear transfer matrix of a dipole:

Mdipole =







cos(
L
R

) R sin(
L
R

)

−
1
R

sin(
L
R

) cos(
L
R

)






=








∂x2

∂x1

∂x2

∂p1

∂p2

∂x1

∂p2

∂p1








For a 90 0 bending angle we get the linear matrix:

Mdipole =




0 R

−
1
R

0





as computed, but we also have all derivatives and nonlinear

effects !

Bottom line ...

TPSA provides analytic expression (Truncated Taylor

polynomial) ∗) for the one turn map produced by tracking with a
computer code (to arbitrary high order !)

Does not require anything beyond what is in the tracking code
(in particular can be used with measured data)

Typical use: Normal Form Analysis discussed earlier, rathe r
straightforward from a Taylor polynomial

TPSA easily represents the dependence of a map on machine
parameters. This dependence can be used to study, determine ,

correct (!) the effects of parameter variation (i.e. correc tion of

aberrations)

∗) For the interested : "jets"

Twiss and More ...

Optics and tracking codes in the future will be
based on these techniques

They allow more exact and flexible calculations and
analyses

Conventional matrix based techniques are moribund
will become/became a thing of the past

For example, existing modern codes are:
COSY infinity, PTC, BMAD, MADX-PTC

Short summary

Nonlinearities have a strong impact on the beam dynamics and

the methods to study them

Many tools already available, usually in form of libraries o r tool

boxes. Can be used easily without knowing the details

Numerical methods (e.g. simulations) and analytical metho ds

(e.g. mapping and normal forms) form a unified tool kit

Short summary

Nonlinearities have a strong impact on the beam dynamics and

the methods to study them

Many tools already available, usually in form of libraries o r tool

boxes. Can be used easily without knowing the details

Numerical methods (e.g. simulations) and analytical metho ds

(e.g. mapping and normal forms) form a unified tool kit

Still left to do:

Find its way into textbooks ..

Bibliography/References:

[EF1] E. Forest, Beam Dynamics - A New Attitude and Framework, Harwood
Academic Publishers, 1998.
[EF2] E. Forest, From Tracking Code to Analysis, Springer, 2016.
[MB] M. Berz, Modern Map Methods in Particle Beam Physics, Academic Press,
1999.
[AD] A. Dragt, Lie Methods for Nonlinear Dynamics with Applications to Accelerator
Physics, University of Maryland

[AW] A. Wolski, Beam Dynamics in High Energy Particle Accelerators, Imperial
College Press, 2014.

[AC1] A. Chao, Lecture Notes on Topics in Accelerator Physics, SLAC, 2001.
[AW1] A. Wolski, Nonlinear Single Particle Dynamics, Univ. Liverpool.
[WH1] W. Herr, Mathematical and Numerical Methods for Nonlinear Dynamics
Proc. CERN Accelerator School: Advanced Accelerator Physics(2013).

