Introduction

• **What do we mean by beam instrumentation?**
 – The “eyes” of the machine operators
 • i.e. the instruments that observe beam behaviour
 • An accelerator can never be better than the instruments measuring its performance!

• **What does work in beam instrumentation entail?**
 – Design, construction & operation of instruments to observe particle beams
 – R&D to find new or improve existing techniques to fulfill new requirements
 – A combination of the following disciplines
 • Applied & Accelerator Physics; Mechanical, Electronic & Software Engineering

• **What beam parameters do we measure?**
 – Beam Position
 • Horizontal and vertical throughout the accelerator
 • At a specific location for tune, coupling & chromaticity measurements
 – Beam Intensity (& lifetime measurement for a storage ring/collider)
 • Bunch-by-bunch charge and total circulating current
 – Beam Loss
 • Especially important for high brightness and superconducting machines
 – Beam profiles
 • Transverse and longitudinal distribution
What is meant by Beam Diagnostics?

• **Beam Diagnostics**
 - Making use of beam instrumentation

• **What do we consider as beam diagnostics?**
 - Operating the accelerators
 • Using instrumentation to measure and correct standard parameters
 - Orbit, tune, chromaticity control etc.
 - Improving the performance of the accelerators
 • Understanding current performance to allow future improvements
 • Requires the measurement of performance indicators
 - Luminosity, brilliance (intensity and size) etc.
 - Understanding accelerator limitations
 • Beam loss, instabilities, emittance growth etc.
 - Detecting equipment faults
 • Aperture restrictions, polarity inversions, wrong settings etc.
How do we Qualify Beam Measurements?

• **Accuracy, Precision, Resolution**
 – Very often confused in day-to-day language
 • Accuracy – also known as the trueness of a measurement
 • Precision – how well a measurement can be reproduced
 • Resolution – the smallest possible difference measurable

Example for a BPM
- Mechanical & electrical offsets and gain factors influence accuracy
- Various noise sources or timing jitter influence the precision
- Number of bits in the ADC will limit the resolution
Beam Position Systems
Measuring Beam Position – The Principle
Wall Current Monitor – The Principle

Ceramic Insert
Wall Current Monitor – Beam Response

\[f_L = \frac{R}{2\pi L} \]

\[f_H = \frac{1}{2\pi RC} \]
Electrostatic Monitor – The Principle
Electrostatic Monitor – Beam Response

\[f_L = \frac{1}{2\pi RC} \]

\[V_B \]

\[V \]

\[R \]

\[C \]
Electrostatic Beam Position Monitor
Electrostatic Monitor – The Principle
Electrostatic Pick-up – Button

- Low cost ⇒ most popular
- Non-linear
 - requires correction algorithm when beam is off-centre

For Button with Capacitance C_e & Characteristic Impedance R_0

Transfer Impedance:

$$Z_T(f \gg f_c) = \frac{A}{(2\pi r) \times c \times C_e}$$

Lower Corner Frequency:

$$f_L = \frac{1}{2\pi R_0 C_e}$$

$$X = 2.30 \times 10^{-5} X_1^5 + 3.70 \times 10^{-5} X_1^3 + 1.035 X_1 + 7.53 \times 10^{-6} X_1^3 Y_1^2 + 1.53 \times 10^{-5} X_1 Y_1^4$$
Normalising the Position Reading

- To make it independent of intensity
- 3 main methods:
 - Difference/Sum: \(\frac{V_A - V_B}{V_A + V_B} = \Delta / \Sigma \)
 - Phase: \(\text{Arctan}(V_A / V_B) \)
 - Logarithm: \(\log(V_A) - \log(V_B) = \frac{\log(V_A)}{\log(V_B)} \)
Improving Precision for Next Generation Accelerators

- BPM electrodes typically give “intensity signals” with some position dependence!
 - Need to remove intensity content to get to the position
 - Difficult to do electronically without some intensity information leaking through
 - When looking for small differences this leakage can dominate the measurement

- Solution – cavity BPM allowing sub micron resolution
 - Design the detector to collect only the difference signal
 - Dipole Mode TM_{11} proportional to POSITION OFFSET (& intensity)
 - Shifted in frequency with respect to intensity dependent Monopole Mode TM_{01}
Cavity Beam Position Monitors

Obtain signal using waveguides that only couple to dipole mode for further Monopole Supression

Monopole Mode

Dipole Mode

Courtesy of D. Lipka, DESY, Hamburg
Today’s State of the Art BPMs

- Prototype BPM for ILC Final Focus
 - Required resolution of 2nm (yes nano!) in a 6×12mm diameter beam pipe
 - Achieved World Record (so far!) resolution of 8.7nm at ATF2 (KEK, Japan)
Comparison of BPM Resolution

- **XFEL Data from 2017 Commissioning**
 - Standard Button BPMs: 78 mm & 40.5 mm aperture (RED)
 - Re-entrant cavity BPMs: 78 mm aperture (GREEN)
 - Cavity BPMs: 40.5 mm and 10 mm aperture (BLUE)
Processing System Families

Legend:
- \(/ \) = Single channel
- \(\text{Wide Band} \)
- \(\text{Narrow band} \)

Electrodes \(A, B \)

Multiplexed

Hybrid \(\Delta/\Sigma \)

Individual Treatment

Passive Normalisation

Automatic Gain Control on \(\Sigma \)

Down Conversion

Logarithmic Amplifiers

Amplitude to Time

Amplitude to Phase

Amplitude to Time

Limiter, \(\Delta t \) to Ampl.

Limiter, \(\phi \) to Ampl.

Heterodyne

Heterodyne

Synchronous Detection

Homodyne Detection

Direct Digitisation

Differential Amplifier

Amplitude

Hybrid Detection

Homodyne Detection

Homodyne Detection

Synchronous Detection

Differential Amplifier

Hybrid Detection

Legend:

- DIGITISER
- POS = (A-B)
- No turn by turn
- POS = \(\Delta/\Sigma \)
- POS = \(\Delta/\Sigma \)
- POS = \([\log(A/B)]\) = \([\log(A)-\log(B)]\)
- POS = \([A/B]\)
- POS = \([\text{ATN}(A/B)]\)

All rely on normalisation
- Making the position signal independent of intensity

Dr. Rhodri Jones – CERN Beam Instrumentation Group
Beam Instrumentation and Diagnostics - CAS 2017
Modern BPM Read-out Electronics

- Based on the individual treatment of the electrode signals
 - Use of frequency domain signal processing techniques
 - Developed for telecommunications market
 - Rely on high frequency & high resolution analogue to digital converters
 - Minimising analogue circuitry
 - Frequency down-conversion used if necessary to adapt to ADC sampling rate
 - All further processing carried out in the subsequent digital electronics

A-Electrode Analogue Conditioning

B, C, D Channels treated the same as A
Diagnostics using Beam Position Systems
Orbit or Trajectory Acquisition

- Main use of BPM systems
 - Measure & correct orbit or trajectory

Orbit excursion too large ⇒ need to correct
Orbit or Trajectory Correction

Original Orbit Data

Proposed Change

After Correction
Initial Commissioning

- Threading the first pilot bunch round the LHC
 - One beam at a time, one hour per beam
 - Collimators used to intercept the beam
 - Correct trajectory, open collimator and move on

Courtesy of CMS

Courtesy of ATLAS
The Machine β-Function

$$\beta(m)$$

$$\text{Beam Size} \propto \sqrt{\beta}$$
The Machine β-Function

Oscillation Amplitude and Beam Size $\propto \sqrt{\beta}$
The Machine β-Function

\[\beta(m) \]

- Model
- Reality

\[\beta_{\text{measured}}(BPM_1) = \beta_{\text{model}}(BPM_1) \left(\frac{\cot \phi_{12} - \cot \phi_{13}}{\cot \phi_{12} - \cot \phi_{13}} \right) \]

$\theta = \pi - \pi$
Analysis of BPM Data

- On line analysis of BPM Data
 - Polarity errors easily identified with 45° BPM sampling
 - Quick indication of phase advance errors
 - Used to verify optics functions
 - e.g. matching from transfer lines into ring

![Graph showing BPM data analysis](image-url)
Machine Optics Measurements

- **Light Sources**
 - Dominated by closed orbit techniques (Orbit Response Matrix - e.g. LOCO)
 - Activate one orbit corrector & observe change in orbit
 - SOLEIL & DIAMOND achieved 0.3 - 0.4% β-beating
 - Recently improved BPM electronics
 - Now allows turn-by-turn techniques to start competing with orbit response

- **LHC**
 - Only turn-by-turn technique feasible with correction < 2% achievable
Understanding Orbit Stability

- Earth Tides dominate during LHC Physics

\[\frac{\Delta a}{a} = \frac{ma^3}{2MR_3(3\cos^2\psi - 1)} \]

Predicted tidal force

Feedback signal Beam 1
Feedback signal Beam 2

\(\Delta x \approx 200 \mu m \)

\(~\text{one week}\)
Beam Intensity Monitors
AC (Fast) Current Transformers

- CoFe based amorphous alloy Vitrovac: $\mu_r = 10^5$
AC (Fast) Current Transformers
AC (Fast) Transformer Response

- **Low cut-off**
 - Impedance of secondary winding decreases at low frequency
 - Results in signal droop and baseline shift
 - Mitigated by baseline restoration techniques (analogue or digital)

![Diagram of AC (Fast) Transformer Response](image)

- **Graphs**
 - Logarithmic plots for A, g
 - Frequency response of BCT and amplifier

- **Circuit Diagram**
 - BCT + amplifier
 - Amplifier
 - BCT

Dr. Rhodri Jones – CERN Beam Instrumentation Group

Beam Instrumentation and Diagnostics - CAS 2017
The DC transformer

- AC transformers can be extended to very low frequency but not to DC \(\text{(no } \frac{dI}{dt} \text{!)} \)
- DC measurement is required in storage rings
- To do this:
 - Take advantage of non-linear magnetisation curve
 - Use 2 identical cores modulated with opposite polarities
DCCT Principle – Case 1: no beam

Hysteresis loop of modulator cores

Modulation Current - Core 1
Modulation Current - Core 2
DCCT Principle – Case 1: no beam

\[V \propto \frac{dB}{dt} \]

\[dB/dt \text{ - Core 1 (V1)} \]
\[dB/dt \text{ - Core 2 (V2)} \]

Output voltage = \(V_1 - V_2 \)
DCCT Principle – Case 2: with beam

Beam Current I_B

Output signal is at TWICE the modulation frequency

$\frac{dB}{dt}$ - Core 1 (V_1)

$\frac{dB}{dt}$ - Core 2 (V_2)

Output voltage = $V_1 - V_2$
Zero Flux DCCT Schematic

Commutation current \(I_{\text{feedback}} = -I_{\text{beam}} \)

- Modulator
- Synchronous detector
- Power supply

\[V = R \times I_{\text{beam}} \]
Diagnostics using Beam Intensity Monitors
BCTs in Operation

- Provide the general visual diagnostics for most accelerators
- LHC Operation Pages
 - Total intensity measurement
 - Lifetime calculation

![Graphs and Data](image-url)
Diagnostics using Fact BCTs

Bad RF Capture of a single LHC Batch in the SPS (72 bunches)
Beam Loss Monitors
Beam Loss Detectors

• **Role of a BLM system:**
 - Protect the machine from damage
 - Dump the beam to avoid magnet quenches (for superconducting magnets)
 - Diagnostic tool to improve the performance of the accelerator

• **E.g. LHC**

<table>
<thead>
<tr>
<th>Stored Energy</th>
<th>Quench and Damage at 7 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam 7 TeV</td>
<td>Quench level</td>
</tr>
<tr>
<td></td>
<td>≈ 1mJ/cm³</td>
</tr>
<tr>
<td>2 x 362 MJ</td>
<td>Damage level</td>
</tr>
<tr>
<td></td>
<td>≈ 1 J/cm³</td>
</tr>
</tbody>
</table>

• **SPS incident**
 - June 2008
 - 2 MJ beam lost at 400GeV
Beam Loss Detectors

• **Common types of monitor**
 - Long ionisation chamber (charge detection)
 • Up to several km of gas filled hollow coaxial cables
 • Position sensitivity achieved by comparing direct & reflected pulse
 – e.g. SLAC – 8m position resolution (30ns) over 3.5km cable length
 • Dynamic range of up to 10^4
 - Fibre optic monitors
 • Electrical signals replaced by light produced through Cerenkov effect
Beam Loss Detectors

- Common types of monitor
 - Ionisation chambers
 - Dynamic range of $< 10^8$
 - Slow response (μs) due to ion drift time

Visualisation of ion chamber operation
Beam Loss Detectors

- **Common types of monitor**
 - PIN photodiode (solid state ionisation chamber)
 - Detect coincidence of ionising particle crossing photodiodes
 - Count rate proportional to beam loss with speed limited by integration time
 - Can distinguish between X-rays & ionising particles
 - Dynamic range of up to 10^9
Beam Loss Detectors – New Materials

- **Diamond Detectors**
 - Fast & sensitive
 - Used in LHC to distinguish bunch by bunch losses
 - Investigations now ongoing to see if they can work in cryogenic conditions

Courtesy of E. Griesmayer
Diagnostics using Beam Loss Monitors
Recent Example from LHC

- Beam continually lost due to losses
 - What is going on?

<table>
<thead>
<tr>
<th>24-Aug-2017 17:41:44</th>
<th>Fill #: 6128</th>
<th>Energy: 59 GeV</th>
<th>(I(B1): 0.00e+00)</th>
<th>(I(B2): 0.00e+00)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment Status</td>
<td>ATLAS</td>
<td>ALICE</td>
<td>CMS</td>
<td>LHCb</td>
</tr>
<tr>
<td>Instantaneous Lumi [(ub.s)^-1]</td>
<td>-0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>BRAN Luminosity [(ub.s)^-1]</td>
<td>0.6</td>
<td>0.0</td>
<td>2.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Fill Luminosity (nb)^-1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>540.173</td>
</tr>
<tr>
<td>Beam 1 BKGD</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Beam 2 BKGD</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

LHCb VELO Position | OUT | Gap: -0.0 mm | SETUP | TOTEM | STANDBY |

Performance over the last 24 Hrs

- Dump #1 5.9TeV (RF issue)
- Dump #2 7TeV
- Dump #3 0.9TeV
- Dump #4 0.8TeV
BLM Diagnostics

- **Localisation**
 - BLM Spatial patterns clearly show losses originate from one specific interconnection
 - MQ16L2 (Cell 16 left of LHC Point 2)
 - Localisation possible to within 1m by comparing with simulation
 - Losses can be on either beam
BLM Diagnostics

• Time evolution

[Graph showing time evolution of selected BLM in 16L2, 20ms]
Other Diagnostics & Hypothesis

• **Additional observations**
 – Beam not always dumped by BLMs in 16L2
 – Often dumped by BLMs near primary collimators
 • Development of transverse instability visible on tune measurement system

• **Current Hypothesis**
 – Something went wrong during vacuum pumpdown
 – Air trapped on beam screen & cold bore of both beams
 • Solid nitrogen & oxygen formed
 – Falls into the beam & immediately vaporised
 • Creates local pressure rise
 • Leads to losses & beam instability
Summary of Lecture 1

• Today concentrated on beam position, intensity & loss monitors
 – Went into details of how they worked
 – Gave examples of their use as diagnostic tools

• Tomorrow we’ll continue with a look at
 – Beam profile monitoring & diagnostics
 – Tune, Coupling & Chromaticity measurement & feedback

Want to know more?
Then Join the Beam Instrumentation Afternoon Course

• 3 Sessions on BPM design
 – Simulation software & “hands-on” laboratory measurements
• 1 Session on Tune Measurement
 – Program and measure using your own DSP
• 2 Sessions on Profile Measurements
 – “Hands-on” laboratory measurements
• Final Session
 – Group presentation of your BI proposals for an accelerator