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4. “Multi-bunch™ gymnastics
Redistribution of particles in phase space

From C. Carli « Creation of hollow bunches... » in Proceedings of EPAC2002

¢ Goal: create a “hollow distribution” in the PS at 1.4 GeV which is
favourable for space charge

¢ Principle: asymmetric merging

Voltages and phases
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4. Multi-bunch gymnastics
Slip stacking [ref.13, 14]

¢ Combines two sets of bunches (non-diabatically)

¢ Principle: starting from 2 sets of n bunches separated in

azimuth and energy, let them drift (“slip”) with respect to each
other until azimuthal superposition is obtained

¢ Technique: keep the beam bunched by 2 # RF systems

YAf ...@@  —

2 n bunches separated
in energy and azimuth

_af QOO0 > @@’

Capture on h,

Azimuthal slip of 2 bunches/bucket
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4. Multi-bunch gymnastics
Slip stacking

¢ Principle of RF generation:

m Apply 2 different RF frequencies
simultaneously — A given beam
will not be “too much” disturbed
by the other RF if Af >4 f,— OK if
AE is established before
injection.

= Apply 2 RF carriers with 100 %
amplitude modulaton at the l ‘
revolution frequency — \
Minimizes perturbation of each \\
beam by the other RF + gives
means to establish a DE
between the 2 sets of bunches.
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4. Multi-bunch gymnastics
Slip stacking (experiment)
Slip stacking in the CERN-PS before ejection to the AA
p =26 GeV/c
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4. Multi-bunch gymnastics
Slip stacking

¢ Performance:

m depends upon adequate control of RF parameters on multiple
harmonics (beam loading at harmonics of the revolution frequency)

= fast RF feedback on cavities to minimize impedance
= short-circuiting of gaps of idle cavities
m non adiabatic process
= significant blow-up
m no synchronization with receiving machine
— phase jitter at ejection
U

Not capable to provide short and phase synchronized bunches at
ejection

(Fundamental requirements for bunch rotation of anti-protons in the
Antiproton Collector as well as in the AD)

R. Garoby 7 BIS B ==\t Dormar



4. Multi-bunch gymnastics
Batch compression [ref. 15]

¢ Changes distance between bunches (by changing the
harmonic number of the RF holding the beam)

¢ Principle: adiabatically change the focusing voltage for a
continuous evolution from the original to the final state

¢ Technique: apply successively and in overlapping steps, RFs
with increasing harmonic number
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4. Multi-bunch gymnastics
Batch compression (experiment)

Batch compression in the CERN-
Bunching PS before ejection to the AD
harmonic

| p =26 GeV/c
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4. Multi-bunch gymnastics
Batch compression

¢ Performance:

m depends upon adequate control of RF parameters on the many
successive harmonics (beam loading at harmonics of the
revolution frequency ...)

— Fast RF feedback + one-turn delay feedback on cavities to
minimize impedance on multiple harmonics

= Short-circuiting of gaps when cavities are retuned
= no blow-up in theory

m use of beam feedback loops to avoid beam oscillations (damping
of unavoidable disturbances) + phase synchronization

J

very limited blow-up in practice = short bunches
+ minimized phase jitter
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5. Beam gymnastics with broadband RF systems
Isolated sine-wave [ref. 16, 17]

¢ Keeps a gap without particles in a debunched beam

¢ Principle: single sine-wave voltage repeating at the revolution
frequency

¢ Generates an isolated or a barrier bucket

Voltage y Revolution period (7 R
waveform | ool < g N q
ccel. | =
n<o !,"'"' ‘ Decel. '\»—/ A | ““\‘ n>0
v v  Barrierbucket
Isolated bucket _—— | T P - o
L > Sk DX C R

¢ Performance: depends upon the precise control of the waveform
(tails, beam induced voltage...)
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5. Beam gymnastics with broadband RF systems
Rectangular pulses [ref. 18]

¢ Principle: *‘

m asingle voltage pulse creates a
barrier for the beam circulating in one
direction . AE

m a pair of voltage pulses of opposite S Time
polarity creates a barrier bucket .

¢ Limitation: N
m Need for dedicated RF system !
m Broadband = low impedance
= low voltage = long processes

Time

Time

e Typical example: bunch )
compression

Time
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5. Beam gymnastics with broadband RF systems
“Momentum mining” [ref. 18]

From C.M. Bhat « Longitudinal Momentum Mining... » in Proceedings of PAC2007

. RF Voltage Potential U = /V(#)dt
¢ Pri nC|pIe: & Beam Boundary & Beam Particle

m “Slowly” create an internal ... A o | o
barrier bucket Prosen  tee T‘VB @ |\ : ./
concentrating the particles : | - . v
with a small initial energy 7 [ ege— ’
spread (= from high density 7
stack core) e -ﬁﬂ%

[ Tp—)

= Isolate these particles in a \\'
dedicated fraction of the %
circumference -
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6. Practical implementation

Example 1: RF gymnastics in the LHC injectors (25 ns bunch spacing)

L . . PSB h=1
1. Division by 2 of the intensity Two—batch filling for LHC
nihePSB (onebunchoer < TN L s
ring and double batch filling - —o O—o0—0
of the PS) Q2 2 A_ﬂ_bgmh“-- Q
Q—/ 1* batch 2™ batch
2. Increase of the injection —---p %= bateh___
energy in the PS (from 1 to
1.4 GeV) gg
'-“.5 10 MHz system
o _ . M < RF = 3.06 MHz
3. Quasi-adiabatically splitting PS injection: s 6 bunches 13.2 x 10 ppb
of each bunch 12 times in ardbunches ; on h=7
the PS to generate a train of it ol solit
T riplie splittin
bunches spaced by 25 ns o AL 1.4 GeV 10 MHz system
< RF = 9.18 MHz
Acceleration 18 bunches 4.4 x 10! ppb
4. Compression of bunches to 025GeV | on h=21
~4ns length for bunch to 40 MHz :iii cusdrule so 20 MHz RF
bucket transfer to the SPS + . (uaaiupee SpAtling 1.1 x 10 ppb
80 MHz RF at 25 GeV <:: g
PS ejection: 320 ns beam gap \3; 72 bunches 20 MHz RF
5. Stacking of 3-4 PS batches in 72 bunches IR on h=84 2.2 x 10™ ppb
the SPS and acceleration to
0 GeV Ebeltoft — Denmark
N) s ”f.: eltott — Denmar
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6. Practical implementation

Example 1: Comments from experience

1. It works!

. Nominal beam characteristics (N,=1.15 10! p/b, & =3.5 mm.mrad) are
obtained in the SPS at 450 GeV

. Nominal beam is available from Day-1 for the LHC

. Cost was minimized (construction of a limited number of equipment for beam
transfer between PS and PS, and of new RF systems in the PSB and PS)

2. However:

. Beam loss is higher than foreseen: ultimate beam characteristics (N,=1.7 10!

p/b, & y=3.5 mm.mrad) cannot be obtained

. Operation is complicated and involves the control of many RF systems: risk
of drift and of long duration of repair/re-adjustment

. Reliability is uncertain: many equipments are old and used at the limit of

their capability
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6. Practical implementation

Example 2: RF gymnastics for more « exotic » bunch trains for LHC

50 ns bunch train

PS ejection: 345nsbeamgap | |
36 bunches
in 1 turn ::':,“.j
 Double splitting
g at 25 GeV ‘15 ‘1} ‘:j
Acceleration

Triple splitting

= i
omscev | LLLLELLEE ]

at 1.4 GeV
.
PS injection: ’
2+4 bunches ’

in 2 batches *EE

=

W o
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36 bunches
on h=84

0.40 eVs (bunch)
2.2 x 10* ppb

18 bunches
on h=21

~

20 %
Blow-up
(pessimistic)

0.66 eVs (bunch)
4.5 x 10 ppb

42 %
Blow-up
(voluntary)

6 bunches
on h=7 <":

1.4 eVs (bunch)
13.6 x 10! ppb

/
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6. Practical implementation

Example 2: RF gymnastics for more « exotic » bunch trains for LHC

75 ns bunch train

PS ejection: 4 empty buckets | | 370 ns beam gap
24bunches | [LLLILLLCLLLELLE eIl 24bunches e
in 1 tun L on h=28 1.1 x 10 ppb ‘\
Double splitting 20 %
at 25 GeV Blow-up
2 empty buckets AR
. L L !
Accglegltl\o/n MLLLL 12 bunches <:: 0.6 eVs (bunch)
to 25 Ge BN on h=14 2.2 x 10 ppb
Double splitting | N
at 1.4 GeV v 20 %

Blow-up

- - . ‘
PS injection: °
2+4 bunches L 7 bunches 1.0 eVs (bunch) /
in 2 batches * <:

on h=7 4.4 x 10 ppb
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6. Practical implementation

Example 2: RF gymnastics for more « exotic » bunch trains for LHC

25 ns bunch train with 120 ns gaps without beam

PS ejection: 7y 4 empty buckets | 120 s beam gap
56 bunches s glﬁ]n_gf > 0-35 evs (bunch)
in 1 tun -}”; onn= 1.7 x 10™ ppb ‘\
Quadruple splitting 40 %
at 25 GeV Blow-up
u o (pessimistic)
7 empty buckets :“
Acceleration : : : 14 bunches 1 eVs (bunch)
to 25 GeV e on h=21 6.8 x 10! ppb
Double splitting N
o 45 %
at 1.4 GeVv *”' “H] Blow-up
! ! (voluntary)
PS injection:
7 (4+3) bunches 7 bunches 1.4 eVs (bunch) /
in 2 batches on h=7 13.6 x 10 ppb
) m Ebeltoft — Denmark
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6. Practical implementation

Example 3: Unstacking and bunching in FNAL
Recycler using a broadband RF system

From C.M. Bhat « Longitudinal Momentum Mining... » in Proceedings of PAC2007

¢ Goal: capture antiprotons in the dense core of the stack and

generate 5 bunches

¢ Principle:
¢ Momentum mining

¢ Quasi-adiabatic
capture at 7.5 MHz

¢ Quasi-adiabatic batch
expansion to 2.5 MHz

R. Garoby

Before
March 20, 2007
Mini-bunch 2.5 MHz Bunches
after mining

Since ‘ (b)

March 21, 2007

el T | L

L7 s
Mini-bunch Capture in 7.5 MHz 2.5 MHz Bunches
after mining
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7. Conclusions

¢ Requirements:

m On cavities: accurate control of cavities fields down to very low

R. Garoby

levels
— feedback loops for voltage & phase (I & Q) control

= low beam induced voltage = low impedance (passive or active
damping)

On RF drive: accurate control of relative phases between cavities
and beam

— Beam feedback loop(s) but at which frequency ?

On beam: reproducible initial conditions and stability

= reproducibility of beam delivered by lower energy accelerators
= reproducibility of lower energy beam manipulations

= instabilities damping

@ Ebeltoft — k
20 CAS BE =°%5 2 e aot0



7. Conclusions

¢ Practical limitations:

m duration of gymnastics (impossible in fast cycling
accelerators)

m accelerator characteristics (acceptance, flat-top duration, ...)

m RF hardware characteristics (frequency range, number of
simultaneous frequencies, peak voltage, sweep rate, ...)

m drift or modulation of the field in the main dipole during the
process (orbit bumps before ejection for example) must be
taken into account and compensated as far as possible

m adjustment and maintenance (setting-up time, compensation
of intensity dependence, uncontrolled beam loss ...)
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7. Conclusions

¢ Other limitations:

Your imagination (and patience...) !

THANK YOU
FOR YOUR ATTENTION
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Simulation (in the SPS)

from S. Hancock BUNCH PAIR MERGING IN THE SPS
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