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Equivalent Circuit

e To find the dispersion of the deflecting cavity an
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equivalent circuit can be constructed.

In order to obtain accurate results we need to include the
TE mode as well as the TM mode In the cavity. This
leads to a two-chain model
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Dispersion Diagram
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As the cell to cell coupling of the =
eigenmode can occur via the TE g
mode, the cell-to-cell coupling z

parameter can be capacitive or
inductive depending on the exact
dimensions
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The two-chain model creates
two eigenmode passbands, a
TM-like hybrid and a TE-like
hybrid. Neither has an exact
sinusoidal dependence due to
the TM-TE mixing.
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Other modes in the Passband

:: The mixing of TE and
5 TM modes causes
9 the cell-to-cell
f:: o coupling to vary.
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Beam-loading

__As pointed out by Panofsky and Wenzel in 1956, deflection
from E and B in a TM mode add - but this means large E.
near but not at cavity center axis.

As the Ez field Iis zero on E Beam

axis the beam-loading Is g
zero on axis but like the Ez ¢
field it varies linearly as the !
beam goes off-axis. The R

PO §
E-Field

beam-loading can be either ., v’

n—2d 4_89415e+08087 U/m at 2_L6068 /7 B

D
k.

= . . . . . . . . . .
& W

C R F R SR TR
e = = S RS e S

=

P = =P = =p = =p =P
L o b o o i o

=
—

pea

,f
1
t
1
1
t
t
1
1
4

P =p =p =p =p =p =p =p =p =p

=
e EEEEEEEesE

" " " o - - - - -
- v R i i el | =

uim

e
b/ u.49e7
&

n.28e7

A
b 2.06e7

1.84e7
1

6.12e6

positive or negative " gy v—
depending on the beam
position.

The decelerating field is 90 degrees out of phase with the
deflecting field. Hence the beam-loading in deflecting
' phase is zero, but is maximum when in crabbing phase.
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Dipole Beam-loading

4000 i\ —omm
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External Q

As the beam-loading can be positive or negative, the beam can either give or
take power from the cavity. This makes control hard as the beam position jitters.

It could even be possible to run the cavity without an RF amplifier using an offset

beam.
'/ "The Cockcroft Institute
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Mode Polarisation

 Dipole modes have a distinct polarisation ie the field points in a
given direction and the kick is in one plane.

* In a cylindrically symmetric cavity this polarisation could take any
angle.

* In order to set the polarisation we make the cavity slightly
asymmetric.

» This will set up two dipole modes in the cavity each at 90 degrees to
each other.

One mode will be
the operating mode,
the other is refered
to as the same order
mode (SOM) and is
unwanted.
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Lower and Higher Order Modes

TMo10 . Higher order mode
accelerating mode <
Need to extract the TMy30, (SOM)
fundamental mode TMogs (HO
As we are not using the fundamental . _ fre
: : Beam-pipe cut-off
accelerating mode, this mode PIp
becomes a source of instability. As
its frequency is lower than the dipole
modes we call it the lower order TEq; (HOM)

mode (LOM). ™
110h

crabbing mode
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Peak Fields
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Dipole cavities have much
larger peak surface
magnetic fields than surface
electric fields.

This leads to a much

smaller Q drop due to field

emission as the deflecting
1 gradlent mcreases
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Space Constraints
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~ 15-20 cm not to scale
» Crab cavity just behind the Final
Doublet

42 mm . :
150 m « Limit for couplers outputs oriented
toward outgoing beampipe
* QOutgoing beam (~17MW, highly
disrupted) goes through crab

LANC cryostat



Cavity Alignment
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If the cavity has a roll 15 05 0.5 1.5
misalignment it will cause a Roll (deg)
small crossing angle in the This will significantly reduce
vertical plane. the luminosity if the vertical

beam size Is significantly
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Multipacting

CST-PS simulations
clearly show that the
multipactor in the iris is
directly linked to the
cyclotron frequency.

MP always peaks at
57 mT.

Hence low magnetic
15 field structures

1.4 suppress multipactor.
13 This means that lower
% 121 frequency cavities are
vV 11- more likely to multipact
1 as a lower magnetic
g': | | | | field is required to
0 0.02 0.04 0.06 0.08 0.1 have the cyclotron
Peak surface Magnetic field (Tesla) frequency double the

(TVERSTT ﬂ\\q-’ RF frequency.
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Travelling wave Cavities

Like accelerating cavities we can also use travelling
wave deflecting cavities.

These cavities are less sensitive to temperature, can
have more cells per cavity and fill faster.

The down side is they require more RF power.

Most diagnostic cavities and fast separators are
travelling wave to take advantage of fast filling times.
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CERN RF Separators

Montague Jan 1965

Bernard and Lengler
1969

271t/3 2855 MHz 100 Cells

The first RF deflectors were
all travelling wave structures
with a phase advance of 120
degrees.

They generally had a large
number of cells.
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SLAC S-Band Deflector
(LOLA Il & 1)

RF Input l
Coupler

Loew 1965
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The LOLA family of deflectors are

commonly used for bunch length
diagnostics.

Holes in the irises are used to lock
the mode polarisation.
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CERN-Karlsruhe cavity [1970]
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The CERN-Karlsruhe separator was one of the
15t Nb cavities constructed.

The cavity uses a standing wave ©/2 mode to
avoid e-beam welds in high field regions
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BNL SRF Deflector [1973]
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 BNL made the first p mode SRF deflector by machining the parts
from solid Niobium.

 The frequency was 8.665 GHz (would have a high BSC resistance)
* Not much consideration of LOM.
» Elliptical cross section to polarise the cavity
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Parallel Bar Transmission Lines

« Just like a coaxial line can support TEM modes, so can a set of
parallel bars.

 Their geometry is more suitable for deflectors than coax.
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CEBAF Cavity (1993)

CEBAF currently uses a
compact normal conducting
separator.

It operates using the TEM
mode of four parallel rods
(two sets of two co-linear
rods).

To provide the transverse
deflection a capacitive gap is 2
placed between the two co- n
linear rods '

30 cm diameter at 500 MHz _— -
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KEK-B Crab cavity (1991-2009)

_ . Support Rod for Cavity Invar
| /.Tacket Type Main He vessel

| / ,/ Support Arm el
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* More recently there has been a lot of
attention paid to the KEKB crab
cavities.

 These 508.9 MHz single cell Nb
7 cavities operate at 1.44 MV
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Coaxial Damper

S Crab Kick TM110 B-field »The cavity has special
HH Coaxial Coupler TMO10, TE111 hollow coaxial dampers to
L Squashed Cell Shape Cavity TMI110* deal W|th the m0n0p0|e
dop e o mode (LOM) of the cavity.
1 Reiecton Fiter oIf the coax is centred it
e = — | Wil not couple to the
_ — dipole mode as the dipole
— = modes are cut-off in the
RF Absorer ! .
— [ =fwumee | beam-pipe. Only the TEM
f:c'{ hé?_?;pme Mode Stub Support TE111 a{{za mOde EXIStS
for Dipole Mode

If the coax is off centre the crab SV -
mode can couple to the TEM v _!_;_;“_ | __r_ﬂ.. TJ !
coax mode, hence a rejection &—4 Prats o :
filter is used. - v Ba oF j "-IE'H'T‘F.:_-: A
Alignment is not easy with sucha == "2 =0 = oo

. long coupler. = =
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CKM / ILC Crab Cavity

There is also interest in a 9 cell S-
band cavity for the ILC.

This cavity is based on the FNAL 13-
cell S-band CKM cavity.

A novel hook-type coupler is utilised
for strong coupling to the lower order
accelerating mode (LOM).

Designed to operate at 5 MV/m
deflecting voltage and 73 mT B .
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ANL Crab with On-Cell damping

— @

On-cell damping involves
coupling directly into the
cavity cell as opposed to the
beam-pipe as is common in
most elliptical cavities.

This is not possible for accelerating modes Teslisbe HEN Lampe!
due to the high surface currents but in crab
cavities the fields and currents are zero
perpendicular to the mode polarisation.

Jlab have constructed a single cell Nb
prototype of the ANL crab cavity with an on-
cell waveguide damper.

Hot spot @ iris

[ ]
5:&[‘«1?’—‘-;55E Rj&¢> Hot spot @ slot
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New Shapes - Compact Cavities

 Many crab cavities operate In areas where
space Is limited such as the IP of a
collider.

* As crab cavities or often larger than
accelerating cavities this poses a problem.

A number of smaller cavities utiling TEM
modes have been developed In recent
years, similar to the CEBAF cavity
concept.

\E2
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Four Rod Parallel Bar Cavity

Bmax/Vdef (MT/MV)
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A SRF version of
the CEBAF cavity
IS being pursued.
This design will
require
significantly
thicker  con-cal
rods to reduce
microphonics.

The low fields on the outer
can allows couplers to be
added easily and a low RRR
Nb can be used for the outer
can with high RRR for the
rods.
At 3 MV we achieve
Epeak=40 MV/m
Bpeak=53 MT



Parallel bar cavity (THPPO023)
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. Another variant of the CEBAF cavity

|
is the Parallel bar cavity. ( Shsiig
« This design doesn’t need the /“\
capacitive gap as the beam travels i §
perpendicular to the rods.
« This means that the peak surface
currents is not near the beam-pipes
significantly reducing surface fields BN A
(22.8 MV/m and 59.4 mT at 10 MV/m % i

kick).



Half Wave Spoke Resonator

For damping the LOM a coax-coax
beampipe coupler is utilised.

This allows the benefit of the beam-pipe - m h
! coax without the problems of a long coupler
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KEK Kota Cavity
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The KEK Kota cavity Is a novel twist
on this concept by having the beam

travel transversely.
Normally the E and B field cancel

each other out but by using special

nose-cones the B field can be
shielded.

For 1.13 MV kick the surface
magnetic field is 84.3 mT.
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Paramonov Cavity

* A recent cavity proposal ustilises a periodic ridged

waveguide loaded cavity to reduce the cavity diameter
by a factor of two.

. ® This structure Is designed to be a m mode standing wave
L cavity.




Summary

« Deflecting mode cavity research is having
a resurgence due to crabbing applications.

* There Is still a need for deflecting cavities
for diagnostic and separation applications.

 Major issues are space, LOM/SOM
damping, beam-loading and separation of
other modes In the dipole passband.
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