You do not need a BLM System as long as you have a perfect machine without any problems. However, you probably do not have such a nice machine, therefore you better install one.

Introduction

Beam loss monitor systems are designed for measuring beam losses around an accelerator or storage ring. A detailed understanding of the loss mechanism, together with an appropriate design of the BLM-System and an appropriate location of the monitors enable a wide field of very useful beam diagnostics and machine protection possibilities.

Contents
- Loss Classes (with some examples)
- Principles of Loss Detection
- Beam Loss Monitors (BLMs)
 - Ion chambers
 - PLIC
 - PIN Diodes
 - LWL
 - Scintillators
 - SEM

Focus: Sensitivity
Loss Classes (I)

- **Regular (controlled, slow) loss**
- **Irregular (uncontrolled, fast) losses:**

 The irregular losses may be distributed around the machine and not obviously on the collector system. Can be avoided and should be kept to low levels:

 ✓ to keep **activation** low enough for hands-on maintenance, personal safety, and environmental protection.

 ✓ to **protect machine parts** from beam related (radiation) damage (incl. Quench protection and protection of the detector components)

 ✓ to achieve long beam **lifetimes/efficient beam transport** to get high integrated luminosity for the related experiments.

 These higher levels losses are very often a result of a **misaligned beam** or a **fault condition**, e.g. operation failure, trip of the HF-system or of a magnet power supply. Sometimes such losses have to be tolerated even at a high level at low repetition rates during machine studies. **A beam loss monitor system should define the allowed level of those losses.** The better protection there is against these losses, the less likely is downtime due to machine damage.

 A post mortem event analysis is most helpful to understand and analyze the faulty condition.

Irregular Losses

A serious problem for high current and high brilliance accelerators is the **high power density** of the beam. A misaligned beam is able to **destroy the beam pipe or collimators and may break** the vacuum. This fact makes the BLM-System one of the **primary diagnostic tools** for beam tuning and equipment protection in these machines. Superconducting accelerators need a dedicated BLM-system to prevent beam loss induced **quenches**. Such a system has to detect losses fast enough before they lead to a high energy deposition in the superconducting material.

Irregular (uncontrolled, fast) losses may result in:

- Superconducting machines: Quench protection
- Activation of environment due to losses
- Commissioning: Obstacle
- Vacuum Problems (Coulomb Scattering)
- Microparticles
- High current/brilliance machines (Ring or Linac): Destruction of Vacuum-Components
Loss pattern evolution as beam was steered locally around an apparent obstacle. When the losses there went away, beam began circulating for thousands of turns.

Loss Classes (II)

Regular (controlled, slow) loss:

Those losses are typically not avoidable and are localized on the collimator system or on other (hopefully known) aperture limits. They might occur continuously during operational running and correspond to the lifetime/transport efficiency of the beam in the accelerator. **The lowest possible loss rate** is defined by the theoretical beam lifetime limitation due to various effects:

- Touschek effect, beam beam interactions, collisions, transversal and longitudinal diffusion, residual gas scattering, halo scraping, instabilities etc.
- Suitable for machine diagnostic with a BLM System.

It is clearly advantageous to design a BLM System which is able to deal with both loss modes.
Some examples for regular (controlled, slow) Losses.

Examples to make diagnostics with BLMs

- Injection studies
- Lifetime limitations (Touschek effect, etc.)
- Tail scans
- Tune scans
- Ground motion
- Diffusion

Several BPMs report high count rates at injection. After injection the loss rate is low which is commensurate with beam lifetime of about 4 hours. From this graph one can identify the sites of highest beam loss.

ALs

The diffusion parameters at different tune modulation settings are measured by retracting a scraper from the beam tail and observing the adjacent loss rate decrease and slow increase afterwards.

Measurement of the horizontal beam tails for a beam energy of 80.5 GeV and for different collimator settings at LEP. The tail is a result of Compton scattering on thermal photons (black body radiation of vacuum chamber).
Considerations in selecting a Beam Loss Monitor (common aspects):

By R.E. Shafer; IIW 2002

- Sensitivity
- Type of output (current or pulse)
- Ease of calibration (online)
- System end-to-end online tests
- Uniformity of calibration (unit to unit)
- Calibration drift due to aging, radiation damage, outgassing, etc.
- Radiation hardness (material)
- Reliability, Availability, Maintainability, Inspectability, Robustness
- Cost (incl. Electronics)
- Shieldability from unwanted radiation (Synchrotron Radiation)
- Physical size
- Spatial uniformity of coverage (e.g. in long tunnel, directionality)
- Dynamic range (rads/sec and rads)
- Bandwidth (temporal resolution)
- Response to low duty cycle (pulsed) radiation
- Instantaneous dynamic range (vs. switched gain dynamic range)
- Response to excessively high radiation levels (graceful degradation)
- Signal source
- Positioning

Principles of loss detection (I):

Systems, like differential beam current measurements, have a very rough position resolution. Dose measurements (or activation) have a very long time constant and are not the subject of this session.

Signal Source or What should a Beam Loss Monitor monitor?

- In case of a beam loss, the BLM system has to establish the number of lost particles in a certain position and time interval.
- A typical BLM is mounted outside of the vacuum chamber, so that the monitor normally observes the shower caused by the lost particles interacting in the vacuum chamber walls or in the material of the magnets.
- The number of detected particles (amount of radiation, dose) and the signal from the BLM should be proportional to the number of lost particles. This proportionality depends on the position of the BLM in respect to the beam, type of the lost particles and the intervening material, but also on the momentum of the lost particles, which may vary by a large ratio during the acceleration cycle.
- Together with the specification for acceptable beam losses as a function of beam momentum, this defines a minimum required sensitivity and dynamic range for BLMs.
- Additional sensitivity combined with a larger dynamic range extends the utility of the system for diagnostic work.
- The signal source of beam loss monitors is mainly ...
… is mainly the ionizing capability of the charged shower particles.

Ionization Loss described by Bethe-Bloch Formular:

\[
\frac{dE}{dx} = \frac{4\pi}{m_e c^2} \cdot \alpha Z^2 \cdot \left(\frac{e^2}{4\pi\varepsilon_0} \right)^2 \cdot \left[\ln\left(\frac{2m_e c^2 \beta^2}{I \cdot (1-\beta^2)} \right) - \beta^2 \right]
\]

with \(\beta = \frac{v}{c} \) and \(I = 16 \cdot eV \cdot Z^0.9 \)

\(\frac{dE}{dx} \text{Minimum at:} \approx 1-2 \text{ MeV/(g/cm}^2) \)

so called: minimum ionizing particle (MIP), valid for many materials.

The energy can be used to create electron / ion pairs or photons in the BLM-detector material.

Signal source:

Using the definition of a rad radiation dose as 100 ergs per gram leads to another definition, in terms of MIPs:

\[
1 \text{ rad} = \frac{100 \text{ ergs}}{\text{gram}} \cdot \frac{\text{MeV}}{1.6 \times 10^{-6} \text{ ergs}} \cdot \frac{\text{MIP} \cdot \text{gram}}{2 \text{ MeV} \cdot \text{cm}^2} = 3.1 \times 10^7 \text{ MIPs per cm}^2
\]

So now we can describe the response of a beam loss monitor in terms of either energy deposition (100 ergs/gram), or in terms of a charged particle (MIPs) flux (3.1-10^7 MIPs/cm²). (from R. Shafer)
Each BLM at different locations needs its special efficiency-calibration in terms of signal/lost particle. This calibration can be calculated by use of a Monte Carlo Program with the (more or less) exact geometry and materials between the beam and the BLM. For the simulation it might be important to understand the (beam-) dynamics of the losses and the loss mechanism.

Where to put the BLMs to measure beam losses?

Preferred locations for beam losses and therefore for BLMs might be Collimators, scraper, aperture limits, and high β-functions…, therefore also the (superconducting) quadrupoles.
Monte Carlo calculations for calibration and positioning (III)

Longitudinal and radial energy/MIP distribution in the surface of the cryostat after proton losses in the middle of the sc-quadrupole

Symmetrical particle (MIP) and energy (dE/dx) distribution (radial) distributed over a few meters (longitudinal) => Efficiency is almost position independent

Simulation for superconducting LHC Magnets
Understanding the loss dynamics:

Losses due to: Touschek- or Coulomb scattering, Failures, Microparticles, Obstacle, …

Trajectory of electrons due to energy loss (Coulomb scattering)

The Loss Mechanism; inelastic scattering

Electrons lose energy ΔE due to inelastic scattering (Bremsstrahlung) mainly on the nuclei of the residual gas molecules. The deviation of the electron orbit from the nominal orbit depends on the dispersion function in the accelerator and on ΔE. Therefore the electrons may be lost behind the following bending magnet on the inside wall of the vacuum chamber.

The loss of a high-energy particle in the wall of a beam pipe results in a shower of particles, which leak out of the pipe*. Use Monte Carlo simulations to find the optimum locations for the monitors, as well as to calibrate the monitors in terms of ‘lost particles/signal’

Low energy particles which do not create a shower leakage outside the vacuum pipe wall are hardly detectable by a loss monitor system.

Monte Carlo calculations for calibration and positioning (V)

BLM Types:

Mostly used devices:
- Short ion chambers,
- Long ion chambers,
- Photomultipliers with scintillators (incl. Optical Fibers),
- PIN Diodes (Semiconductors),
- Secondary Emission Cherenkov light

More exotic:
- Compton Diodes,
- Optical fibers,
- ...

Dosimetric is excluded here. Typically interest in long time scales (days-years), BLMs in short time scales (few turns to 10 ms)
An ionization chamber in its simplest form consists of two parallel metallic electrodes (anode and cathode) separated by a distance D. High voltages, V, up to several kV, are applied to the anode. The gap, of width D, between the two electrodes is filled with gas (air, argon, xenon) or liquid of density ρ and defines the sensitive volume of the chamber. Ionizing particles traversing the sensitive volume ionize the gas or liquid and produce electron-ion pairs. The electric field $E = \frac{V}{D}$ causes electrons and positive ions to drift in opposite direction toward the anode and cathode, respectively.

Principle:

- Avoid electronegative gases (O$_2$, H$_2$O, CO$_2$, SF$_6$, …), they capture electrons before reaching the electrode.
- Noble gases have negative electron affinities (Ar, He, Ne), better for the proportional region.

The number of electrons reaching the anode depends on the applied voltage. If the voltage is very small, the electron produced by ionization recombines with its parent ion. If the electric field is larger than the Coulomb field in the vicinity of the parent ion, then electrons can escape this initial recombination. The number increases with voltage and the number of electrons collected at the anode increases with voltage up to saturation where all charges are collected. The region is called the **Ionization Region**.

At higher voltages, the electrons gain enough energy to produce ionization on their path => **Proportional Region**.
In addition to the initial recombination, electrons on their way to the anode may be captured by positive ions produced close to their trajectory (by other incoming particles) and do not contribute to the charge collection (important at high radiation levels).

- High voltage
- Small D

![Charge collection fraction for 0.01, 0.01 and 0.1 sub-nanosecond dose data for the FNAL ionization chamber.](image1)

![Predicted charge-collection efficiency for 3 dose rates vs. voltage.](image2)

Short Ionization Chamber

Saturation in high radiation:

Improving Ion Transit Time

Ion speed \(v_{\text{ion}} = \mu_{0} E (P_0/P) = \mu_{0} (V/d)(P_0/P) \)

Where \(\mu_{0} \) = Ion Mobility, \(V \) = Voltage, \(P/P_0 \) = Pressure (Atm)

Transit Time \(t = d/v_{\text{ion}} = D^2/\left[\mu_{0} V (P_0/P)\right] \)

For plane geometry \(D = \text{Electrode gap} \)

For cylindrical geometry \(D^2 = [(a^2 - b^2)/2] \ln (a/b) \)

Where \(b = \text{Inner radius} \) and \(a = \text{Outer radius} \)

![Macor Ceramic Guard electrode](image3)

Tevatron Ion Chamber (1983)

R. Witkover, D. Gassner, SNS
The new design uses the same outer diameter of 1.5 inches but an inner diameter of 1 vs 1/4-inch and active length of 6.7 vs 4 inches to get the same sensitivity.

Fast reaction time \Rightarrow high charge velocity v

$$v = \mu \cdot V/D$$
with $\mu = \text{mobility \ [cm}^2/(V \cdot \text{s})]$; $V = \text{Voltage, \ D = Gap \ [cm]}$

Ion mobility: $\mu_{\text{ion}} = 1.0 - 1.5 \text{ cm}^2\text{atm}/(V \cdot \text{s})$ for typ. chamber gases at $D = 1 \text{ cm, \ p = 1 \ atm, \ V = 1kV}$
\Rightarrow response time of $t = 1 - 1.5 \text{ ms}$
which is often too slow for BLMs.

Electrons have a mobility of about $10^3 \mu_{\text{ion}} \Rightarrow t = 1 - 1.5 \mu s$
Short Ionization Chamber

Calibration/Sensitivity

The number of electrons (n_e) produced in the gap by one minimum ionizing
Particles (MIPs) is:

$$n_e = \frac{D \cdot \rho \cdot dE}{W \cdot \frac{dx}{(Medium)}}$$

Bethe-Bloch

Note that the average energy needed to
produce an electron-ion pair (W-factor)
is larger than the ionization energy.
Is about constant for many gases
and radiations.
Example: Argon:
$$\rho = 1.661 \cdot 10^{-3} \text{ g/cm}^3 (20^\circ \text{C}, 1 \text{ atm})$$
$$\frac{dE}{dx} = 1.52 \text{ MeV/(g/cm}^2)$$

$$n_e \approx 100/\text{cm} \cdot D \text{ [e/ MIP]}$$

<table>
<thead>
<tr>
<th>Gas</th>
<th>first ionisation potential</th>
<th>fast electrons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar</td>
<td>15.7</td>
<td>26.4</td>
</tr>
<tr>
<td>He</td>
<td>24.5</td>
<td>41.5</td>
</tr>
<tr>
<td>H₂</td>
<td>15.6</td>
<td>36.5</td>
</tr>
<tr>
<td>N₂</td>
<td>15.5</td>
<td>34.8</td>
</tr>
<tr>
<td>Air</td>
<td></td>
<td>33.8</td>
</tr>
<tr>
<td>O₂</td>
<td>12.5</td>
<td>30.8</td>
</tr>
<tr>
<td>CH₄</td>
<td>14.5</td>
<td>27.8</td>
</tr>
</tbody>
</table>

Note: Cross section for nuclear interaction is about $5 \cdot 10^{-6}$
times the ionization cross section (10^{-16} cm^2). Cross section
for excitation is about 10^{-17} cm^2.
Rutherford (nuclear) scattering does not produce significant
energy transfer, but angular spread.

Short Ionization Chamber

Sensitivity

Sensitivity S_{ion} [C/rad] of Ion-chamber depends on geometry!

Example: 1 ltr. Argon filled chamber, 100% charge sampling efficiency:
$$\rho = 1.661 \cdot 10^{-3} \text{ g/cm}^3 (20^\circ \text{C}, 1 \text{ atm})$$

$$S_{\text{ion}} = \frac{100 \text{ erg}}{g} \frac{1 \text{ eV}}{6.6 \cdot 10^{-12} \text{ erg}} \frac{1 \text{ e}^-}{26 \text{ eV}} \frac{1.66 \cdot 10^{-3} \text{ g}}{1000 \text{ cm}^3} \frac{1.6 \cdot 10^{-19} \text{ C}}{\text{e}} \frac{638 \text{ nC}}{\text{rad}}$$

1 rad eV \Rightarrow erg W ρ 1 ltr. e$^-$ charge
A beneficial characteristic of ion chambers is that their *calibration* is determined by geometry, and that the calibration is relatively independent of the applied voltage.

Little *maintenance* required. Leakage in N2 filled chambers not critical

Ion-chambers can be build from *radiation hard* materials (ceramic, glass metal), with no aging. *Take care about the feedthroughs! No problems up to more than 10^8 rad*

Readout: *High dynamic range* need special signal processing (log. Amps, counting schemes, lot of ADC bits, …

Typ. large numbers are needed (>4000 in LHC) => have to be *cheap*
"Panowskys" Long Ionization Chamber (PLIC)

Heliax RF-cable

- Cheap
- Simple
- Uniform sensitivity
 - Isolation not very radiation hard (but >20 years operation in SLAC)
 - Leakage current $\approx 0.1 \text{ pA/m}$
 - Sensitivity $S \approx 200 \text{ nC/} \text{rad/m} \Rightarrow 0.5 \text{ } \mu\text{rad/s}$
 - (still okay, even with 3 km cable $\Rightarrow 0.3 \text{ nA}$)

Δt defines position of the loss, amplitude their amount. At SLAC ≈ 3 km long cable was used.
- Electron collection time $T \approx 0.25 \text{ } \mu\text{s (Ar-gas)}$
- Bunch velocity $c = 3 \cdot 10^8 \text{ m/s}$
- Propagation velocity in cable $v = 0.914 \cdot c$
- Rise time of reflected signal: $t_{0.50\%} \approx 0.1 \text{ } \mu\text{s}$, $t_{0.90\%} \approx 3 \text{ } \mu\text{s}$
- Position resolution $\approx 1.5 \text{ m (} \approx 5 \text{ ns)}$ downstream end
 $\approx 15 \text{ m (} \approx 50 \text{ ns)}$ upstream end (6 km travel)
Installation of LIC at the ELEF beamline

Principle of the sectioned beam loss monitor

Solid State Ion-Chamber - PIN Photodiode

MIP

Zoom

Depletion layer (intrinsic I-Zone)

Typical dark current vs. reverse bias

$I_{	ext{dark}} \sim V$

$C \sim \frac{1}{\sqrt{V}}$

Charge (nC)

$V^{1/2}$ (volts $^{1/2}$)

LIC

Core sections

Separator

Common ground
At about 20 V bias:
• Depletion layer \approx 100 (\sim 300) μm
• 2 nA dark current
• dE/dx_{Si} (MIP) = 3.7 MeV/cm
• 3.7 eV for e–hole pair
\Rightarrow \approx 104 e/MIP (for 100μm dep.)

\Rightarrow $S_{PIN} = 10^4 \frac{e}{MIP} \cdot 3.1 \cdot 10^7 \frac{MIP}{cm^2 \cdot rad} \cdot 1.6 \cdot 10^{-19} \frac{C}{e} = 50 \frac{nC}{rad \cdot cm^2}$

\Rightarrow $S_{PIN} \approx 50$ nC/rad for 1 cm2 Diode

\Rightarrow Fast: ≈ 2 - 20 ns

Mobility $\mu_e = 1350$ cm2/Vs
$\mu_{hole} = 450$ cm2/Vs

\Rightarrow Efficiency $\varepsilon \geq 80$

\Rightarrow Works like an Ion Chamber (current mode)

Use as counter:

Enough signal to detect 1 MIP!

$= 10^4$ e/MIP (for 100μm dep.)
1 rad/s = 3.1 \cdot 107 MIP/s/cm2
$= 6 \cdot 31$ MHz/cm2

Spectrum of the deposit energy in the PIN Diode

by MIPs (Source: 108Ru; max. 2 MeV β)

The typical Landau distribution of energy loss in the 100 micron depletion layer of the PIN Diode
The view into the 6.3 km long HERA tunnel shows on top the superconducting magnets of the proton storage ring and at the bottom the electron storage ring.
Coincidence technique: SR-Photons stop in one or the other diode and are not counted!

Efficiency to MIPs (measured): $\varepsilon_{\text{coinc}} = 30\%$
- 1 count ≈ 0.1 μrad (MIPS, 1cm2 Diodes)
+ Very low noise:
 + Dark count rate < 0.01 Hz
 + max. count rate > 10.4 MHz
+ Very high dynamic range: $> 10^9$
+Insensitive to synchrotron radiation $E_{\text{cut}} = \text{keV}$
 + Efficiency to γ: $\varepsilon_{\gamma} = 3.5 \cdot 10^{-5}$
 + Coincidence + lead: < 0.1 Hz at γ dose of 150 rad/h (e- ring at max.)

+ PIN Diodes + amplifiers were tested up to 10^8 rad without significant radiation damage; 13 years successful in HERA
- Complete saturation if count rate ≈ 1 count / bunch

More see handouts

1. Conclusion

Devices using Ionization:

+ Simple, robust
+ Radiation hard
+ Cheap
+ Calibrated

- Slow
 - (current mode $\approx \mu$s, except PIN-Diode (but due to small area=> insensitive)
 - (counting mode \approx ms)
- Cannot measure bunch by bunch losses (except PIN Diodes in current mode)

- Needs external amplification
- Moderate sensitivity (need to integrate the signal)

\[\Rightarrow \text{Need of bunch by bunch loss determination ($\leq 1 \mu$s) (e.g. Linacs)} \]
Secondary Emission Monitors

Useful at very high radiation areas, very radiation hard

=> Secondary Emission Monitors
(with or without amplification)
Electron emission from surface due to crossing charged particles

Charges particle (MIP)
Efficiency about 4-5%

Very linear!!!

Gas sealed (ion chamber, slow) or in high vacuum (SEM, fast)

Integrated NEC foil
<10^-4 mbar
<1% ionization to avoid nonlinearities

Figure 4: Time response to single bunch compared to reference AECM detector (160 ns bunch of 2.16 x 10^{12} p+ at 1.4 GeV).
Secondary Emission Monitors

NUCLEAR RADIATION DETECTOR TYPE: 9941
(Aluminium Cathode Electron Multiplier)

Description
- Diameter: 32 mm
- Material: Aluminium
- Window: Borosilicate
- Function: 10 linear focused type with CsI secondary emitting surface

This tube is a development from the THORN EMI 9902 photomultiplier for direct measurement of ionizing radiation. It is ideally suited for use in flash collimators, associated with particle accelerators and nuclear reactors. It is intended as an alternative to the use of an ionization chamber with improved linearity and response time over a wide dynamic range. The tube also has a high resolution to radiation and its high gas efficiency removes the need for additional high gas amplifier screens.

SEM Sensitivity (MIPs):

\[
1 \text{ rad} = \frac{100 \text{ ergs}}{\text{gram} \cdot \text{MeV}} \cdot \frac{\text{MIP} \cdot \text{gram}}{2 \text{ MeV} \cdot \text{cm}^2} = 3.1 \times 10^7 \text{ MIPs per cm}^2
\]

Sensitive surface \(\Phi = 3.2 \text{ cm} = 8 \text{ cm}^2 \)

\[S_{\text{SEM}} = 2.5 \times 10^8 \text{ MIPs/rad} \cdot 0.05 \text{ e}/\text{MIP} \cdot 1.6 \times 10^{-19} \text{ C/e} = 2 \text{ pC/rad (PMT gain)} \]
2. Conclusion

Devices using SEM/Compton Diode:

+ Simple, robust, cheap
+ Radiation hard
+ Very linear
+ Calibrated (watch the PMT gain!!!)
+ Very fast
 • Needs external amplification
 • Very moderate sensitivity (need to integrate the signal)

<table>
<thead>
<tr>
<th>Sensitivity (MIPs):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion Chambers:</td>
</tr>
<tr>
<td>PIN Diode:</td>
</tr>
<tr>
<td>SEM:</td>
</tr>
<tr>
<td>Compton diode</td>
</tr>
</tbody>
</table>

=> Need of sensitive bunch by bunch loss determination (≤ 1 ms) (e.g. Linacs)

Scintillation counters

Remember 1):
The amount of losses is proportional to the number shower particles
=> Fully absorption is not necessary.
 => Thin layer of scintillator is sufficient

+ Large area plastic scintillators and liquid scintillators are available
- Large inorganic crystals are expensive and small (NaI, BGO, PbWO4, CsI, …)
 • Mainly used for full absorption calorimeters in HEP-experiments

Using light

See handouts
Organic scintillators are aromatic hydrocarbon compounds produced from benzenic cycles. In organic scintillators, the mechanism of light emission is a molecular effect. It proceeds through excitation of molecular levels in a primary fluorescent material which emits bands of ultraviolet (UV) light during de-excitation. This UV light is absorbed in most organic materials with an absorption length of a few mm, the scintillator is not transparent for its own scintillation light. The extraction of a light signal becomes possible only by introducing a second fluorescent material in which the UV light is converted into visible light ("wavelength shifter"). This second substance is chosen in such a way that its absorption spectrum is matched to the emission spectrum of the primary fluor, and its emission should be adapted to the spectral dependence of the quantum efficiency of the photocathode "PM". These two active components of a scintillator are either dissolved in suitable organic liquids or mixed with the monomer of a material capable of polymerization ("Plastic"). It is possible to obtain emission spectrum with a maximum wavelength in the range 350-500 nm. For example, anthracene has a maximum wavelength of about 450 nm. Organic scintillators can also be of liquid type. It is relatively easy to add material to increase their efficiency for a specific application. For instance, the efficiency of liquid scintillator for neutron detection can be increased by adding boron which has a large cross section for neutrons.

And it is easy to cut or form “Plastic Scintillators” to nearly any shape.

Review of Radiation Detectors; Claude Leroy, 4th International Summer School and Workshop on Nuclear Physics Methods and Accelerators in Biology and Medicine, Prague, Published in AIP Conf.Proc.958:92-100,2007.

Note that the flux density of photons into the light guide is “incompressible”! => The cross section of the scintillator should not be larger than the cross section of the light guide.

B. Michalek (DESY)
The shape of the scintillation pulse is characterized by a fast rise time of the order of 1 ns and a decay time of a few ns.

The light produced by a particle of energy in a scintillator is for small dE/dx (e.g. for MIPs):

$$dL/dx = R_s dE/dx$$

where R_s is the ratio of the average number of emitted photons to the energy of the incident radiation absorbed by the scintillator.

For NE102A:

$$1/R_s \approx 100 \text{ eV/photon}$$

The scintillation light is transported from the scintillator layers to the photosensitive device via light guides with about $\varepsilon_{coll} = 60\%$ efficiency (internal multiple reflections).

Photocathode efficiency: $\varepsilon_{cath} \approx 30\%$

PMT: Photoelectrons are accelerated to first dynode. Tube has some 8-15 dynodes with large ($>>1$) SEM coeff.

Scintillation counters

Emission spectrum of NE102A

Spectral response of a PMT photocathodes
Plastic (NE102)
25x16x2 cm³
Rad sensitivity (1/e) ≈ 1 Mrad
Density ρ: 1.032 g/cm³
Light output Rₚ: 0.01 photon/eV

Liquid (BC-501A)
950 cm³ (≈ 1ltr)
≈ 10 Mrad
0.874 g/cm³
0.013 photon/eV

Rad sensitivity (1/e):
Rs = 0.06 photon/eV,
ρ = 4.4 g/cm³,
poor rad hardness

Sensitivity:

\[S_{\text{int}} = 6 \times 10^4 \frac{\text{photons}}{\text{rad}} \cdot \frac{1 \text{eV}}{1.6 \times 10^{-12} \text{erg}} \cdot R_p \approx 6 \times 10^{14} \text{photons/rad} \]

PMT-Gain depends on HV => Need stable PS
Without gain variation => Dynamic range 10³

http://sales.hamamatsu.com/assets/pdf/catsandguides/PMT_handbook_v3aE.pdf
LED for testing the functionality of the BLM
Otherwise => No BLM signal = ✗ okay for MPS ✗

Scintillator assemblies and installations in FLASH

The radiation Dose which makes 1/e reduction of the original transparency

Change of light transmission due to radiation

Sample name	By γ-rays [kGy]	By proton beam loss [kGy]
Plastic Scintillator | 1100 | 220

The radiation Dose which makes 1/e reduction of the original transparency

=> Radiation Hard Scintillator:
e.g. Liquid Scintillators

Reviewing relevant papers is an essential part of any survey. In this case, we feel rather like the schoolboy asked to discuss the color of water. He recalled reading of "the blue Mediterranean", "the green lagoons of the south-seas" "the gray Baltic Sea", and "the blood-red ocean reflecting the setting sun". Naturally, he concluded that the color of water depends on both the time and place of observation! The literature on radiation damage in detectors could well lead to an equally valid conclusion.
Some other light based BLM Types: **Cherenkov light**

Cherenkov effect: Occurs when the velocity of a charged particle traversing a dielectric medium is faster than the speed of light in that medium. Photons are emitted at an angle defined by the velocity of the particle β and the refraction index n of the medium. The light can be focused on PMT to build an BLM.

\[
\text{photon yield } \frac{dN}{dx} = 2 \cdot \pi \cdot \alpha \cdot \sin^2 \Theta \cdot \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2} \right)
\]

\[
\cos \Theta = \frac{1}{\beta \cdot n} \text{ with } \beta > 1/n ; \alpha = 1/137.036 \text{ and } \lambda, = \text{ wavelength interval}
\]

Photocathode sensitive at 350-500 nm=> \[\frac{dN}{dx} = 390 \cdot \sin^2 \Theta \cdot \frac{\text{photons}}{\text{cm}} \]

Assuming MIPs: \[\Rightarrow \beta = 1 \]
Fused silica: \[\Rightarrow n = 1.55 \Rightarrow \Theta = 49.8^0 \Rightarrow 227 \text{ photons/cm} \]
\(\varepsilon_{\text{coll}} = 80\% \text{ (only for directed light!!) } \), \(\varepsilon_{\text{cath}} = 30\% \)
A detector of 10x10x10 cm\(^3\) (1 ltr.)

\[
S_{\text{Che}} = 7 \cdot 10^{12} \frac{\text{photons}}{\text{rad}} \cdot \varepsilon_{\text{coll}} \cdot \varepsilon_{\text{cath}} \cdot \frac{1.6 \cdot 10^{-19} C}{e} \cdot \text{PMT gain} = 270 \frac{nC}{\text{rad}} \cdot \text{PMT gain}
\]
3. Conclusion

Devices using Scintillation/Cherenkov light:

+ Very high sensitivity (Scintillation)
+ Radiation hard (Cherenkov)
+ Very fast
+ Huge variation of shapes possible (Scintillator)
- Expensive (PMT + HV)
- Calibration: PMT gain has to be stable (drifts)
- Moderate radiation hardness (Scintillator)

- Needs photon-to-charge converter (PMT, APD, PIN, …)

<table>
<thead>
<tr>
<th>Sensitivity S (MIPs):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion Chambers: ≈ 500 nC/rad (1ltr)</td>
</tr>
<tr>
<td>PIN Diode: ≈ 50 nC/rad for 1cm² Diode</td>
</tr>
<tr>
<td>SEM: ≈ 2 pC/rad (· PMT_{gain}) (8cm²)</td>
</tr>
<tr>
<td>Compton diode: ≈ 4 nC/rad (photons only!)</td>
</tr>
<tr>
<td>Org. Scintillator: ≈ 17 μC/rad (· PMT_{gain}) (1 ltr.)</td>
</tr>
<tr>
<td>Cherenkov: ≈ 270 nC/rad (· PMT_{gain}) (1 ltr.)</td>
</tr>
</tbody>
</table>

Čerenkov light in PMT glass

- JLAB FEL: detect Čerenkov light in PMT glass
- cheap 931B PMT, mainly blue sensitive
- quite radiation tolerant, darkening of glass compensated by HV (~10% HV change needed this far)
- cheap housing (1.5" plastic water pipes)

- controls strong beam losses
- not sensitive enough for „normal losses“

Kevin Jordan, JLAB
There are two major issues to address when considering the Cherenkov effect in single quartz optical fibers.

1) the light yield caused by the passage of a single charged particle in a fiber.
2) the probability of survival of the emitted photons.

Cherenkov cone for $\beta=1$ particles is $\Theta \approx 47^\circ$.

The condition for capture and transport down the fiber is given by:

$$\xi \geq a \sin \left(\frac{n_{\text{clad}}}{n_{\text{core}}} \right)$$

and ξ depends on (shower) particle trajectory.

$$\sqrt{n_{\text{core}}^2 - n_{\text{clad}}^2} = NA$$

Numerical Aperture ≈ 0.3

The distribution of photons trapped inside a fiber as a function of the impacting particle's angle α and impact parameter b. $NA = 0.37$
A Beam Loss Monitor (BLPM) based on Cerenkov light in optical fibers allows real time monitoring of loss location and loss intensity like in PLICs. The fast response of the Cerenkov signal is detected with photomultipliers at the end of the irradiated fibers.

Using high purity quartz fibers (suprasil):
• Only Cerenkov emission,
• $n=1.457$,
• withstand $30 \cdot 10^9$ rad,

- Scintillating fibers are very sensitive to radiation ($1/e$ at $\approx 10^8$ rad)---
- Give about factor 1000 more light ---

Fibers embedded in FLASH undulator vacuum chamber

U. Hahn
4. Conclusion

For MIPs; without (tube-) amplification:

<table>
<thead>
<tr>
<th>Detector Material</th>
<th>energy to create one electron [eV/e]</th>
<th>number of [e / (cm MIP)] (depends on dE/dx, resp. density)</th>
<th>Sensitivity S (for MIPs) [nC/rad]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic Scintillator</td>
<td>250 – 2500</td>
<td>$10^3 - 10^4$</td>
<td>$\approx 17 \cdot 10^3 \left(\frac{\text{PMT gain}}{\text{ltr}} \right)$</td>
</tr>
<tr>
<td>Inorganic Scint.</td>
<td>50 - 250</td>
<td>$10^4 - 10^5$</td>
<td>$\approx 100 \cdot 10^3 \left(\frac{\text{PMT gain}}{\text{ltr}} \right)$</td>
</tr>
<tr>
<td>Gas Ionization:</td>
<td>22 – 95</td>
<td>$\approx 100 \text{ (Ar,1 atm., 20°C)}$</td>
<td>$\approx 500 \left(\frac{\text{Elec gain}}{\text{litr}} \right)$</td>
</tr>
<tr>
<td>Semiconductor (Si):</td>
<td>3.6</td>
<td>10^6</td>
<td>$\approx 50 \left(\frac{\text{Elec gain}}{1 \text{ cm}^2 \text{ PIN-Diode}} \right)$</td>
</tr>
<tr>
<td>Secondary emission:</td>
<td>2-5%/MIP (surface only)</td>
<td>0.02-0.05 e/MIP</td>
<td>$\approx 2 \cdot 10^{-3} \left(\frac{\text{PMT gain}}{8 \text{cm}^2} \right)$</td>
</tr>
<tr>
<td>Cherenkov light</td>
<td>$10^5 - 10^6$</td>
<td>$\approx 10 \text{ (H}_2\text{O) -200 (fused silica)}$</td>
<td>$\approx 270 \left(\frac{\text{PMT gain}}{\text{litr}} \right)$</td>
</tr>
</tbody>
</table>
References: Lot of information and pictures from:

Ion chambers

Losses and detectors

Review of Radiation Detectors; Claude Lanery; 4th International Summer School and Workshop on Nuclear Physics Methods and Accelerators in Biology and Medicine, Prague, Published in AIP Conf.Proc.958:92-100,2007

Beam Loss Monitoring and Control, Kay Wittenburg, DESY, EPAC92

Beam loss & machine protection, K. Wittenburg, Proc. 1st INSPEC, Montreux, Switzerland, 3-5.5.1993, CERN PS/93-35 (BD)

PLIC

The Use of a long Cylindrical Ion Chamber along the Accelerator; W.K.H. Pacovski; SLAC-TN-63-57

Strahltraining (RLM) for the ELBE; ELBE-Fakten 17.01.2002; FZR Hannover; P. Michel

Beam Loss Monitoring with Long Ionization Chambers at ELBE; A Beam Loss Monitor with Longitudinal Resolution, Michel, P. et al. Radiation Source ELBE; Annual Report 2002, E2R-575, April 2003

Published in IEEE Trans Nucl Sci 14:1086-1098, 1967 (issue No.3)

IMPROVED SPIRAILY INSULATED CABLE FOR COAXIAL IONIZATION CHAMBERS. F. Hünemörer (DESY); DESY-HERA-99-05, 1999

INITIAL DIAGNOSTIC COMMISSIONING RESULTS FOR THE ADVANCED PHOTON SOURCE (APS). A. Lampkins, et al., PAC95

FIN Blinds

Reduction of the Sensitivity of PIN Diode Beam Loss Monitors to Synchrotron Radiation by Use of a Copper Inlay, K. Wittenburg, DESY HERA 94-06

Correction of the LEP beam loss monitors for known saturation effects, CERN SL; Note 96-26 UP; by H. Baudisch, J. Riechel, CERN

Das Aufsichtsvermögen des PIN Dioden Strahlverlustmonitors, J. Riechel, Internal Note: PCIT; note No. 91 (1995)

The pin loss monitoring system for SLS storage ring, Li Yuxiong, NIMA A 457-458

DAINE BEAM LOSS MONITOR SYSTEMS. D. Piot, et al., Proceedings IDPFAC 2003 – Mann, Germany

References: Lot of information and pictures from:

Secondary Emission Monitors:

The LHC Beam Loss Measurement System, B. Dehning et al., (CERN, Geneva), PAC 07, Albuquerque Convention Center, New Mexico, USA

Beam loss monitoring at the CERN Test Facility; S. T. Lefevre, et al., EPAC94, Lucerne, Switzerland

Compact Diodes

References: Lot of information and pictures from:

Fusion response Beam Loss Monitor, Kawashita, T. et al, JPS-Popular 2000-120

Beam Loss Position Monitor USING CERENKOV RADIATION IN OPTICAL FIBERS, M. Kortie et al., EPAC 2005, Lyon, France, 6-8 Jun 2005

BLM-systems are multi-faceted beam instrumentation tools, which opens a wide field of applications. A precondition is a proper understanding of the physics of the beam loss to place the monitors at their adequate positions.

The End

Thanks for attention
Reserve slides

PIN Photodiodes to satisfy the special conditions in electron machines

95% of 660 keV e⁻ will stop in about 300 μm Cu-layer

Range of electrons in matter

Useable in SR-light sources
Compton Diode

Only for photons!

Bremsstrahlung

photonen

Detektor

(BLM)

PMMA-Dielektrikum

Al-Hülle

Ph-Absorber

Compton-Streuung

Compton Diode

“For a Plexiglas insulator and a gamma energy of 10 MeV; the model predicts a Compton current of 415 nA/((Gy/s))”

= 4.5 nC/rad.

+Fast
+Simple, cheap
+Radiation hard

- Very moderate sensitivity
- Low energy photons only

Compton diodes as diagnostic tools in accelerator operation
H.-D. Gräf et al.
Short ionization chambers are used in many accelerators. An early example of an Air filled Ionisation Chamber is the AIC proposed in 1966 in Ref. 12 (Fig. 1). 100 AICs were installed in the CERN-PS. Each chamber had a volume of about 8000 cm³ and used a multi-electrode layout to reduce the drift path, and hence the recombination probability, of the ions and electrons, with the goal of improved linearity. A dynamic range of 10^3 was obtained.

The TEVATRON relies on 216 Argon filled glass sealed coaxial ionization chambers to protect the superconducting magnets from beam loss induced quenches. The volume of each chamber is 110 cm³. Most are positioned adjacent to each superconducting quadrupole. An Ar-filled chamber has the advantage of a better linearity because of a lower recombination rate than in AICs. Modified versions at RHIC and SNS.

LHC needs a dynamic range of 10^8 => Shorter path of ionization products to avoid recombining. 1.5 ltr N₂
Lifetime limitations

Touschek effect: Particles inside a bunch perform transverse oscillations around the closed orbit. If two particles scatter they can transform their transverse momenta into longitudinal momenta. If the new momenta are outside the momentum aperture the particles are lost. Good locations for the detection of Touschek scattered particles are in high dispersion sections following sections where a high particle density is reached. Since the two colliding particles loose and gain an equal amount of momentum, they will hit the in- and outside walls of the vacuum chamber. In principle the selectivity of the detection to Touschek events can be improved by counting losses at these locations in coincidence.

Coulomb scattering: Particles scatter elastically or inelastically with residual gas atoms or photons or emit a high energy photon (SR). This leads to betatron or synchrotron oscillations and increases the population of the tails of the beam. If the amplitudes are outside the aperture the particles are lost. Losses from elastic scattering occur at aperture limits (small gap insertions, septum magnet, mechanical scrapers and other obstructions). If, in an inelastic Coulomb collision, the energy carried away by the emitted photon is too large, the particle gets lost after the following bending magnet on the inside wall of the vacuum chamber.