

Between Model and Reality II or why diagnostics are so crucial for running an accelerator facility?

Laurent S. Nadolski nadolski@synchrotron-soleil.fr Accelerator Physics Group Synchrotron SOLEIL

Note: General overview w/o going into details → See detailed talks during this diagnostics CAS

Introduction

- Main focus on circular synchrotron light sources
- Beam line stability \rightarrow See S. Hustache's talk on June 5th
- Example of a 3GLS needs for commissioning (SOLEIL)
- Stability requirements for accelerators
 - Noise sources and solutions
 - Closed orbit stability
 - Tune, chromaticity, coupling stability
- Collective effects
- Other needs for operation
- Conclusion

SULEID in the control room

Need to diagnose before acting onto the beam

Version 2 O

- Follow ultra-relativistic particle beam circulating in an ultra vacuum environment, a vacuum vessel with small dimensions (4-5 mm full gap for in-vacuum undulators at SOLEIL).
- Pencil beam with tiny dimensions: orbit stability requirement a few micrometers for colliders and below micrometer in light sources
 - Active control relying on diagnostics
 - Pushing the performance limit
 - Always more demanding & challenging requirements
- Surveying mission and active control mission

SULFIUNEXPECTED Obstacles (SOLEIL): Bad mounting of some RF Fingers in short straight section bellows

RF finger at 1.5 mm from beam axis !

"Model" aperture

Available physical aperture

How to localize the issue? •Beam loss monitors

- Local activation (inside tunnel)
- Orbit bump (BPM)

SYNCHROTRON

aurent S. Nadolski

Beam diagnostics CAS, 2008, Dourdan

Reality differs all the time from Models

No large accelerator run the first day with nominal performance just by pushing a simple "button".

There are expected and unexpected sources of (static and time variable) perturbations

Commissioning periods Example for Light sources

- First time Beam into the storage ring
 - No accumulation, 1 or a few turns if lucky!
 - Questions arise

SYNCHROTRON

- Where is the beam?
- Where do losses occur?
- What is the injected charged before loss?
- Insertable screens

- See J.C. Denard's talk on May 29th
- Beam Position Monitors (BPM) providing turn by turn data synchronized on the injection time
 - Position (very large amplitude (mm), few 100 µm of resolution)
 - » Nonlinearity when reading large amplitude (asymmetry VAC, ...)
 - Location of total & partial beam losses along the ring
 - Compute tunes (through FFT, 4 turn algorithm, ...)
- Measurement of the current on turn by turn basis (FCT)
- Checking magnet polarity (> 100 to 1000 magnet polarities)
- Accumulation: How far are we from the modeled accelerator?
 - Need to determine stored beam energy (10⁻⁵ for modern light sources)
 - Need to get orbit and correct it (BPM in slow acquisition mode, with high resolution, below 0.2 μm RMS)
 - Very large amplitude (cf. alignment, magnetic errors described on Monday by H. Braun)

S LEIL Stacking the beam con't

- Need to correct the betatron tunes
 - In general tunes are off by 0.5 to a few units ! (cf. Monday H. Braun's talk)
 - Wrong tunes can prevent good injection efficiency, give large orbit distortion, jeopardize any orbit correction,
 - » Measured by excitation of the transverse motion (kicker, shaker, stripline, ...)
 - » Analysis of turn by turn data (BPM electronics, FFT)
- Current, lifetime measurement (DCCT, ...)
- Need to insure the beam is going through the center of the quadrupole and sextupole magnets
 - Correct for magnetic center determination errors, alignment errors of both magnets and BPM blocks into the tunnel)
 - Standard technique is known as Beam Based Alignment
 - » Use of the BPM to measure the closed orbit for various steerer settings
 - » Low noise BPM electronics to reach center values below micrometer level

micrometer level For Lattice measurement, see J. Wenninger's talk on May 31st Version 2 0

Exploring the linear optics

- Emittance, luminosity, lifetime are strongly impacted by optics function asymmetry
 - Need to restore optical symmetry of the storage ring. Before correction, beta beating of a few 10% in horizontal and vertical planes
 - Measure of closed orbit (so called BPM Response Matrices)
 - Dispersion function (energy dependant part of the closed orbit)
 - Use of BPM with a good resolution, steering magnets
 - Need to correction for coupling
 - Natural coupling produced by alignment errors, magnet errors, ...
 - Emittance measurement (pinhole techniques, ...)
- Need to determine real physical apertures
- Need to be able to scrap the beam in a safe manner
 - Scrappers, beam dump, fast kickers

Laurent S. Nadolski

SYNCHROTRON

Beam diagnostics CAS, 2008, Dourdan

9

SYNCHROTRON Probing machine non-linearities

Non-linear optics

- Tune foot print (Frequency Map Analysis), resonances
 - Based on turn by turn data for large off axis beam position
- On & off momentum dynamics aperture
- Information about multipole errors at large amplitude
 - · Comparison Model/Reality
- Non-linear effect introduced by insertion devices and higher order multipolar field from magnets
- Compensation of equipment effects such as insertion devices
- Improvement of the accelerators: new working points, ultra low coupling, different filling patterns
- Exotic machine settings
 - Machine Physicist experiments
 - Low alpha setting, femto-second, crab cavities, ..

Beam diagnostics CAS, 2008, Dourdan

Example of a high resolution and multipurpose diagnostics BPM Electronics Requirements for SOLEIL

	Slow FB	Fast FB	First turns	Turn-by-
Absolute	$\leq 20 \ \mu m$	$\leq 20 \ \mu m$	\leq 500 μ m	turn ≤ 200 μm
rms Resolution	$\leq 0.2 \ \mu m @$ 10 Hz	\leq 0.2 µm in 100 Hz BW	$\leq 500 \ \mu m @$ 847 kHz	$\leq \frac{20 \ \mu m}{847} @$
Measurement rate	10 Hz	\geq 4000 Hz	$\geq 4000 \text{ Hz} \qquad \qquad 847 \text{ kHz} \\ \text{SR: 847 kHz} \\ \text{B: 1.9 MHz} \\ \end{cases}$	
Dynamic range	20 - 600 mA	20 - 600 mA	0.4 - 4 mA	4 - 600mA
Current dependence	≤ 1 µm	≤ 1 µm	\leq 500 μ m	×
8-h drift	$\leq 1 \ \mu m$	$\leq 1 \ \mu m$	\leq 500 μ m	×
1-month drift	\leq 3 μ m	\leq 3 μ m	\leq 500 μ m	×
bunch pattern dependence	≤ 1 µm	≤ 1 µm	\leq 50 μ m	$\leq 500 \ \mu m$

See P. Forck's talk today

Version 2.0

What are the machine and user requirements?

How to maintain performance for user operation?

How to reach a beam availability larger than 96%? How to operate without damaging the accelerator facility?

SULEIL Requirements for colliders

- Lepton accelerators (LEP, PEPII, KEK-B,...)
 - Collider luminosity and collision stability
 - Effective Emittance preservation
 - Minimization of coupling (orbit in sextupoles)
 - Minimization of spurious dispersion (orbit in quadrupoles)
 - Tune and orbit feedbacks mostly during energy ramping

• Hadron colliders (HERA, LHC, RHIC, Tevatron, ...)

- Keep the beam into the pipe
 - Significant amount of energy stored into the beam
 - Quench superconducting magnets
 - Drill holes into the vacuum vessel and/ or serious damage
- Capacity to control particle losses in the machine
- Orbit stability driven by luminosity inside the experimental insertions: $25 \mu m$ constraint at collimators for LHC
- Energy preservation below 10⁻⁴ at LHC
- Ramping the beams from injection energy (450 GeV) to collision energy (7 TeV)
 - Synchronization of the magnets
 - Different working point in tune diagram
 - Avoid crossing resonances in tune diagram
 - LHC: $\Delta v < 10^{-3}$, $\Delta \xi = 2 \pm 1$ (ξ changed by >100 units during ramping)
 - -> orbit, tune, chromaticity and coupling feedforward/feedbacks

XFEL requirements

Orbit distortions lead to:

- beam centroid motion
- $\boldsymbol{\cdot}$ beam shape variations \rightarrow effects on SASE power and gain length

Undulator alignment

- •Temperature: < 0.08 °C
- •Gap : < 1 μm •Alignment error : < 100 μm
- •Gun charge & emittance fluctuation
- •Beam shape variation and bunch density to be maintained for SASE power preservation
- Low emittance, low energy spread
- -Position stability: 0.1 σ

Undulator:

•Tunable Gap for e-energy independent wavelength selection • $\lambda \qquad \approx 40 - 80 \text{ mm}$ •B $\approx 0.5 - 1.3 \text{ T}$ •Gap > 10 mm

•5 m long segments embedded in

- 12.2 m long FODO cell
- •Total length ≈ 700 m

Third generation Synchrotron Light Sources

- Brilliance preservation
- (Ultra) low emittance
- Constant (large) lifetime

 $B \propto \frac{I}{\mathcal{E}_{x}\mathcal{E}_{z}} \equiv \frac{I}{\mathcal{\sigma}_{x}\mathcal{\sigma}_{x}\mathcal{\sigma}_{z}\mathcal{\sigma}_{z}}$

- Sub micron orbit stability (< 0.1 σ)
- Energy stability (< 10⁻⁴ to 10⁻⁵) for spectral resolution
 See AS. Mueller's talk on June 3nd
- User freely controlled insertion devices
 - Has to be transparent for all the users
- Tune variations (10⁻³), low coupling (1-0.1%) and sometime chromaticity preservation

Version 2 0

Orbit stability

Brilliance reduction

SYNCHROTRON

Emittance growth

T

T

Time dependent Orbit Oscillations

Magnets motion

T

Girders (support) motion

T

Ground Vibration

ε_{eff} y' ε_{eff} y ε_{eff} vertical aperture LFarvacque, ESRF Version 2.0

SULLEIL SYNCHROTRON SYNCHROTRON SYNCHROTRON SYNCHROTRON SYNCHROTRON

- Long term (weeks to years)
 - Ground settlement (mm)
 - Season ground motion (mm)

• Medium term (minutes to days)

- Diurnal temperature (1-100 μ m)
- Crane motion (1-100 μ m)
- Filling pattern (heating, BPM processing) (1-100 µm)
- Sun and Moon tides ($\Delta C = 10-30 \ \mu m$)
- River, dam activity, heavy rains (1-100 μ m)
- Current decay (thermal drift, electronics BPM)
- RF frequency drift (1-100 μm)
- Startup after shutdown period (thermal effects)
- Drift of vacuum chamber due to temperature, etc...
- Ramping in energy or change of machine optics

Sources of noise II

- Short term (milliseconds-seconds)
 - Ground vibration, traffic, trains, construction work, etc
 - Amplification by girder, magnet resonances by lattice (nm becomes μ m!)
 - Cooling water, LHe, LN, vibration (μ m)
 - Rotating machinery (air conditioners, pumps, chillers, ...) (µm)
 - Booster operation (μ m)
 - Insertion devices (1-100µm)
 - Transients created by fast switching devices (Eddy current, ..)
 - Power supplies (μm)
 - Injection (1-500μm)
- Very short (High frequencies)
 - 50 or 60 Hz of Sector
 - D/A converter digitization noise
 - Pulsed power sources
 - Switching frequencies of power supplies
 - Synchrotron oscillation (1-100 μ m)
 - Single and multibunch instabilities $(1-100\mu m)$
 - Electromagnetic interferences (appliances in the lab, radio broadcast mast, ...)

Version 2 0

Solution to reach required stability

Version 20

Long term stability: 100 μm / 10 m / year

✓ Building foundation, (Piles, slab)

- ✓ Alignment, (Girder design to damp or not amplify vibration)
- ✓ Position survey of girders, BPMs, etc ...

	 ✓ Storage ring tunnel (and water coolin ✓ Experimental hall ✓ Class Orbit Exactly address 	ring tunnel (and water cooling): $21 \ \mathfrak{C} \pm 0.1$ iental hall : $21 \ \mathfrak{C} \pm 1$				
	 ✓ Slow Orbit Feedback ✓ Top-up 	σ _{COD} <		$\sim 0.1 \sigma_{\text{Beam}}$		
*	Short term stability:	$\sigma'_{COD} < 0.1 \sigma'_{Beam}$				
	 ✓ Girder design ✓ Fast Orbit Feedback 		σ _{cop} (μm)	σ' _{cod} (µrad)		
		Horizontal	18	3		
	Sub-micron tolerances	Vertical	0.8	0.5		
		(SOLEIL exam	ng in medium SS)			
	Laurent S. Nadolski Beam diagnostics	CAS, 2008, D	ourdan	20		

Version 2.0 Building design: SOLEIL example

95 cm thick slabs laying on piles for Storage Ring and Exp. Hall

Bored piles 16m long anchored in Fontainebleau sand

128 under the ring tunnel

420 under the experimental hall (4*105)

64 under linac and booster with a slab unconnected

Version 2.0

SULFIL Alignment tolerances for SOLEIL

See yesterday's talk by H. Braun

Error type	r.m.s magnitude
Quadrupole transverse displacement x,z	0.03 mm
Girder transverse displacement x,z	0.1 mm
Girder roll error	0.1 mrad
Bending magnet transverse displacement x,z	0.5 mm
Bending magnet longitudinal displacement s	0.5 mm
Bending magnet relative field error	0.001
Bending magnet roll error	0.1 mrad

(BPMs displacement errors: 100 µm r.m.s.)

SYNCHROTRON

Survey & evolution & SULEIL SYNCHROTRON dynamic alignment of girders

Figure 1: SLS storage ring girder assembly

Figure 2: Mover system for SLS storage ring girders

Version 20

Figure 4: HLS sensor with water pipe connection.

Figure 6: HPS sensor touching reference pole.

26

Figure 3: HLS (blue) and HPS (red) systems overview over one sector (corresponds to one TBA) of the SLS storage ring. Magnets and BPMs mounted on the alignment rails at the girder surface are not shown. See S. Radealli's talk on June 5th

Beam diagnostics CAS, 2008, Dourdan

BPM position motion

Monitoring of BPM Block Positions

POMS Features

I FII

SYNCHROTRON

- Dial gauges sense transverse movements of BPM block in reference to adjacent quadrupole magnets.
- Linear encoders of type Renishaw RGH24Z50A00A with 0.5 µm resolution are used as sensing devices.
- Complete integration into EPICS control system through (low cost) serial SSI-interface and 32 channel VME-SSI card.
- POMS data will be used for determination of "real" electron beam positions in DSP part of the DBPM system to maintain a "golden orbit" after BBA.

Steel expansion coefficient: 13 µm/m/°C

Stainless steel

Supporting post in invar, carbon fiber or thermally stabilized to a few 0.01°C

Laurent S. Nadolski

Beam diagnostics CAS, 2008, Dourdan

27

SULEIL Example of long term noise

28

Version 2.0

Solution to reach required stability criteria

Long term stability: 100 μm / 10 m / year

- ✓ Building foundation, (piles, slab)
- ✓ Alignment, (Girder design to damp or not amplify vibration)
- ✓ Position survey of girders, BPMs, etc ...

♦ Medium term stability: (24h) ← (reference BPM versus beamlines)

- ✓ Storage ring tunnel (and water cooling): 21 °C \pm 0.1 °C
- ✓ Experimental hall

 $\begin{array}{c} \text{g} & \text{for } \pm 1 \\ \text{for } \pm 1 \\ \end{array} \begin{array}{c} \text{c} \\ \text{c} \\ \text{c} \end{array}$

- ✓ Slow Orbit Feedback
- ✓ Top-up
- ✓ Position survey of girders, BPMs, etc ...

Short term stability:

✓ Girder design✓ Fast Orbit Feedback

	σ _{cod} (μm)	σ' _{cod} (µrad)				
Horizontal	18	3				
Vertical	0.8	0.5				

Sub-micron tolerances

(SOLEIL example: for 1% coupling in medium SS)

Beam diagnostics CAS, 2008, Dourdan

S LEILOrbit variation with temperature

Version 2.0

SUNCHROTRON TUNNEL TO A CONTROL SYNCHROTRON

♦ The achieved static (average) air temperature in the area of the girders is of 19.5 ± 0.3 °C in the longitudinal direction. UTA regulation should insure the temporal stability within ± 0.1 °C.

- Constant thermal load on beam-line optics (mirror alignment, thermal optical bumps, ...)
- Constant thermal load on accelerator equipments. Reduction of thermal drift on BPM electronics.
- Only way to reach sub micron stability level
- Not suitable for all user needs (long integration time, image scanning, ...)

Standard SLS filling pattern:
390 buckets filled
gap of 90 buckets

Filling pattern Feedback: bunch by bunch current

•Filling pattern preservation (<1% bunch to bunch variation)

- •Electronics stability
- •Useful for beam-line experiments

•For time resolved experiment: need of bunch purity monitor (see K. Wittenburg's talk on June 5th)

Figure 1: filing pattern feedback loop architerAC'04, Kalantari et al., SLS

Solution to reach required stability criteria

Version 20

Long term stability: 100 μm / 10 m / year

- ✓ Building foundation, (Piles, slab)
- ✓ Alignment, (Girder design to damp or not amplify vibration)
- ✓ Position survey of girders, BPMs, etc ...

 \clubsuit Medium term stability: (24h) \leftrightarrow (reference BPM versus beamlines)

- ✓ Storage ring tunnel (and water cooling): 21 $^{\circ}$ ± 0.1 $^{\circ}$: 21 ℃ + 1 ℃
- ✓ Experimental hall
- ✓ Slow Orbit Feedback
- ✓ Top-up

SYNCHROTRON

✓ Position survey of girders, BPMs, etc ...

Sucherotrophort term stability solutions

- Survey: seismic detectors (geophones, etc), FFT on turn by turn data from XBPMs, BPMs
- Predicable disturbances: feedforwards
- Unpredictable disturbances: slow & fast orbit feedbacks

Geophones

Version 2 O

Typical noise spectrum at SOLEIL BPM + Beam: 0 to 500 Hz

SYNCHROTRON

Version 2.0

SULEIL SYNCHROTRON Orbit and RF frequency feedbacks

•Use of BPM and XBPM distributed all around the ring
•Use of dedicated H & V steerers (dipolar magnets)
•Control of master clock frequency (energy feedback)

```
One single FB system (SLS)
2 FB systems

oSlow (0-1 Hz) and fast
feedbacks (1 - 150 Hz)
```

oFrequency dead zones or not in frequency domains (APS, ALS, ...)

oInteraction between feedbacks if frequency overlap

•No introduction of additional noise onto the beam

Figure 2: Block diagram of global orbit feedback.

See M. Boege's talk on May 31st

Feedforward systems

- Well known disturbance prediction either based on model or on beam measurements →"Set and forget system"
- Examples:
 - Ramping process (LHC) in the tune diagram
 - Perturbation depending <u>on insertion device</u> configurations (gap, phase, velocities): orbit, tune, chromaticities, coupling, beta-beating
- Limitations
 - Beam condition dependence
 - Difficult to get to perfect correction
 - Difficulties to synchronize mechanical jaws/ power supplies for insertion devices
 - Nonlinear interactions between insertion devices
 - Introduce errors on the orbit
 - Residual orbit taken care by feedback systems

SULEILINSertion devices commissioning

Motorized ID Apple II (HU80) Variable polarization

Version 20

EM ID HU640 10 m Fast switching

20								Version 2.0
Incortion device based rings								
C I FIL INSCLUOIT UCVICE DASCUTINZS								
BL Name	Energy	Source	Location	Useful	Polarization	Periodic	Technology	Installation
STINCHAG	JIRON			length (m)	Switch time		1.567/2	
phase 1	2.111			< JUNE		5		
DESIRS	5 – 40 eV	HU640	I 05-L	10	Circ./lin/phasevar	Yes	HU640	Installé
TEMPO #1	45 – 1500 eV	HU80	I 08-M	1,6	Circ./lin.	QP	APPLE II	Installé
PROXIMA1	4 – 30 keV	U20	I 10-C	1,96	Lin.	Yes	Hybrid in vacuum	Installé
SWING	4 – 30 keV	U20	I 11-C	1,96	Lin	Yes	Hybrid in vacuum	Installé
CASSIOPEE #1	10 – 1000 eV	HU256	I 15-M	3,1	Circ./lin.	QP	HU256	Installé
CRISTAL	4 – 30 keV	U20	I 06-C	1,96	Lin	Yes	Hybrid in vacuum	Installé
phase 2								
PLEIADES #2	10 – 1000 eV	HU256	I 04-M	3,1	2 s	QP	HU256	Installé
PLEIADES #1	35 – 1500 eV	HU80*	I 04-M	1,6	Circ./lin.	QP	APPLE II	Installé
ANTARES #1	10 – 1000 eV	HU256	I 12-M	3,1	Circ./lin.	QP	HU256	Installé
CASSIOPEE #2	45 – 1500 eV	HU80	I 15-M	1,6	Circ./lin.	QP	APPLE II	Installé
DEIMOS #1	500 eV – 6 keV	HU52	I 07-M	1,6	Circ./lin.	Yes	APPLE II	Installé
LUCIA	500 eV – 6 keV	HU52	I 16-M	1,6	2 s	?	APPLE II	avr08
SIXS	4 – 30 keV	U20	I 14-C	1,96	Lin	Yes	Hybrid in vacuum	mai-08
MicroFOC #2	1 – 8 keV	HU44	I 14-M	1,6	2 s		APPLE II	mai-08
MicroFOC #1	50–1500 eV	HU80	I 14-M	1,6	Circ./lin.	QP	APPLE II	août-08
CASSIOPEE #2	100 eV – 4 keV	HU60	I 15-M	1,6	2 s		APPLE II	août-08
GALAXIES	4 – 30 keV	U20	I 07-C	1,96	Lin	Yes	Hybrid in vacuum	août-08
TEMPO #2	1 – 8 keV	HU44	I 08-M	1,6	2 s		APPLE II	sept08
PROXIMA2 #1	5 – 15 keV	U24	I 10-M	1,96	Lin.	Yes	Hybrid in vacuum	janv09
SIRIUS	2 – 10 keV	HU34	I 15-C	1,6	2 – 4 keV	Yes	APPLE II	janv09
ANTARES #2	100 eV – 4 keV	HU60	I 12-M	1,6	2 s		APPLE II	mars-09
DEIMOS #2	350 – 900 eV	HU65	I 07-M	1,6	0,2 s/ 5Hz-10Hz	Yes	EMPHU	avr09
MicroXmou	100 eV – 4 keV	HU60?	I 06-M	1,6	Circ./lin.	QP	APPLE II	mai-09
HT PRESSION	10 – 50 keV	WSV50	I 03-C	2,0	Lin	Yes	Wiggler in vacuum	juil09
MicroScopium	4 – 30 keV	U20 ?	I 02-C	1,96	Lin.	Yes	Hybrid in vacuum	janv10

Laurent S. Nadolski

100

Beam diagnostics CAS, 2008, Dourdan

HU80-TEMPO Commissioning: Feed-Forward Correction Test

Minimal Gap (15.5 mm) Helical Mode (Phase = 20 mm)

Horizontal BPM Data

Vertical BPM Data

Laurent S. Nadolski

SYNCHROTRON

Beam diagnostics CAS, 2008, Dourdan

44

Tunes, chromaticities, coupling stability

- Feedforward & feedback systems
- Perturbation sources:
 - Insertion devices for all synchrotron light sources
 - Tune shift with current per bunch (impedance effect, ...)
 - Injection, top-up (KEK, APS)
 - Ramping from one energy to another one (mostly for hadron colliders)
- On line tune measurement:
 - E-machine (excitation possible but has to be transparent for user)
 - Shaker magnets, striplines
 - One bunch excitation using fast transverse feedback (Elettra, SOLEIL, ...)
 - Hadron machine: passive measurement since damping very long (LHC = 10^{-3})
 - Schottky detectors (cf. RHIC, LHC, ...) See F. Caspers' talk on June 3rd
 - Tune Phase Locked Loop (PLL) with excitation level below 1 μm
- On line chromaticity measurement

S LEIL Beam Emittance Measurements

Version 20

•On line coupling measurement

-Coupling Phase locked system (LHC) with excitation level below 1 $\mu\mathrm{m}$

-Pinhole system (light sources) (imaging with no beam excitation) -Use of skew quadrupoles as correctors

S LEIL Measuring ever smaller emittances

Use of off axis emission of vertical polarized radiation

50

100

150

Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

Received 8 January 2008; received in revised form 20 February 2008; accepted 23 February 2008

Beam diagnostics CAS, 2008, Dourdan

NIM A, in press

Nested loops at LHC

Figure 3: Nested loop scheme required for a coherent control of tune, coupling and chromaticity.

Courtesy of R. SteinHagen, Workshop care Q/Q' 2007

SYNCHROTRON

S LEIL Collective effects: difficult part

See M. Lonza's talk on June 4th

- Interaction of the beam with the vacuum vessel (wake fields, impedance), with the residual gas
 - Trigger instability in transverse and longitudinal planes
 - Trigger single bunch and multi-bunch instabilities
 - Need of dedicated feedbacks, designs, ...
- High density of current per bunch induces
 - Bunch lengthening
 - Instabilities (microwave, ...) → current threshold
 →Bunch length measurement (streak camera, ...)
- Beam/beam effect in colliders
- CSR effects and instabilities, beam break-up, ...

Version 2 0

Impedance budget: model vs reality

• Thorough estimation of impedance contribution carried out a SOLEIL during the construction phase. Measured ImZ a factor 2 larger in H, V & L planes

SYNCHROTRON

Object	Number	Loss factor	(P)500mA	Σ ZL In eff	(ZV)eff	$\Sigma \beta v^*(ZV)$ eff	(ZH)eff	$\Sigma\beta h^*(ZH)$ eff
		[V/pC]	[kW]	[mΩ]	[kΩ/m]	[kΩ]	[kΩ/m]	[kΩ]
Shielded bellows	176	8.72E-03	1.17	48.30	(0,03 0,14)	(52,8 246,4)	(0,01 0,06)	(15,8 112,6)
Flange	332	4.67E-04	0.12	11.65	(0,00 0,01)	(0,7 42,3)	(0,00 0,01)	(9,1 46,8)
Dipole chamber	32	1.64E-04	2.63E-03	0.48	(0,00 0,00)	(0,2 0,7)	(0,00 0,03)	(0,1 0,8)
SOLEIL cavity	1	2.20	1.55	9.30	(0,29 0,44)	(0,8 1,3)	(0,17 0,44)	(0,8 2,0)
BPM	120	3.31E-03	0.28	12.80	(0,02 0,04)	(22,4 37,2)	(0,0 0,0)	(0,0 0,0)
Medium section tapers	10	1.76E-03	1.24E-02	9.31	(1,35 3,41)	(85,5 215,9)	(0,01 0,56)	(0,4 33,7)
Long section tapers	3	7.32E-04	1.55E-03	1.52	(0,43 1,13)	(14,9 39,2)	(0,00 0,24)	(0,1 9,2)
In-vacuum ID tapers	4	0.25	0.76	18.92	(0,50 1,42)	(6,0 17,0)	(0,13 0,50)	(9,4 36,0)
SOLEIL cavity outer tapers	1	0.17	0.13	6.70	(0,49 1,56)	(2,6 8,3)	(0,01 0,29)	(0,0 1,6)
Resistive-wall	-	7.31	5.17	85.50	(21,8 101,5)	(135,2 743,5)	(7,1 51,7)	(34,8 376,3)
Injection zone	1	1.86E-03	1.42E-03	0.09	(0,00 0,01)	(0,0 0,1)	(0,10 0,72)	(1,2 8,7)
Pumping slots (at quadrupoles)	128	< 1,0E-07	< 1,0E-07	0.01	(0,00 0,00)	(0,0 0,0)	(0,00 0,00)	(0,0 0,5)
Total	-	-	9.20	204.6	-	(321,1 1351,9)	-	(71.7 628.2)

- Characterization of instability in terms of beam spectra

Aim: high beam availability, save operation and steady high performances

Daily operation

- Survey of the beam parameters (closed orbit, tunes, chromaticities, coupling, current decay, luminosity, injection efficiency, instabilities)
- Top-up operation for Light sources
- Dose rate
- Capacity to control and localize beam losses
 - Mandatory for large energy machine (cf. LHC, loosing the beam is forbidden)
 - Too much energy stored into the beam will quench magnets and/or destroy equipments
 - Activation of components, areas
 - Radiation safety issue
 - Machine Protection system See R. Schmidt's talk on June 5th
 - Thermocouple, Instabilities slot, Beam position, Pressure ...
 - · Limit maximum current stored into the accelerator
 - Beam dumpers

Capacity to understand unexpected beam losses (postmortem systems, Machine Protection system)

SYNCHROTRON

Dipac'07, Abiven et al.

Systems relying heavily on diagnostics, dealing with thousands of parameters. Need to have quickly information for decision making

Figure 3 Description of the MRSV and the instability applications.

Conclusion

- Model/Reality: a lots of improvements this last 10 years, nevertheless:
 - Difficulties to foresee all aspects
 - Static errors (modeled in a statistical way: impossible to get the real distribution)
 - Dynamical errors
- High number of perturbation sources
 - Known sources
 - Unknown sources
- By pushing so much accelerator performance, parameters become very sensitive to any drift in temperature, in tunes, ...
- High performance can be reached only with the heavy help of lots of feedforward and feedback systems.

Fortunately, high performance diagnostics enable us to get a model close to reality

Diagnostics improvements help us to increase performance

Acknowledgments

- A. Nadji (SOLEIL)
- J.C. Denard (SOLEIL)
- P. Brunelle (SOLEIL)
- R. Steinhagen (LHC)
- V. Schlott (PSI)
- W. Decking (DESY)
- H. Braun (CERN)