Beam Position Monitor: Detector Principle, Hardware and Electronics

Outline:

- ➢ Signal generation → transfer impedance
- > Consideration for capacitive shoe box BPM
- > Consideration for capacitive button BPM
- > Other BPM principles: stripline → traveling wave, inductive → wall current, cavity → resonator for dipole mode
 > Electronics for position evaluation
 > Some examples for position evaluation and other applications
- > Summary

Stripline BPM: General Idea

For short bunches, the *capacitive* button deforms the signal

- \rightarrow Relativistic beam $\beta \approx l \Rightarrow$ field of bunches nearly TEM wave
- \rightarrow Bunch's electro-magnetic field induces a **traveling pulse** at the strips
- \rightarrow Assumption: Bunch shorter than BPM, $Z_{strip} = R_1 = R_2 = 50 \Omega$ and $v_{beam} = c_{strip}$.

From C. Boccard, CERN

GSI

For relativistic beam with $\beta \approx 1$ and short bunches:

 \rightarrow Bunch's Electro-magnetic field induces a **traveling pulse** at the strip

 \rightarrow Assumption: $l_{bunch} << l$, $Z_{strip} = R_1 = R_2 = 50 \Omega$ and $v_{beam} = c_{strip}$ Signal treatment at upstream port 1:

- *t=0:* Beam induced charges at port 1: \rightarrow half to R_1 , half toward port 2
- *t=l/c:* Beam induced charges at **port 2**:
- → half to R_2 , *but* due to different sign, it cancels with the signal from **port 1** → half signal reflected
- *t=2·l/c:* reflected signal reaches **port 1**

$$\Rightarrow U_1(t) = \frac{1}{2} \cdot \frac{\alpha}{2\pi} \cdot Z_{strip} \left(I_{beam}(t) - I_{beam}(t - 2l/c) \right)$$

Signal at downstream port 2: Beam induced charges cancels with traveling charge from port 1 \Rightarrow Signal depends direction \Leftrightarrow directional coupler: e.g. can distinguish between e⁻ and e⁺ in collider

G 55 T

Stripline BPM: Transfer Impedance

The signal from port 1 and the reflection from port 2 can cancel \Rightarrow minima in Z_t For short bunches $I_{beam}(t) \rightarrow Ne \cdot \delta(t)$: $Z_t(\omega) = Z_{strip} \cdot \frac{\alpha}{2\pi} \cdot \sin(\omega l/c) \cdot e^{i(\pi/2 - \omega l/c)}$ Stripline length l=30 cm, $\alpha=10^{\circ}$ 9Õ phase φ [⁰] $\sigma_t = 0.01 \text{ns}$ 0 90 2.0 short bunch $\delta(t)$ transfer imp. $|Z_t| [\Omega]$ Voltage 1.5 1.0 0.5 0.0 0.5 2.5 0.0 1.0 1.52.0 3.0 0 1 2 5 4 time [ns] frequency f [GHz]

➤ Z_t show maximum at $l=c/4f=\lambda/4$ i.e. 'quarter wave coupler' for bunch train ⇒ l has to be matched to v_{beam}

► No signal for $l=c/2f=\lambda/2$ i.e. destructive interference with subsequent bunch

> Around maximum of $|Z_t|$: phase shift $\varphi = 0$ i.e. direct image of bunch

 $f_{center} = 1/4 \cdot c/l \cdot (2n-1)$. For first lope: $f_{low} = 1/2 \cdot f_{center}$, $f_{high} = 3/2 \cdot f_{center}$ i.e. bandwidth $\approx 1/2 \cdot f_{center}$

> Precise matching at feed-through required t o preserve 50 Ω matching.

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

Beam Position Monitors: Principle and Realization

G 55 11

Stripline BPM: Finite Bunch Length

- $> Z_t(\omega)$ decreases for higher frequencies
- → If total bunch is too long $(\pm 3\sigma_t > l)$ destructive interference leads to signal damping *Cure:* length of stripline has to be matched to bunch length

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

Beam Position Monitors: Principle and Realization

G 55 11

2-dim Model for Stripline BPM

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

Realization of Stripline BPM

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

7

e

Comparison: Stripline and Button BPM (simplified)

	Stripline	Button	
Idea	traveling wave	electro-static	
Requirement	Careful Z_{strip} =50 Ω matching		
Signal quality	Less deformation of bunch signal	Deformation by finite size and capacitance	
Bandwidth	Broadband, but minima	Highpass, but <i>f_{cut}<1 GHz</i>	
Signal strength	Large Large longitudinal and transverse coverage possible	Small Size <Ø3cm, to prevent signal deformation	
Mechanics	Complex	Simple	
Installation	Inside quadrupole possible ⇒improving accuracy	Compact insertion	
Directivity	YES	No	

TTF2 BPM inside quadrupole

From . S. Wilkins, D. Nölle (DESY)

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

Beam Position Monitors: Principle and Realization

GSI

Resistive Wall Current Monitor

Broadband observation of bunches can be performed with a resistive Wall Current Monitor **Principle:** Ceramic gap bridged with n=10...100 resistors of $R=10...100 \Omega$ Voltage drop for $R_{tot} = 1/n \cdot R = 1...10 \Omega$ measured Ferrit rings with high L \rightarrow forces low frequency components through R **Bandwidth:** typically $f_{low} = R/(2\pi L) \approx 10 \text{ kHz}$ transfer imp. $|Z_t| [\Omega]$ $f_{high} = 1/(2\pi R_{tot}C) \approx 1 \text{ GHz}$ Bandwidth 1 Application: Broadband bunch observation fhigh Jlow WCM equivalent circuit U(t) coax cable 0.1 0.001 1000 100000 0.110 ground shield frequency f [MHz] signa $\frac{1}{Z_t} = \frac{1}{R_{tot}} + \frac{1}{i\omega L} + i\omega C$ R ferrite rings ground I wall pipe beam pipe I beam Within bandwidth: $Z_t \cong R_{tot}$ beam ceramic gap to ground to signal G 55 1

Realization of Wall Current Monitor

Large bandwidth WCM for short bunch longitudinal observation at CLIC

Parameter: $f_{low} = 250 \text{ kHz}$ $f_{high} = 10 \text{ GHz}$ $n=8 \text{ with } R=50 \Omega$ gap length 2 mm $Z_t=4 \Omega$ insertion length 256 mm

From P. Odier (CERN) DIPAC 03&05

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

Beam Position Monitors: Principle and Realization

GSI

Inductive Wall Current Monitor

The wall current is passed through strips and is determined be transformers.

11

Cavity BPM

-18

High resolution on μ s time scale can be achieved by excitation of a dipole mode:

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

12

Cavity BPM

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

Comparison of BPM Types (simplified)

Туре	Usage	Precaution	Advantage	Disadvantage
Shoe-box	p-Synch.	Long bunches f _{rf} <10 MHz	Very linear No x-y coupling Sensitive For broad beams	Complex mechanics Capacitive coupling between plates
Button	p-Linacs, all e ⁻ acc.	f _{rf} >10 MHz	Simple mechanics	Non-linear, x-y coupling Possible signal deformation
Stipline	colliders p-Linacs all e ⁻ acc.	best for $\beta \approx 1$, short bunches	Directivity 'Clean' signals Large Signal	Complex 50 Ω matching Complex mechanics
Ind. WCM	all	non	Broadband	Complex, long insertion
Cavity	e ⁻ Linacs (e.g. FEL)	Short bunches Special appl.	Very sensitive	Very complex, high frequency

Remark: Other types are also some time used, e.g. inductive antenna based, BPMs with external resonator, slotted wave-guides for stochastic cooling etc.

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

Beam Position Monitors: Principle and Realization

GSI

Beam Position Monitor: Detector Principle, Hardware and Electronics

Outline:

- ➢ Signal generation → transfer impedance
- > Consideration for capacitive shoe box BPM
- > Consideration for capacitive button BPM
- ➢ Other BPM principles: stripline → traveling wave, inductive → wall current, cavity → resonator for dipole mode
- Electronics for position evaluation Noise consideration, broadband and narrowband analog processing, digital processing
- > Some examples for position evaluation and other applications
- ➤ Summary

Characteristics for Position Measurement

Sensitivity: Factor between position calculation and signal quantity (Δ/Σ , logU₁/U₂ etc)

Accuracy: Ability for position reading relative to a mechanical fix-point ('absolute position')

 \succ influenced by mechanical tolerances and alignment accuracy

- ➢ for cryogenic installations: reproducibility after cryogenic cycles
- ➢ by electronics: e.g. amplifier drifts, electronic interference, ADC granularity

Resolution: Ability to determine small displacement variation ('relative position')

- ≻ typically: *single bunch*: 10^{-3} of aperture ≈ 100 µm
 - *averaged:* 10^{-5} of aperture $\approx 1 \ \mu m$, with dedicated methods $\approx 0.1 \ \mu m$
- \succ in most case much better than accuracy!

➢ electronics has to match the requirements e.g. bandwidth, ADC granularity...

Bandwidth: Frequency range available for measurement

➤has to be chosen with respect to required resolution via analog or digital filtering
Signal-to-noise: Ratio of wanted signal to unwanted background

➢ influenced by thermal and circuit noise, electronic interference

 \succ can be matched by bandwidth limitation

Dynamic range: Range of beam currents the system has to respond

 \succ position reading should not depend on input amplitude

Signal sensitivity = detection threshold: minimum beam current for measurement

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

G 55 1

General: Noise Consideration

- 1. Signal voltage given by: $U_{im}(f) = Z_t(f) \cdot I_{beam}(f)$
- 2. Position information from voltage difference: $x \propto k \cdot U_{\Lambda}$
- 3. Thermal noise voltage given by: $U_{eff}(R, \Delta f) = \sqrt{4k_B \cdot T \cdot R \cdot \Delta f}$
- \Rightarrow Signal-to-noise U_{im}/U_{eff} is influenced by:
- ➢ Input signal amplitude
 → large or matched Z_t
- > Thermal noise at $R=50\Omega$ for T=300K(for shoe box $R=1k\Omega \dots 1M\Omega$)
- \succ Bandwidth Δf
 - \Rightarrow Restriction of frequency width because the power is concentrated on the harmonics of f_{rf}

Remark: Additional contribution by non-perfect electronics typically a factor 2 Pick-up by electro-magnetic interference can contribute \Rightarrow good shielding required

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

Example for Noise Consideration

- 1. Signal voltage given by: $U_{im}(f) = Z_t(f) \cdot I_{beam}(f)$
- 2. Thermal noise voltage given by: $U_{eff}(R, \Delta f) = \sqrt{4k_B \cdot T \cdot R \cdot \Delta f}$
- 3. Signal-to-noise ratio has to be calculated and expressed in spatial resolution σ

Example for button BPM resolution at ALBA: Estimation takes only thermal noise into account:

Comparison: Filtered Signal ↔ Single Turn

Example GSI Synchr.: U^{73+} , $E_{ini}=11.5$ MeV/u \rightarrow 250 MeV/u within 0.5 s, 10⁹ ions

However: not only noise contributes but additionally **beam movement** by betatron oscillation ⇒ broadband processing i.e. turn-by-turn readout for tune determination

G 55 H

General Idea: Broadband Processing

 \succ Hybrid or transformer close to beam pipe for analog U_{Δ} & U_{Σ} generation or U_{left} & U_{right}

- Attenuator/amplifier
- > Filter to get the wanted harmonics and to suppress stray signals
- ▷ ADC: digitalization of U_{Δ}/U_{Σ} or calculation from U_{left} & U_{right}
- Advantage: Bunch-by-bunch possible, versatile post-processing possible
- **Disadvantage:** Resolution down to $\approx 100 \ \mu m$ for shoe box type , i.e. $\approx 0.1\%$ of aperture, resolution is worse than narrowband processing.

20

G 55 11

Linear Amplifier with large dynamic Range for p-Synchrotron

Shoe box BPM \rightarrow matching 2:12 transformer $R_{prim}=1.8k\Omega \rightarrow \approx 3 \text{ m cable} \rightarrow \text{amplifier}$

- ➢ Requirement: Dynamic range from $1x10^8$ to $4x10^{13}$ charges per bunch ⇒ 120dB dynamic range of signal amplitude
- Switchable 35dB amplifier stages, bandwidth 0.2 to 100 MHz.
- ➢ Variable PIN-diode attenuator -5dB...-35dB.
- > Test generator input for control of constant gain and temperature drift calibration
- Common mode gain matching better than 0.1dB each BPM-plate pair for large accuracy

21

G 55 1

Noise Limitation by Lowpass Filtering

Goal of lowpass filter: restriction of bandwidth to the required resolution for the bunches

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

Disadvantage: limited linearity and accuracy, possible temperature dependence Log-amp card ready for BPM use is commercially available!

G 55 11

General Idea: Narrowband Processing

Narrowband processing equals heterodyne receiver (e.g. at AM-radios or spectrum analyzer)

- Attenuator/amplifier
- > Mixing with accelerating frequency $f_{rf} \Rightarrow$ signal with sum and difference frequency
- ➤ Bandpass filter of the mixed signal (e.g at 10.7 MHz)
- Rectifier: synchronous detector
- ► ADC: digital calculation of $\Delta U/\Sigma U$

Advantage: spatial resolution about 100 time better than broadband processing. Disadvantage: No turn-by-turn diagnosis, due to mixing = 'long averaging time'

For non-relativistic p-synchrotron \rightarrow variable f_{rf} leads via mixing to constant intermediate freq.

Narrowband Processing with Multiplexing

Dedicated analog electronics for narrowband processing on one card (commercially available):

Idea: narrowband processing, all buttons at same path \Rightarrow multiplexing of single electronics chain **Multiplexing within \approx 1ms:** \Rightarrow only one button is processed \Rightarrow minimal drifts contribution

Processing chain: Buttons \rightarrow multiplexer \rightarrow filter \rightarrow linear amplifier with fine gain steps

 \rightarrow mixing with $f_{rf} \rightarrow$ narrow intermediate frequency filter BW 0.11 MHz

 \rightarrow synchronous detector for rectification \rightarrow de-multiplexer \rightarrow slow and precise ADC

Advantage: High accuracy, high resolution, high dynamic range by automated gain control AGC **Disadvantage:** Multiplexing \Rightarrow only for stable beams >> 10 ms, narrowband \Rightarrow no turn-by-turn **Remark:** 'Stable' beam e.g. at synch. light source, but not at accelerating synchrotrons!

Analog versus Digital Signal Processing

Modern instrumentation uses **digital** techniques with extended functionality.

Digital receiver as modern successor of heterodyne receiver

- Basic functionality is preserved but implementation is very different
- Digital transition just after the amplifier&filter or mixing unit
- ➢ Signal conditioning (filter, decimation, averaging) on FPGA

Advantage of DSP: Stable operation, flexible adoption without hardware modification

Disadvantage of DSP: non, good engineering skill requires for development, expensive

G 55 W

Digital Signal Processing Realization

Multiplexing, digitalization and digital filtering (commercially available):

From I-Tech LIBERA Specification

GSI

LIBERA Digital BPM Readout: Analog Part and Digitalization

From I-Tech LIBERA Specification

LIBERA Digital BPM Readout: Digital Signal Processing

Remark: For p-synchrotrons direct 'baseband' digitalization with 125 MS/s due to $f_{rf} < 10$ MHz

From I-Tech LIBERA Specification

Amplitude-to-Time Normalizer Schematics

Remark: Design for LHC with f_{rf} =40 MHz and \approx 900 locations Partly comparable to traditional AM/PM modulation

30 P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

From G. Vismara, CERN, DIPAC 1999

Amplitude-to-Time Normalizer Description

General functionality for Amplitude-to-time Normalizer:

- Bipolar signals A, B are split into two branches
- \triangleright One branch is delayed by T_1
- > The delayed signal of A is added to the direct branch of B and vice versa
- > The zero crossing time depends on the signals ratio and varies in opposite directions for two branches; it can vary up to a maximum of T_1
- \blacktriangleright Zero-crossing detector converts to time \rightarrow start of logical pulse \Leftrightarrow zero crossing
- \triangleright Delay of channel D by T_2
- AND produces time overlap of channel C and D
- ▷ Position information is given by $\Delta t = 2 T_1 [(A B)/(A + B)] + T_2$
- **Requirement:** Bunch separation $> T_1 + T_2$

Advantage: reduction of 2 channels and cables, high input dynamics, auto-trigger Disadvantage: requires specialized and tightly time-adjusted electronics, no intensity signal Remark:

Comparison of BPM Readout Electronics (simplified)

Туре	Usage	Precaution	Advantage	Disadvantage
Broadband	p-sychr.	Long bunches	Bunch structure signal Post-processing possible Required for fast feedback	Resolution limited by noise
Log-amp	all	Bunch train >10µs	Robust electronics High dynamics Good for industrial appl.	No bunch-by-bunch Possible drifts (dc, Temp.) Medium accuracy
Narrowband	all synchr.	Stable beams >100 rf-periods	High resolution	No turn-by-turn Complex electronics
Narrowband +Multiplexing	all synchr.	Stable beams >10ms	Highest resolution	No turn-by-turn, complex Only for stable storage
Digital Signal Processing	all	Several bunches ADC 125 MS/s	Very flexible High resolution Trendsetting technology for future demands	Limited time resolution by ADC \rightarrow undersampling (complex or expensive)
Amplto-Time Normal. and AM→PM	(all)	Limited f _{rf} Low bunching factor	Only 2 channels High dynamics	Special electronics No intensity signal A bit exotic

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

Beam Position Monitors: Principle and Realization

GSI

Remark: Calibration of BPM Center by k-Modulation

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

Beam Position Monitor: Detector Principle, Hardware and Electronics

Outline:

- ➢ Signal generation → transfer impedance
- > Consideration for capacitive shoe box BPM
- > Consideration for capacitive button BPM
- ➤ Other BPM principles: stripline → traveling wave, inductive → wall current, cavity → resonator for dipole mode
- > Electronics for position evaluation
- Some examples for position evaluation and other applications closed orbit, tune, bunch capture, energy at LINAC
- > Summary

Detected position on a analog narrowband basis \rightarrow closed orbit with ms time steps *Example from GSI-Synchrotron:*

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

Beam Position Monitors: Principle and Realization

GSI

Detecting the bunch position on a turn-by-turn basis the tune can be determined: Fourier transformation of position data

 \rightarrow tune within 2000 turns corresponding \approx 5 ms time resolution

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

Low Current Measurement on a relative Basis

The sensitivity of a BPM Σ -signal by **narrowband processing** is higher as for a dc-transformer (with $\approx 1 \ \mu$ A on 1 kHz bandwidth). Sum-Signal after mixing with f_{rf} : $I_{beam} > 10$ nA on 1 kHz bandwidth

But:

- Only for bunched beams
- Only relative measurement:
- → Signal strength depend on bunch shape i.e. frequency component!

Beam parameter: U⁷³⁺,

11 MeV/u \rightarrow 1 GeV/u

Beam Position Monitors: Principle and Realization

6 5 1

Example for longitudinal Bunch Shape Observation

Example: After multi-turn injection, the **bunch formation** is critical to avoid coherent synchrotron oscillations \rightarrow emittance enlargement

 $\rm f_{rf}$ shift by 0.2% of nominal value

 \Rightarrow Coherent oscillation

Matched $f_{rf} \Rightarrow$ no oscillation

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

BPM for Energy Determination

Important tool for rf-phase and amplitude alignment:

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

20

10

0

30

time [ns]

40

50

60

Beam Position Monitors: Principle and Realization

normalized tank amplitude

1.2

1.3

G 55 11

1.0

With BPMs the center in the transverse plane is determined for bunched beams. Coupling beam \rightarrow detector given by the transfer impedance $Z_t(\omega)$ signal estimation $I_{beam} \rightarrow U_{im}$ **Different type of BPM:**

Shoe box = linear cut: for p-synchrotrons with $f_{rf} < 10 \text{ MHz}$

Advantage: very linear. Disadvantage: complex mechanics

Button: Most frequently used at all accelerators, best for $f_{rf} > 10 \text{ MHz}$

Advantage: compact mechanics. **Disadvantage:** non-linear, low signal **Stripline:** Taking traveling wave behavior into account, best for short bunches

Advantage: precise signal. Disadvantage: Complex mechanics for 50 Ω , non-linear Cavity BPM: dipole mode excitation \rightarrow high resolution 1 μ m@1 μ s \leftrightarrow spatial application Electronics used for BPMs:

Basics: Resolution in space ↔ resolution in time i.e. the bandwidth has to match the application
Broadband processing: Full information available, but lower resolution, for fast feedback
Log-amp: robust electronics, high dynamics, but less precise
Analog narrowband processing: high resolution, but not for fast beam variation
Digital processing: very flexible, but limited ADC speed, more complex

40

G 55 1