Beam Position Monitor:
Detector Principle, Hardware and Electronics

Outline:
- Signal generation → transfer impedance
- Consideration for capacitive shoe box BPM
- Consideration for capacitive button BPM
- **Other BPM principles: stripline → traveling wave, inductive → wall current, cavity → resonator for dipole mode**
- Electronics for position evaluation
- Some examples for position evaluation and other applications
- Summary
For short bunches, the capacitive button deforms the signal

→ Relativistic beam $\beta \approx 1 \Rightarrow$ field of bunches nearly TEM wave

→ Bunch’s electro-magnetic field induces a traveling pulse at the strips

→ Assumption: Bunch shorter than BPM, $Z_{\text{strip}} = R_1 = R_2 = 50 \, \Omega$ and $v_{\text{beam}} = c_{\text{strip}}$

From C. Boccard, CERN
Stripline BPM: General Idea

For relativistic beam with $\beta \approx 1$ and short bunches:

- Bunch’s Electro-magnetic field induces a **traveling pulse** at the strip
- **Assumption:** $l_{\text{bunch}} < l$, $Z_{\text{strip}} = R_1 = R_2 = 50\ \Omega$ and $v_{\text{beam}} = c_{\text{strip}}$

Signal treatment at upstream port 1:

$t=0$: Beam induced charges at port 1:
- half to R_1, half toward port 2

$t=l/c$: Beam induced charges at port 2:
- half to R_2, **but** due to different sign, it cancels with the signal from port 1
- half signal reflected

$t=2\cdot l/c$: reflected signal reaches port 1

$$U_1(t) = \frac{1}{2} \cdot \frac{\alpha}{2\pi} \cdot Z_{\text{strip}} \left(I_{\text{beam}}(t) - I_{\text{beam}}(t - 2l/c) \right)$$

If beam repetition time equals $2\cdot l/c$: reflected preceding port 2 signal cancels the new one:
- no net signal at port 1

Signal at downstream port 2: Beam induced charges cancels with traveling charge from port 1
- Signal depends direction \leftrightarrow directional coupler: e.g. can distinguish between e^- and e^+ in collider
The signal from port 1 and the reflection from port 2 can cancel \(\Rightarrow \) minima in \(Z_t \).

For short bunches \(I_{beam}(t) \rightarrow Ne \cdot \delta(t) \):

\[
Z_t(\omega) = Z_{strip} \cdot \frac{\alpha}{2\pi} \cdot \sin(\omega l / c) \cdot e^{i(\pi/2 - \omega l / c)}
\]

- \(Z_t \) show maximum at \(l=c/4f=\lambda/4 \) i.e. ‘quarter wave coupler’ for bunch train
 \(\Rightarrow l \) has to be matched to \(v_{beam} \)
- No signal for \(l=c/2f=\lambda/2 \) i.e. destructive interference with subsequent bunch
- Around maximum of \(|Z_t| \): phase shift \(\varphi=0 \) i.e. direct image of bunch
- \(f_{center}=1/4 \cdot c/l \cdot (2n-1) \). For first lope: \(f_{low}=1/2 \cdot f_{center} \), \(f_{high}=3/2 \cdot f_{center} \) i.e. bandwidth \(\approx 1/2 \cdot f_{center} \)
- Precise matching at feed-through required to preserve 50 \(\Omega \) matching.
The signal at port 1 for a finite bunch of length σ:
\[I_{\text{beam}}(t) = I_0 \cdot e^{-t^2/2\sigma^2} \]

\[\Rightarrow Z_t(\omega) = Z_{\text{strip}} \cdot \frac{\alpha}{2\pi} \cdot e^{-\omega^2 \sigma^2 / 2} \cdot \sin(\omega l / c) \cdot e^{i(\pi/2-\omega l/c)} \]

\[\Rightarrow \text{in time domain: } U_{\text{im}}(t) = Z_{\text{strip}} \cdot \frac{\alpha}{2\pi} \cdot (e^{-(t+l/c)^2/2\sigma^2} - e^{-(t-l/c)^2/2\sigma^2}) \cdot I_0 \]

- $Z_t(\omega)$ decreases for higher frequencies
- If total bunch is too long ($\pm 3\sigma_t > l$) destructive interference leads to signal damping

Cure: length of stripline has to be matched to bunch length

Caution: Z_t depends on beam’s bunch length σ
2-dim Model for Stripline BPM

‘Proximity effect’: larger signal for closer plate

2-dim case: Cylindrical pipe → image current density:

\[j_{im}(\phi) = \frac{I_{beam}}{2\pi a} \cdot \left(\frac{a^2 - r^2}{a^2 + r^2 - 2ar \cdot \cos(\phi - \theta)} \right) \]

Image current of finite BPM size: \[I_{im} = \int_{-\alpha/2}^{\alpha/2} j_{im}(\phi) d\phi \]

Impedance \(Z_{\text{strip}} = 50\Omega \):

Comparable formula as for PCB micro-strip → dependence on \(d \) and \(\alpha \)
Realization of Stripline BPM

20 cm stripline BPM at TTF2 (chamber Ø34mm)
And 12 cm LHC type:

From S. Wilkins, D. Nölle (DESY), C. Boccard (CERN)
<table>
<thead>
<tr>
<th></th>
<th>Stripline</th>
<th>Button</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idea</td>
<td>traveling wave</td>
<td>electro-static</td>
</tr>
<tr>
<td>Requirement</td>
<td>Careful $Z_{\text{strip}} = 50 \Omega$ matching</td>
<td></td>
</tr>
<tr>
<td>Signal quality</td>
<td>Less deformation of bunch signal</td>
<td>Deformation by finite size and capacitance</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>Broadband, but minima</td>
<td>Highpass, but $f_{\text{cut}} < 1 \text{ GHz}$</td>
</tr>
<tr>
<td>Signal strength</td>
<td>Large</td>
<td>Small</td>
</tr>
<tr>
<td></td>
<td>Large longitudinal and transverse coverage possible</td>
<td>Size < $\varnothing 3 \text{ cm}$, to prevent signal deformation</td>
</tr>
<tr>
<td>Mechanics</td>
<td>Complex</td>
<td>Simple</td>
</tr>
<tr>
<td>Installation</td>
<td>Inside quadrupole possible</td>
<td>Compact insertion</td>
</tr>
<tr>
<td></td>
<td>\Rightarrow improving accuracy</td>
<td></td>
</tr>
<tr>
<td>Directivity</td>
<td>YES</td>
<td>No</td>
</tr>
</tbody>
</table>

From S. Wilkins, D. Nölle (DESY)
Resistive Wall Current Monitor

Broadband observation of bunches can be performed with a resistive Wall Current Monitor

Principle: Ceramic gap bridged with $n=10...100$ resistors of $R=10...100\ \Omega$

- Voltage drop for $R_{tot}=1/n\cdot R=1...10\ \Omega$ measured
- Ferrite rings with high L
 - \rightarrow forces low frequency components through R

Bandwidth: typically $f_{low}=R/(2\pi L)\approx 10\ \text{kHz}$

$$f_{high}=1/(2\pi R_{tot}C)\approx 1\ \text{GHz}$$

Application: Broadband bunch observation

![WCM equivalent circuit](image)

$$\frac{1}{Z_t} = \frac{1}{R_{tot}} + \frac{1}{i\omega L} + i\omega C$$

Within bandwidth: $Z_t \approx R_{tot}$
Realization of Wall Current Monitor

Large bandwidth WCM for short bunch longitudinal observation at CLIC

Parameter: $f_{low} = 250 \text{ kHz}$
$f_{high} = 10 \text{ GHz}$
$n=8$ with $R=50 \ \Omega$
gap length 2 mm
$Z_t=4 \ \Omega$
insertion length 256 mm

From P. Odier (CERN) DIPAC 03&05
Inductive Wall Current Monitor

The wall current is passed through strips and is determined by transformers.

Example: CERN CTF3 and LINAC2 device

Parameters: 8 strips on \varnothing50 mm

for CFT3 Bandwidth: 300 kHz to 250 MHz
Transfer impedance: $Z_t = 10 \, \Omega$
Sensitivity: $k = 10 \, \text{mm} \text{ (central part)}$

Advantage: Everything outside vacuum, broadband
High resolution on μs time scale can be achieved by excitation of a dipole mode:

Application: small e⁻ beams (ILC, TESLA...)

For pill box the resonator modes given by geometry:
- monopole TM₀₁₀ with \(f_{010} \) → maximum at beam center ⇒ strong excitation
- Dipole mode TM₀₁₁ with \(f_{011} \) → minimum at center ⇒ excitation by beam offset
⇒ Detection of dipole mode amplitude (phase relative to monopole gives sign of displacement)
Basic consideration for detection of eigen-frequency amplitudes:

- Monopole mode f_{010} should differ from f_{rf}
- Dipole mode f_{110} separated from monopole mode due to finite quality factor $Q \Rightarrow \Delta f = f/Q$
- Waveguide house the antennas
 (task: suppression of TM_{010} mode signal)
- Frequency range $f_{110} \approx 1 \ldots 10 \text{ GHz}$

From M. Wendt (FNAL)

Cavity BPM

<table>
<thead>
<tr>
<th>Cavity</th>
<th>Frequency range $f_{110} \approx 1 \ldots 10 \text{ GHz}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gap length 15 mm</td>
<td></td>
</tr>
<tr>
<td>Mono. $f_{010} = 1.12 \text{ GHz}$</td>
<td></td>
</tr>
<tr>
<td>Dipole $f_{110} = 1.47 \text{ GHz}$</td>
<td></td>
</tr>
<tr>
<td>$Q_{load} \approx 600$</td>
<td></td>
</tr>
<tr>
<td>With comparable BPM $\Rightarrow 0.1 \mu\text{m resolution within } 1 \mu\text{s}$</td>
<td></td>
</tr>
</tbody>
</table>

FNAL BPM develop.
Comparison of BPM Types (simplified)

<table>
<thead>
<tr>
<th>Type</th>
<th>Usage</th>
<th>Precaution</th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoe-box</td>
<td>p-Synch.</td>
<td>Long bunches $f_{\text{rf}} < 10$ MHz</td>
<td>Very linear</td>
<td>Complex mechanics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No x-y coupling</td>
<td>Capacitive coupling between plates</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sensitive</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>For broad beams</td>
<td></td>
</tr>
<tr>
<td>Button</td>
<td>p-Linacs, all e- acc.</td>
<td>$f_{\text{rf}} > 10$ MHz</td>
<td>Simple mechanics</td>
<td>Non-linear, x-y coupling</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Possible signal deformation</td>
</tr>
<tr>
<td>Stipline</td>
<td>colliders p-Linacs, all e- acc.</td>
<td>best for $\beta \approx 1$, short bunches</td>
<td>Directivity 'Clean' signals</td>
<td>Complex 50 Ω matching</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>'Clean' signals</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Large Signal</td>
<td></td>
</tr>
<tr>
<td>Ind. WCM</td>
<td>all</td>
<td>non</td>
<td>Broadband</td>
<td>Complex, long insertion</td>
</tr>
<tr>
<td>Cavity</td>
<td>e- Linacs (e.g. FEL)</td>
<td>Short bunches Special appl.</td>
<td>Very sensitive</td>
<td>Very complex, high frequency</td>
</tr>
</tbody>
</table>

Remark: Other types are also sometimes used, e.g. inductive antenna based, BPMs with external resonator, slotted wave-guides for stochastic cooling etc.
Beam Position Monitor: Detector Principle, Hardware and Electronics

Outline:

- Signal generation → transfer impedance
- Consideration for capacitive shoe box BPM
- Consideration for capacitive button BPM
- Other BPM principles: stripline → traveling wave, inductive → wall current, cavity → resonator for dipole mode
- Electronics for position evaluation
 - Noise consideration, broadband and narrowband analog processing, digital processing
- Some examples for position evaluation and other applications
- Summary
Characteristics for Position Measurement

Sensitivity: Factor between position calculation and signal quantity (Δ/Σ, \(\log \frac{U_1}{U_2} \) etc)

Accuracy: Ability for position reading relative to a mechanical fix-point (‘absolute position’)
- influenced by mechanical tolerances and alignment accuracy
- for cryogenic installations: reproducibility after cryogenic cycles
- by electronics: e.g. amplifier drifts, electronic interference, ADC granularity

Resolution: Ability to determine small displacement variation (‘relative position’)
- typically: **single bunch**: \(10^{-3} \) of aperture \(\approx 100 \, \mu m \)
- **averaged**: \(10^{-5} \) of aperture \(\approx 1 \, \mu m \), with dedicated methods \(\approx 0.1 \, \mu m \)
- in most case much better than accuracy!
- electronics has to match the requirements e.g. bandwidth, ADC granularity…

Bandwidth: Frequency range available for measurement
- has to be chosen with respect to required resolution via analog or digital filtering

Signal-to-noise: Ratio of wanted signal to unwanted background
- influenced by thermal and circuit noise, electronic interference
- can be matched by bandwidth limitation

Dynamic range: Range of beam currents the system has to respond
- position reading should not depend on input amplitude

Signal sensitivity = detection threshold: minimum beam current for measurement
General: Noise Consideration

1. Signal voltage given by: \(U_{im}(f) = Z_t(f) \cdot I_{beam}(f) \)
2. Position information from voltage difference: \(x \propto k \cdot U_\Delta \)
3. Thermal noise voltage given by: \(U_{eff}(R, \Delta f) = \sqrt{4k_B \cdot T \cdot R \cdot \Delta f} \)

⇒ Signal-to-noise \(\frac{U_{im}}{U_{eff}} \) is influenced by:

- Input signal amplitude
 → large or matched \(Z_t \)
- Thermal noise at \(R=50\Omega \) for \(T=300K \)
 (for shoe box \(R=1k\Omega \ldots 1M\Omega \))
- Bandwidth \(\Delta f \)
 ⇒ Restriction of frequency width
 because the power is concentrated on the harmonics of \(f_{rf} \)

Example: GSI-LINAC with \(f_{rf}=36\text{ MHz} \)

Remark: Additional contribution by non-perfect electronics typically a factor 2

Pick-up by electro-magnetic interference can contribute ⇒ good shielding required
Example for Noise Consideration

1. Signal voltage given by: \(U_{im}(f) = Z_t(f) \cdot I_{beam}(f) \)

2. Thermal noise voltage given by: \(U_{eff}(R, \Delta f) = \sqrt{4k_B \cdot T \cdot R \cdot \Delta f} \)

3. Signal-to-noise ratio has to be calculated and expressed in spatial resolution \(\sigma \)

Example for button BPM resolution at ALBA: **Estimation takes only thermal noise into account:**

\[\sigma \propto \sqrt{\Delta f} \]
\[\Rightarrow \text{Lower } \sigma \text{ for large } \varnothing \text{button} \]

\[\Rightarrow \sigma \text{ decreases with current} \]
\[\Rightarrow \text{Lower } \sigma \text{ for large } \varnothing \text{button} \]
Example GSI Synchr.: ^{73+}U, $E_{\text{inj}}=11.5$ MeV/u \rightarrow 250 MeV/u within 0.5 s, 10^9 ions

- Position resolution $< 20 \mu$m (BPM half aperture $a=40$ mm)
- average over 1000 turns corresponding to \approx0.3 ms or \approx1 kHz bandwidth

Comparison: Filtered Signal ↔ Single Turn

- Turn-by-turn data have much larger variation

However: not only noise contributes but additionally **beam movement** by betatron oscillation

\Rightarrow broadband processing i.e. turn-by-turn readout for tune determination
General Idea: Broadband Processing

- Hybrid or transformer close to beam pipe for analog U_Δ & U_Σ generation or U_{left} & U_{right}
- Attenuator/amplifier
- Filter to get the wanted harmonics and to suppress stray signals
- ADC: digitalization of U_Δ / U_Σ or calculation from U_{left} & U_{right}

Advantage: Bunch-by-bunch possible, versatile post-processing possible

Disadvantage: Resolution down to $\approx 100 \, \mu\text{m}$ for shoe box type, i.e. $\approx 0.1\%$ of aperture, resolution is worse than narrowband processing.
Example: pre-amp from GSI-synchrotron:

Shoe box BPM → matching 2:12 transformer $R_{\text{prim}} = 1.8k\Omega$ → ≈ 3 m cable → amplifier

- Requirement: Dynamic range from 1×10^8 to 4×10^{13} charges per bunch
 ⇒ 120dB dynamic range of signal amplitude
- Switchable 35dB amplifier stages, bandwidth 0.2 to 100 MHz.
- Variable PIN-diode attenuator -5dB…-35dB.
- Test generator input for control of constant gain and temperature drift calibration
- Common mode gain matching better than 0.1dB each BPM-plate pair for large accuracy
Noise Limitation by Lowpass Filtering

Goal of lowpass filter: restriction of bandwidth to the required resolution for the bunches.

Simulation:
Adding white noise

Lowpass Filter:
Besselfilter of 3rd order
\[f_{\text{cutoff}} = 10 \text{ MHz} \]

Simulation:
Adding white noise

Original Signal
Noisy signal
Filtered signal

Simulation:
Adding white noise

Beam Position Monitors: Principle and Realization
Signal is ‘compressed’ by a logarithmic amplifier, filtered and applied to a differential amplifier.

Typical video bandwidth ≈1MHz

Position: \(x = k \cdot [\log(A/B)] \equiv k \cdot [\log(A)-\log(B)] = k \cdot V_{out} \)

Advantage: Improved linearity for button, broadband robust electronics, large ≈90 dB dynamics range without gain switching

Disadvantage: limited linearity and accuracy, possible temperature dependence

Log-amp card ready for BPM use is commercially available!

From G. Vismara, CERN, DIPAC 2000
General Idea: Narrowband Processing

Narrowband processing equals heterodyne receiver (e.g. at AM-radios or spectrum analyzer)

- Attenuator/amplifier
- Mixing with accelerating frequency $f_{\text{rf}} \Rightarrow$ signal with sum and difference frequency
- Bandpass filter of the mixed signal (e.g. at 10.7 MHz)
- Rectifier: synchronous detector
- ADC: digital calculation of $\Delta U/\Sigma U$

Advantage: spatial resolution about 100 time better than broadband processing.

Disadvantage: No turn-by-turn diagnosis, due to mixing = ’long averaging time’

For non-relativistic p-synchrotron \rightarrow variable f_{rf} leads via mixing to constant intermediate freq.
Narrowband Processing with Multiplexing

Dedicated analog electronics for narrowband processing on one card (commercially available):

Idea: narrowband processing, all buttons at same path ⇒ multiplexing of single electronics chain

Multiplexing within ≈ 1 ms: ⇒ only one button is processed ⇒ minimal drifts contribution

Processing chain: Buttons → multiplexer → filter → linear amplifier with fine gain steps
 → mixing with f_{rf} → narrow intermediate frequency filter BW 0.1 ….1 MHz
 → synchronous detector for rectification → de-multiplexer → slow and precise ADC

Advantage: High accuracy, high resolution, high dynamic range by automated gain control AGC

Disadvantage: Multiplexing ⇒ only for stable beams >> 10 ms, narrowband ⇒ no turn-by-turn

Remark: ‘Stable’ beam e.g. at synch. light source, but not at accelerating synchrotrons!
Modern instrumentation uses **digital** techniques with extended functionality.

Traditional analog processing

BPM analog signal → Analog frequency translator → Analog demodulator And filter → ADC → digital output

Digital processing (triggered by telecommunication development)

BPM analog signal → Analog frequency translator → ADC → Digital filter → Digital Signal Proc. → digital output

Digital receiver as modern successor of heterodyne receiver

- Basic functionality is preserved but implementation is very different
- Digital transition just after the amplifier&filter or mixing unit
- Signal conditioning (filter, decimation, averaging) on FPGA

Advantage of DSP: Stable operation, flexible adoption without hardware modification

Disadvantage of DSP: non, good engineering skill requires for development, expensive
Multiplexing, digitalization and digital filtering (commercially available):

From I-Tech LIBERA Specification
LIBERA Digital BPM Readout: Analog Part and Digitalization

Crossbar multiplexing of all channels at \(\approx 13 \text{ kHz} \) (analog)

Automatic gain control by 0…31 dB attenuators

Filter BW 10 MHz\(@f_{rf} \) (analog)

Digitalization with \(\approx 117 \text{ MHz} \)

matched to sub-harmonics of \(f_{rf} \)

\(\Rightarrow \) Undersampling: every 4th bunch

Digital compensation of channel variation

Digital de-multiplexing

Timing for Synchrotron Light Source:

\(f_{rf} = 352 \text{ or } 500 \text{ MHz}, \ f_{\text{rev}} \approx 1 \text{ MHz} \)
LIBERA Digital BPM Readout: Digital Signal Processing

Digital Down Conversion
- for data reduction

Digital Low Pass Filter
- output for turn-by-turn data
- fast out with ≈10 kHz rate
 - e.g. for closed orbit feedback

Digital Low Pass Filter
- slow out with ≈10 Hz

Turn-by-turn acquisition:
- Triggering ADC with $f_{rev} \approx 1$ MHz

Timing for Synchrotron Light Source:
- $f_{rf} = 352$ or 500 MHz, revolution $f_{rev} \approx 1$ MHz

Remark: For p-synchrotrons direct ‘baseband’ digitalization with 125 MS/s due to $f_{rf} < 10$ MHz

From I-Tech LIBERA Specification
Amplitude-to-Time Normalizer Schematics

Remark: Design for LHC with $f_{rf}=40$ MHz and ≈ 900 locations
Partly comparable to traditional AM/PM modulation

From G. Vismara, CERN, DIPAC 1999
Amplitude-to-Time Normalizer Description

General functionality for Amplitude-to-time Normalizer:

- Bipolar signals A, B are split into two branches
- One branch is delayed by T_1
- The delayed signal of A is added to the direct branch of B and vice versa
- The zero crossing time depends on the signals ratio and varies in opposite directions for two branches; it can vary up to a maximum of T_1
- Zero-crossing detector converts to time → start of logical pulse ⇔ zero crossing
- Delay of channel D by T_2
- AND produces time overlap of channel C and D
- Position information is given by $\Delta t = 2 * T_1 [(A - B)/(A + B)] + T_2$
- **Requirement:** Bunch separation > $T_1 + T_2$

Advantage: reduction of 2 channels and cables, high input dynamics, auto-trigger

Disadvantage: requires specialized and tightly time-adjusted electronics, no intensity signal

Remark:
Comparison of BPM Readout Electronics (simplified)

<table>
<thead>
<tr>
<th>Type</th>
<th>Usage</th>
<th>Precaution</th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadband</td>
<td>p-sychr.</td>
<td>Long bunches</td>
<td>Bunch structure signal Post-processing possible Required for fast feedback</td>
<td>Resolution limited by noise</td>
</tr>
<tr>
<td>Log-amp</td>
<td>all</td>
<td>Bunch train >10μs</td>
<td>Robust electronics High dynamics Good for industrial appl.</td>
<td>No bunch-by-bunch Possible drifts (dc, Temp.) Medium accuracy</td>
</tr>
<tr>
<td>Narrowband</td>
<td>all synchr.</td>
<td>Stable beams >100 rf-periods</td>
<td>High resolution</td>
<td>No turn-by-turn Complex electronics</td>
</tr>
<tr>
<td>Narrowband +Multiplexing</td>
<td>all synchr.</td>
<td>Stable beams >10ms</td>
<td>Highest resolution</td>
<td>No turn-by-turn, complex Only for stable storage</td>
</tr>
<tr>
<td>Digital Signal Processing</td>
<td>all</td>
<td>Several bunches ADC 125 MS/s</td>
<td>Very flexible High resolution Trendsetting technology for future demands</td>
<td>Limited time resolution by ADC → undersampling (complex or expensive)</td>
</tr>
<tr>
<td>Ampl.-to-Time Normal. and AM→PM</td>
<td>(all)</td>
<td>Limited f<sub>rf</sub> Low bunching factor</td>
<td>Only 2 channels High dynamics</td>
<td>Special electronics No intensity signal A bit exotic</td>
</tr>
</tbody>
</table>
Remark: Calibration of BPM Center by k-Modulation

The **accuracy** can be improved by ‘k-modulation’ → alignment of the BPM with respect to the axis of the quadrupoles

The accuracy can be improved by ‘k-modulation’ → alignment of the BPM with respect to the axis of the quadrupoles.

At LEP measured 1997 for different bumps

![Graph showing the relationship between BPM and orbit at quad in millimeters.](image)

Beam Position Monitor:
Detector Principle, Hardware and Electronics

Outline:
- Signal generation → transfer impedance
- Consideration for capacitive shoe box BPM
- Consideration for capacitive button BPM
- Other BPM principles: stripline → traveling wave, inductive → wall current, cavity → resonator for dipole mode
- Electronics for position evaluation
- Some examples for position evaluation and other applications: closed orbit, tune, bunch capture, energy at LINAC
- Summary
Close Orbit Measurement

Detected position on a analog narrowband basis \rightarrow closed orbit with ms time steps

Example from GSI-Synchrotron:
Detecting the bunch position on a turn-by-turn basis the tune can be determined:
Fourier transformation of position data
→ tune within 2000 turns corresponding ≈5 ms time resolution

Beam parameters at GSI Synchr.:
U^{73+} acc. 11 → 250 MeV/u
within 500 ms,
Noise excitation corresponding $\Delta Q=0.04$
of power 1.5 W

Form U. Rauch, GSI
The sensitivity of a BPM Σ-signal by narrowband processing is higher as for a dc-transformer (with ≈1 μA on 1 kHz bandwidth).

Sum-Signal after mixing with f_{rf}: $I_{beam} > 10$ nA on 1 kHz bandwidth

But:
- Only for bunched beams
- Only relative measurement:
 → Signal strength depend on bunch shape i.e. frequency component!

Beam parameter: U^{73+},

11 MeV/u → 1 GeV/u
Example: After multi-turn injection, the bunch formation is critical to avoid coherent synchrotron oscillations \(\rightarrow\) emittance enlargement

\[f_{\text{rf}} \text{ shift by 0.2\% of nominal value} \]
\[\Rightarrow \text{Coherent oscillation} \]

Matched \(f_{\text{rf}} \) \(\Rightarrow\) no oscillation

Required accuracy here: \(\Delta f_{\text{rf}} = 1 \text{ kHz} \) or \(\Delta f_{\text{rf}} / f_{\text{rf}} = 0.1\% \)

Form H. Damerau, GSI
BPM for Energy Determination

Important tool for rf-phase and amplitude alignment:
Time-of-flight measurement with 100 ps resolution
(=‘phase measurement’)

Modern system:
Digitalization
+ correlation function calculation for noise reduction.

Example: TOF for 1.4 MeV/u behind IH-LINAC
Summary

With BPMs the center in the transverse plane is determined for bunched beams.
Coupling beam → detector given by the transfer impedance \(Z_t(\omega) \) signal estimation \(I_{beam} \rightarrow U_{im} \)

Different type of BPM:

Shoe box = linear cut: for p-synchrotrons with \(f_{rf} < 10 \text{ MHz} \)

 - **Advantage:** very linear. **Disadvantage:** complex mechanics

Button: Most frequently used at all accelerators, best for \(f_{rf} > 10 \text{ MHz} \)

 - **Advantage:** compact mechanics. **Disadvantage:** non-linear, low signal

Stripline: Taking traveling wave behavior into account, best for short bunches

 - **Advantage:** precise signal. **Disadvantage:** Complex mechanics for \(50\Omega \), non-linear

Cavity BPM: dipole mode excitation → high resolution 1\(\mu \text{m} \)@1\(\mu \text{s} \) ↔ spatial application

Electronics used for BPMs:

Basics: Resolution in space ↔ resolution in time i.e. the bandwidth has to match the application

Broadband processing: Full information available, but lower resolution, for fast feedback

Log-amp: robust electronics, high dynamics, but less precise

Analog narrowband processing: high resolution, but not for fast beam variation

Digital processing: very flexible, but limited ADC speed, more complex