

Specific Diagnostics Needs for Different Machines

Gero Kube DESY / MDI gero.kube@desy.de

- Introduction
- Diagnostics for Hadron Accelerators
- Diagnostics for Electron Accelerators

Accelerator Applications

Category	Number	
Ion implanters and surface modifications	7000	
Accelerators in industry	1500	
Accelerators in non-nuclear research	1000	
Radiotherapy	5000	
Medical isotopes production	200	
Hadron therapy	20	
Synchrotron radiation sources	70	
Nuclear and particle physics research	110	

 $\Sigma = 15000$

World wide inventory of accelerators.

U.Amaldi, Proceedings of EPAC 00, Vienna, Austria, 2000, p. 3

Beam Parameters and Diagnostics

• beam position

- orbit, lattice parameters, tune, chromaticity, feedback,...
- beam intensity
 - > dc & bunch current, coasting beam, lifetime, efficiencies,...

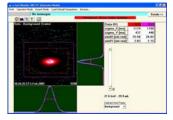
• beam profile

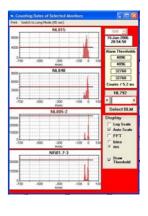
Iongitudinal and transverse distributions, emittances,...

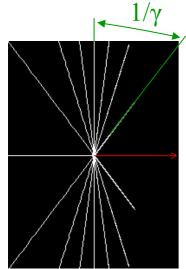
• beam loss

identify position of losses, prevent damage of components,...

• beam energy


- mainly required by users,...
- luminosity (collider)
 - key parameter, collision optimization...


and even more: charge states, mass numbers,...



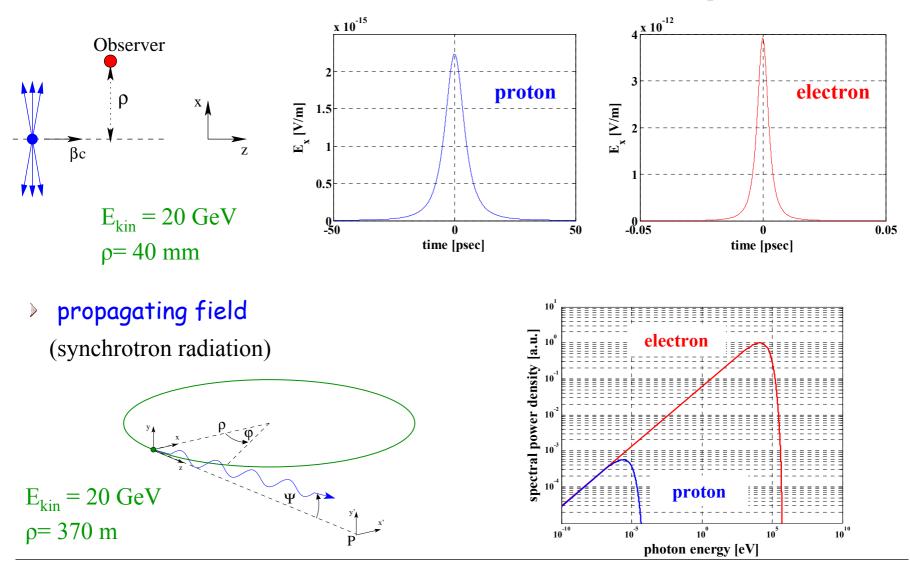
- influence of particle electromagnetic field
 - <u>non-propagating fields</u>, i.e. electro-magnetic influence of moving charge on environment
 - \rightarrow beam transformers, pick-ups, ...
 - propagating fields, i.e. emission of photons
 - \rightarrow synchrotron radiation monitors, (OTR), ...

particle electromagnetic field

relativistic contracion characterized by Lorentz factor

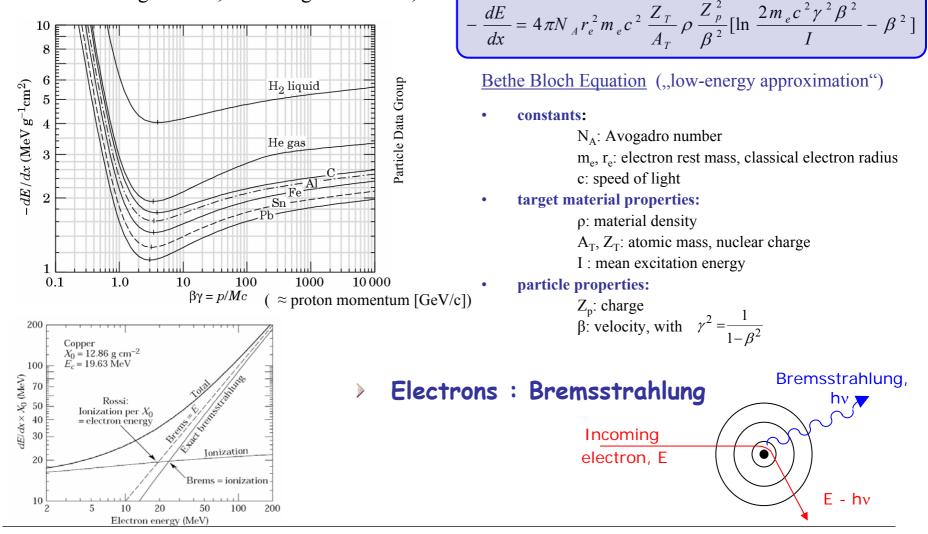
electric field lines in LAB frame

$$\gamma = E / m_0 c^2$$


E : total energy $m_0 c^2$: rest mass energy

proton:
$$m_p c^2 = 938.272$$
 MeV
electron: $m_e c^2 = 0.511$ MeV

non-propagating field


transverse electrical field components

Gero Kube, DESY / MDI

- Coulomb interaction of charged particle penetrating matter
 - \rightarrow viewing screens, residual gas monitors, ...

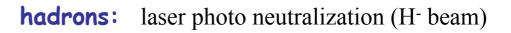
Gero Kube, DESY / MDI

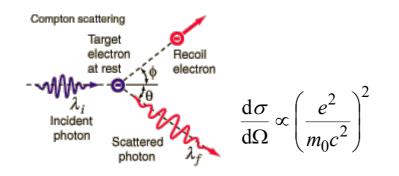
CAS 2008 (Dourdan), May 29, 2008

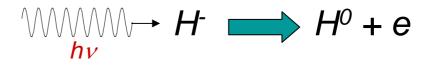
- nuclear or elementary particle physics interactions
 - \rightarrow beam loss monitors, luminosity monitors...

electrons

- simple (point) objects
- interaction cross sections into final states can be calculated precisely


hadrons


- constituent nature (collection of quarks and gluons)
- interaction cross sections not precisely calculable


• interaction of particles with photon beams

 \rightarrow laser wire scanners, Compton polarimeters, ...

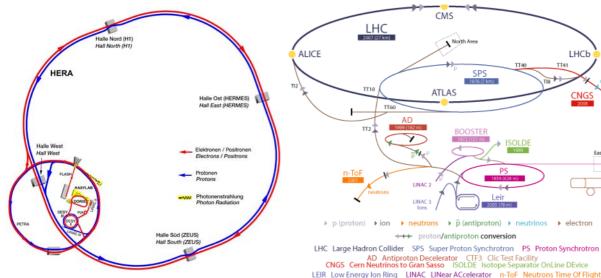
electrons: Compton scattering

applied for high power H⁻ beam profile diagnostics

Conclusion

hadron / electron machines

- \Rightarrow difference in signal generation and underlying physical principles
- distinguish between hadron / electron beam diagnostics
- program
 - Hadron Accelerators
 - \rightarrow Collider, Storage Ring
 - incl. Injector Chain (Linac, Injector Synchrotron, Transfer Line)
 - \rightarrow Spallation Neutron Source
 - \rightarrow Hadron Therapy Accelerator
 - **Electron Accelerators**
 - \rightarrow Circular Collider
 - \rightarrow Synchrotron Light Source (3rd Generation)
 - \rightarrow Linac based Free Electron Laser
 - \rightarrow Outlook...


Hadron Collider (Storage Ring)

LHC

TT2

HERA @ DESY

LHC @ CERN CMS

North Area

ATLAS

→++ proton/antiproton conversion

AD Antiproton Decelerator CTF3 Clic Test Facility CNGS Cern Neutrinos to Gran Sasso ISOLDE Isotope Separator OnLine DEvice

ΔD

LINAC 2

LINAC 3

SPS

1976 (7 km)

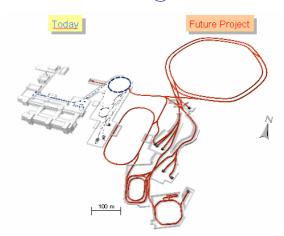
LHCb TT41

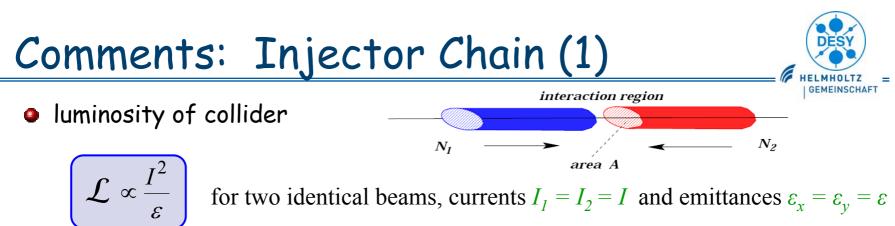
CNGS

collider key parameter:

luminosity L

(collider performance)




 σ : cross section (property of interaction)

FAIR @ GSI

modern hadron collider (storage ring) with high beam energy

- superconducting magnets to achieve required particle bending ▶.
 - \rightarrow parts of diagnostics located in cold vacuum
 - \rightarrow beam-loss monitor system for quench protection required
- long injector chain to reach final energy
 - \rightarrow pre-accelerators / transfer lines with different beam properties
 - different requirements for beam diagnostics

 \Rightarrow small beam emittances preferable

- beam emittances in circular machines
 - <u>lepton beams</u>: formation of *equilibrium emittances* because of *radiation damping* and *quantum excitation* due to synchrotron radiation
 - hadron beams: synchrotron radiation emission very much suppressed because of large particle masses
 - \Rightarrow emittances essentially determined in the injector chain
- consequences for beam diagnostics in injector chain

i) accurate beam characterization already important in low energy machinesii) minimum disturbing instrumentation in order to avoid emittance blow up

 \Rightarrow

Comments: Injector Chain (2)

• normalized emittance ε_N conserved (Liouville)

absolute emittance:

$$\varepsilon = \frac{\varepsilon_N}{\beta \gamma}$$

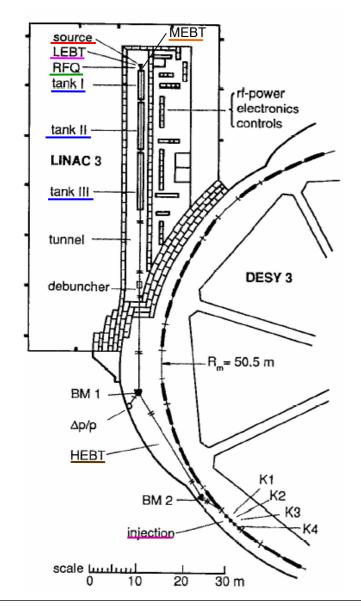
ith
$$\beta \gamma = \frac{pc}{m_0 c^2}$$

W

(LHC:
$$\varepsilon_{\rm N} = 3.75 \text{ mm mrad}$$
)

x 1450

x 15


- adiabatic shrinking with increasing beam energy example LHC injector chain
 - > end of Linac II
 > extraction SPS
 > maximum energy LHC
 7000 GeV
 → βγ = 7460
- consequences for beam diagnostics
 - large emittances:
 - i) large beam spots and divergences
 - ii) tight mesh of focusing magnets (little space for instrumentation)

Iow energies:

- i) particles have small magnetic rigidity $B\rho \rightarrow easy$ to bend
- ii) change of particle speed with acceleration
- iii) space charge effects (especially heavy ions beams)
- iv) high energy deposition in matter (Bethe-Bloch)

Source and Injector Linac

• example: H⁻ Injector Linac @ DESY

• H⁻ Sources:

18 keV magnetron source and rf-driven volume source

• Low Energy Beam Transport (LEBT)

beam matching to acceptance of RFQ

• Radio Frequency Quadrupole (RFQ)

acceleration from 18 keV up to 750 keV

- Medium Energy Beam Transport (MEBT) beam matching to acceptance of Linac
- H⁻ Linac (Tank I III)

conventional Alvarez Linac, end energy $E_{kin} = 50 \text{ MeV}$

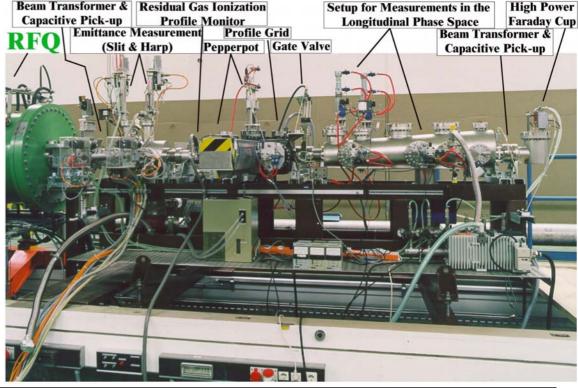
• High Energy Beam Transport (HEBT)

meaure beam properties for Linac tuning match beam to synchrotron acceptance

Injection

H⁻ multi-turn injection using stripper foil (\rightarrow p conversion)

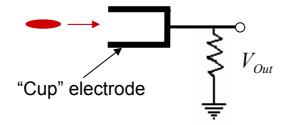
Source and Linac Instrumentation


• key devices for

- > adjusting beam transport through linac sections
- tuning the RF system (phase, amplitude,...)
- indicate operating status
- \rightarrow permanently installed diagnostics beamline behind linac sections
- \rightarrow moveable diagnostics test bench

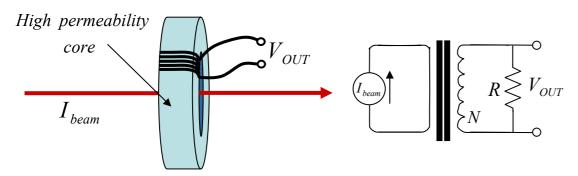
(allows full 6d phase space characterization after each section)

Photo GSI Darmstadt



Linac: Current and Transmission

• destructive: Faraday cup



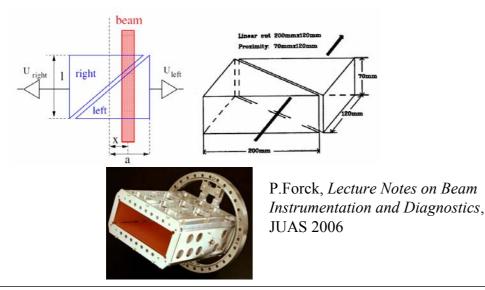
low energy particles stopped in material (→ Bethe Bloch)
very low intensities (down to 1 pA) can be measured

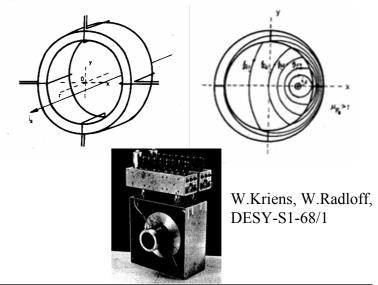
non destructive: current transformer

beam acts as single turn pimary winding of transformer

> measuring AC component of beam current

courtesy: F. Sannibale (LBNL)


J.Rodriguez et al., Proc. of EPAC 2004 Lucerne, Switzerland, 2798


Linac: Beam Position

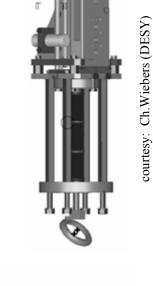
- position information via electric, magnetic, or electromagnetic field
- large bunch lengths, low acceleration frequencies
 - ▶ beam spectrum contains low frequencies (typically kHz 100 MHz)
 - requires high sensitivity of pick-up at these frequencies
- small signals (non-propagating field with low γ)
 - > capture as much field lines as possible, i.e. large electrodes

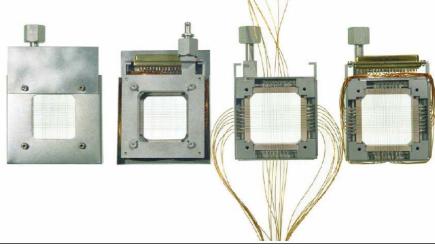
capacitive pick-up

inductive pick-up

Gero Kube, DESY / MDI

CAS 2008 (Dourdan), May 29, 2008




Linac: Transverse Beam Profile (1)

• luminescent screens

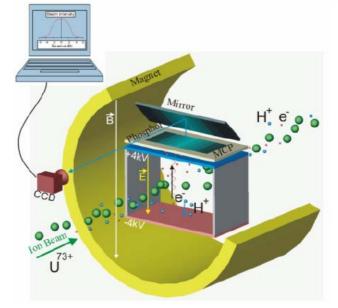
- destructive method
- ▶ part of deposited energy results in excited electronic states \rightarrow light emission (CCD)
- used also for beam position (instead of BPMs)
- high energy deposition (→ Bethe Bloch)
 especially critical for heavy ion machines
- degradation of screen material
- profile grid, harp, secondary emission monitor
 - less destructive method
 - <u>grid:</u> wires in both transversal planes
 <u>harp:</u> wires in one transversal plane
 <u>SEM:</u> strips, larger surface than wire

P.Forck, Lecture Notes on Beam Instrumentation and Diagnostics, JUAS 2006

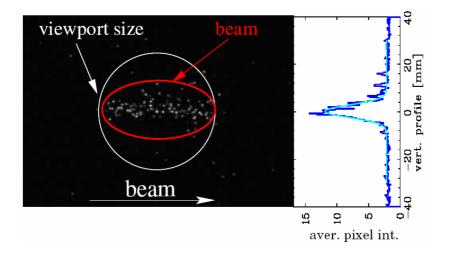
ZrO₂

C.Bal et al., Proc. of DIPAC 2005 Lyon, France, 57

BN



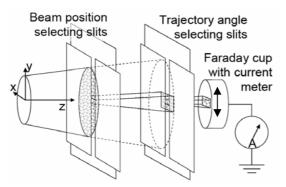
Linac: Transverse Beam Profile (2)



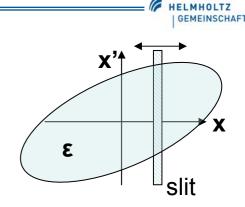
non-destructive: residual gas monitor

- beam interaction with residual gas
 - \rightarrow creation of residual gas ions and electrons
- electrostatic field accelerates ionization products towards
 Microchannel Plate
 - \rightarrow secondary electron generation (multiplication ~10⁶)
- readout via phosphor screen and CCD (optical) or via wire array and guide field (electrical)
- variant: residual gas fluorescence monitor

T.Giacomini et al., Proc. BIW 2004, p.286

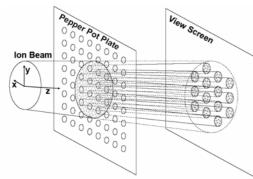

<u>residual gas fluorescence monitor:</u> image of a 2.5 mA Ar¹⁰⁺ beam at vacuum pressure of 10⁻⁵ mbar from GSI LINAC

P.Forck, *Lecture Notes on Beam Instrumentation and Diagnostics*, JUAS 2006


Linac: Transverse Emittance

• principle

- > slit produces vertical slice in transverse phase space
- measure intensity as function of x'
- ▶ moving of slit \rightarrow scan of phase space (N_x x N_x measurements)



M.P.Stockli, Proc. BIW 2006, p.25

- monitor with x' resolution instead of scan:
 SEM, profile grid,...
 - \rightarrow N_x measurements

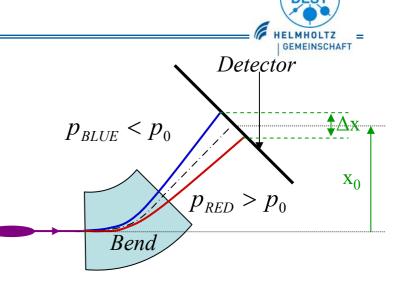

2-dimensional extension: Pepper pot

P.Forck, *Lecture Notes on Beam Instrumentation and Diagnostics*, JUAS 2006

 \rightarrow 1 measurement

 $N_x \ge N_{x^{*}}$ holes

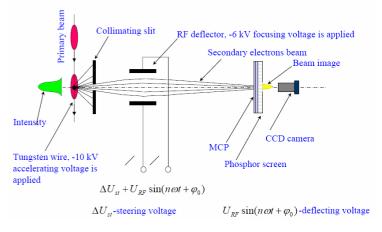
Linac: Longitudinal Plane



- dipole magnet spectrometer (small rigidity Bp)
- transformation of momentum (spread)

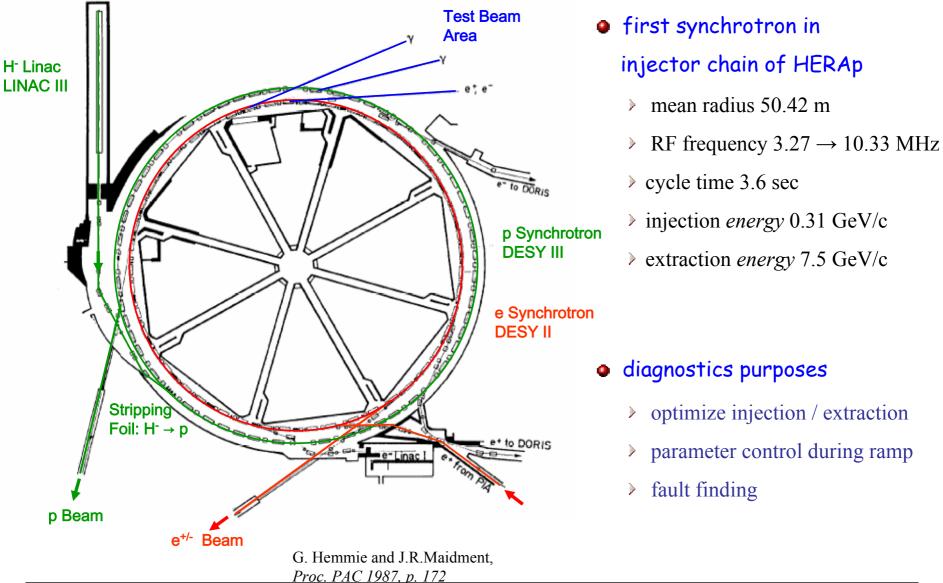
into position (spread)

spatial resolving detector (screen, SEM,...)


$$\frac{\Delta x}{x_0} = \frac{\Delta p}{p_0}$$

→ alternative method: time of flight (TOF)

• bunch shape and time distribution


- bunch shape monitor (BSM)
- primary beam hits thin wire (potential -10 keV)
- conversion of primary hadron beam into low energy secondary electrons
- RF deflector converts time into space coordinates spatial resolving detector

R.Pardo, RIA Diagnostics Development at Argonne

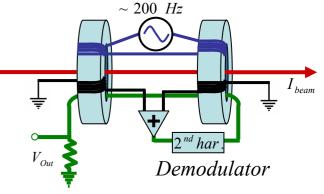
Injector Synchrotron: DESY III

DCCT principle

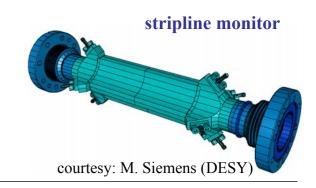
- measurement of injection efficiency
- (single bunch charge), average current and coasting beam

Injector Synchrotron Diagnostics (1)

- AC current transformer (ACCT)
- parametric or DC current transformer (DCCT)
- > circular accelerator: one monitor sufficient


beam position

beam current


- measurement of beam orbit (oscillation, closed orbit,...)
- position monitors
 - \rightarrow usually 4 per betatron oscillation (phase shift 90°)
- > large bunch lengths, low acceleration frequencies
 - \rightarrow high sensitivity pick-up at these frequencies
 - DESY III: inductive pick-ups

other schemes: shoe-box types (capacitive)

higher acceleration frequencies and energies: striplines

courtesy: F. Sannibale (LBNL)

CAS 2008 (Dourdan), May 29, 2008

Injector Synchrotron Diagnostics (2)

orbit

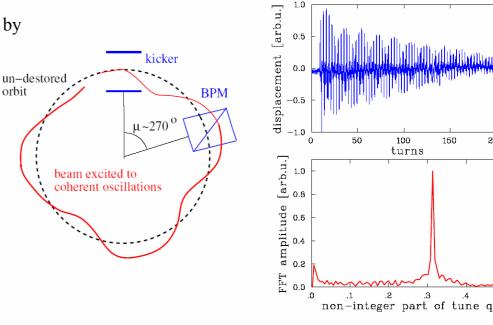
tune

- eigenfrequency of betatron oscillations in circular machine
- > characteristic frequency of magnet lattice, produced by strength of quadrupole magnets

principle

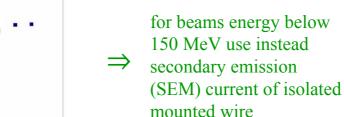
- excitation of coherent betatron oscillations (kicker)
- observation of dipole moment due to (coherent) transverse beam oscillation (primary observable: time sequence of turn-by-turn beam position)
- **FFT** of response

comments


- > excitation leads to emittance blow-up
 - small excitation required \rightarrow
 - high pickup sensitivity necessary
- high space charge at injection (acceptance occupied)
 - \rightarrow excitation can lead immediately to particle losses

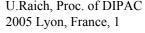
P.Forck, Lecture Notes on Beam Instrumentation and Diagnostics, **JUAS 2006**

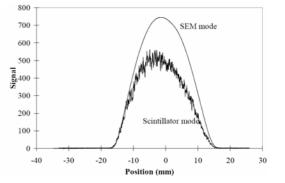
- **no** tune measurements in standard operation
- tune measurements only in dedicated machine studies
 - reproducible set-up of machine



200

Gero Kube, DESY / MDI


800


secondary particle shower intensity in dependence of primary beam energy

vacuum pressure in sycnchrotron much better (10⁻¹⁰mbar) than in linac/transfer line (10⁻⁶ - 10⁻⁸ mbar)

Injector Synchrotron Diagnostics (3) transverse profiles / emittances

- screens (destructive)
 - \rightarrow for commissioning, if doubts about signals from other monitor
- **wire scanners** (less destructive)

 π threshold

400

Kinetic energy (MeV)

residual gas monitor (non-destructive)

600

- thin wire quickly moved across the beam (1 m/sec)
- simultaneous detection of secondary particle shower outside vacuum chamber with scintillator/photo-multiplier assembly

25000

20000

.sti 15000

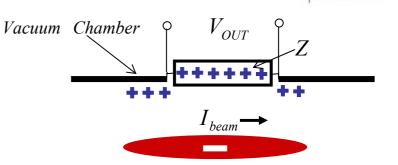
arbitrary u 00001

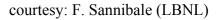
5000

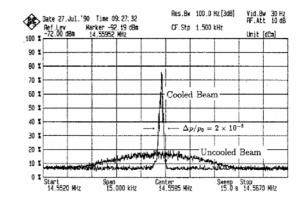
0

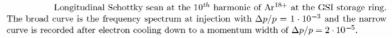
200

Injector Synchrotron Diagnostics (4)

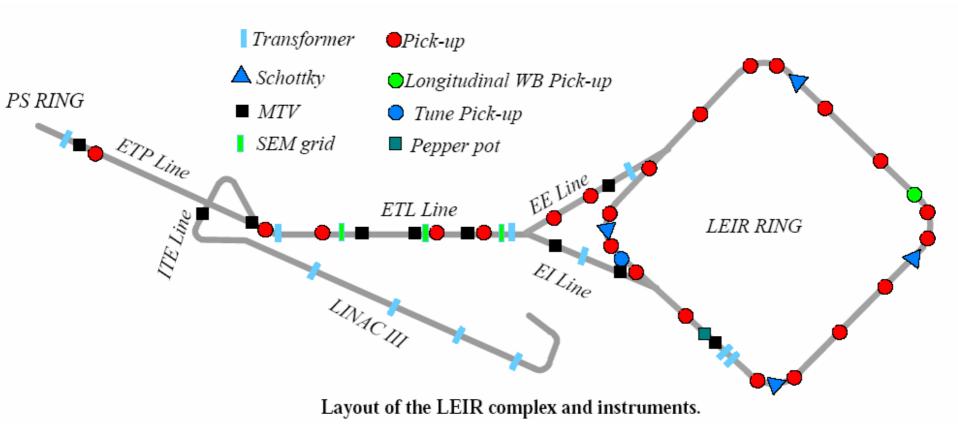

- > measure bunch length and longitudinal oscillations
- > wall current monitor
 - \rightarrow offers bandwidth up to a few GHz


losses


- indication of beam loss in specific critical places
 - \rightarrow optimization of injection and extraction
- beam loss monitors


comment: pbar and heavy ion machines

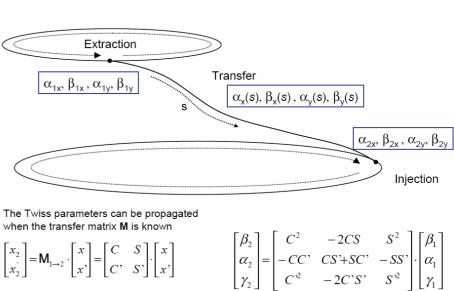
- source emittance worse, adiabatic emittance shrinking not sufficient for final beam quality
 - \rightarrow emittance improvement (for bunched beams) by electron cooling
- smaller cooling time at smaller beam energy
 - \rightarrow cooling performed typically in low energy synchrotron
- Schottky diagnostics
 - → exploit individual particle behavior (Schottky noise) in beam spectrum



P.Forck, Lecture Notes on Beam Instrumentation and Diagnostics, JUAS 2006

(Low Energy Ion Ring)

C.Bal et al., Proc. of DIPAC 2005 Lyon, France, 258


Transfer Line Diagnostics

transfer line

linking circular machines while matching the optical beam parameters

- > adjust beam transport
 - control transfer efficiency
 - \rightarrow AC current transformers
 - control beam position (steering)
 - \rightarrow BPMs and/or screens (distance ~ 90° phase advance)
- > determine beam quality
 - transverse emittance via beam profiles
 - > measure beam size versus quadrupole field strength using one device
 - > measure beam size using multiple measurement devices for fixed optics
 - → screens, residual gas monitors,...
- protect machine
 - control of beam losses, machine interlock

B.Goddard, CAS 2004 (Baden)

\rightarrow beam loss monitors

Storage Ring (Collider) Diagnostics

• intensity

bunch charge, stored dc current: lifetime, coasting beam

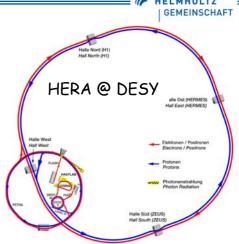
• orbit

- lattice parameters (co): comparison between design and real machine
- injection: elimination of mismatches (oscillations)

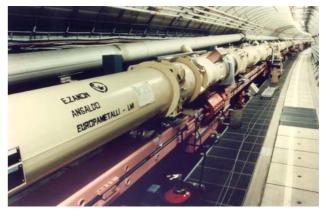
• tune, chromaticity, coupling

working point: avoid instabilities and losses

• beam distribution, emittance


- beam profile: control of beam quality for luminosity
- injection mismatch: optimization of injection
- > instabilities: observation of shape oscillations

Iuminosity


count rate in experiments: tuning of collision at IP

energy

cms energy for particle production

required B field ⇒ superconducting magnets

• quench protection

loss monitors: prevent damage of magnets

Gero Kube, DESY / MDI

Storage Ring Diagnostics: Remarks

- superconducting magnets and consequences
 - cold environment because of liquid He
 - HERA @ 4.4 K, LHC @ 1.8 K
 - consequence for beam diagnostics
 - \rightarrow beam instruments in cold environment
 - → careful instrument design keeping in mind minimum heat transfer from beam instruments to the environment (e.g. by HOM heating)
- Beam Pipe Beam Pipe Beam Pipe Beam Pipe Beam Pipe Helt Exchanger Pipe Beam Pipe Helium-II Vessel Superconducting Bus-B Iron Yoke Non-Magnetic Collars Vacuum Vessel Radiation Screen Thermal Shield Thermal Shield
- → no intercepting diagnostics in (close to) cold sections because particle shower may lead to magnet quenches
- \rightarrow protect beam intercepting monitors against possible misuse, i.e. interlock system

common strategy

- > concentration of beam instrumentation in straight sections (*insertions*) without need for particle bending
 - \rightarrow most instruments can be placed in warm environment
- > only BPMs (which has to be placed around the ring for closed orbit) partly in cold environment

CAS 2008 (Dourdan), May 29, 2008

Number = 4767 Teste: 16 04.02.07 23:01:22 BKRXPHERACO

91.027 [mA]

14.904

429.30 m

5.74 m

RUN END IN ABOUT 15 MINUTE/S

Storage Ring Diagnostics (1)

intensity

ACCT

- bunch charge, filling pattern: AC current transformer (ACCT)
- mean current: DC or parametric current transformer (DCCT)

Status: Lumi Run

Status: Lumi Bur

Energie: 27.59 GeV

Energie: 920.05 GeV

Clear Peakhold

Alle Stute 1

Stule 2 Stule 3

Stufe 4

Stufe 5

hunches

zahl der Bun

150

153

examples: from HERA p diagnostics

383

100

583

116

66.66

13.36

HERAe

BKRXPHERACON04 21.08.2005 06:57.00

HERAp 😡

• coasting (unbunched) beam:
$$I_{cb} = I_{DC} - \sum_{i}^{c} I_{AC,i}$$

> life time:
$$\frac{1}{\tau(t)} = -\frac{1}{N} \frac{d\Lambda}{dt}$$

919.125 [GeV/c]

27.611

[GeV/c]

INTERAD HERAD

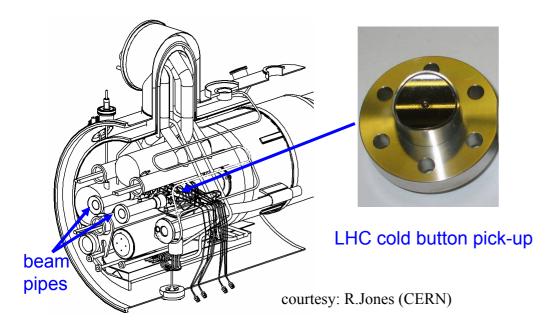
HERAe

sec H1/ZEUS 🚘

DCCT

Storage Ring Diagnostics (2)

orbit, trajectory, oscillations


- BPMs: for cold and warm environment
- choice of type depends on:


linearity, dynamic range, resolution

 \rightarrow stripline monitor, button electrode pick-up

LHC resolution requirement (full beam intensity):

50 µm rms (trajectory), 5 µm rms (orbit)


HERA p orbit display

courtesy: S.Vilcins (DESY)


Storage Ring Diagnostics (3)

- tune (chromaticity, coupling)
 - \rightarrow defines working point of accelerator
 - **principle**: transverse beam excitation
 - \rightarrow measure turn-by-turn beam position \rightarrow FFT
 - **constraint:** minimize emittance blow up due to excitation

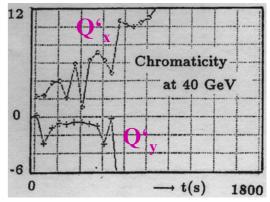
- \rightarrow high sensitivity of pick-up detector & minimum disturbing excitation scheme
- **excitations:** i) tune kicker: kick method, simple and robust (typically for commissioning)

ii) tune shaker: continuous excitation \rightarrow monitoring and feedback loop

• comment: passive methods (without external excitation)

Schottky diagnostics: Schottky spectrum contains informations about (incoherent) tune, chromaticity,... >

Storage Ring Diagnostics (4)



- tune, chromaticity: dynamic effects in superconducting storage rings
 - s.c. eddy currents / persistent currents have strong influence on performance of storage ring at injection energy
 - \rightarrow affect *multipole components* of s.c. dipole magnets

(HERA: most important sextupole component b₃)

- \rightarrow are *not really persistent* (decay with time)
- \rightarrow need correction
- persistent currents are *reinduced to their full strength* on the first steps of the ramp, approaching the original hysteresis curve
 - \rightarrow "Snap Back"
- ⇒ reliable control during ramp

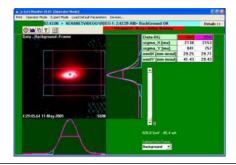
HERA p beam at injection energy

courtesy: B.Holzer (DESY)

... besides online measurements of multipole components, correction tables, ...

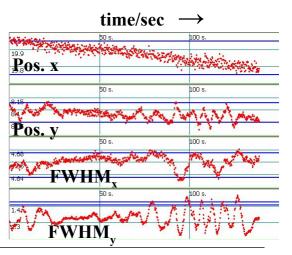
- feedbacks on tune and chromaticity
- Phase Locked Loop (PLL): solution forseen for LHC
- "Brain Locked Loop" (BLL): realized at HERA
 - \rightarrow 6 knobs (2 x tune, 2 x chromaticity, 2 x coupling)
 - \rightarrow experienced shift crew (at least two people)

Storage Ring Diagnostics (5)


• transverse beam distribution, emittance

single pass: simple and robust, high sensitivity (single or few bunches only), modest demand on accuracy

→ luminescent screens


- Few pass: study of injection mismatch (betatron, dispersion matching on first turns observing shape oscillations) turn by turn acquisition (10-20 turns), modest demand on accuracy only moderate beam blow up allowed, energy deposition in screen is critical
 - → **Optical Transition Radiation (OTR)** using thin foils
- circulating beam: evolution of the rms beam size, emittance measurements, tilt due to coupling
 - minimum beam blow-up (\rightarrow non-intercepting measurements), high accuracy
 - → residual gas (luminescence) monitors
 - \rightarrow **flying wires** (1 m/sec, typically for calibration)
 - \rightarrow synchrotron radiation monitor

(from fringe field or undulator)

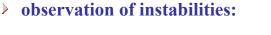
HERA p SyLi monitor: moving p collimators

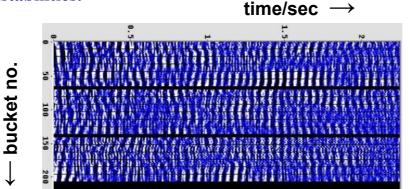
HERA p SyLi monitor: screenshot

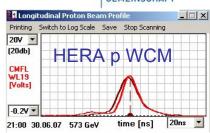
Storage Ring Diagnostics (6)

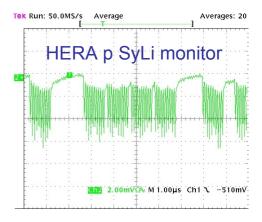
Iongitudinal beam distribution, time structure

- > **longitudinal profile:** determination of classical longitudinal bunch parameters
 - \rightarrow bunch center of gravity, rms bunch length, core distribution


<u>examples:</u> HERA p @ 920 GeV, $\sigma = 1.6$ nsec \rightarrow wall current monitor


LHC @ 7 TeV, $\sigma = 0.28 \dots 0.62$ nsec \rightarrow synchrotron light monitor


- ▶ **abort gap monitoring:** continuous monitoring that rise time gap of dump extraction kicker is free of particles; particles in gap would not receive proper kick when dump system is fired \rightarrow damage of machine components
 - → synchrotron light monitor
- > detection of ghost bunches:


may disturb BPM system read-out or physics data taking

→ synchrotron light monitor

HERA p: long. multibunch instability

Storage Ring Diagnostics (7)

Iuminosity

- need: determines accelerator performance parameter for optimization of beam collisions at IP
- **principle**: choose reaction channel with known cross section σ_{rc}

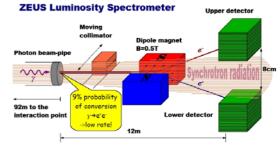
count rate measurement for events $N_{\rm rc}$ of this channel

 \rightarrow luminosity: $\int \mathcal{L} = \dot{N}_{rc} / \sigma_{rc}$

HERA luminosity at H1

- **problem:** hadronic cross sections are not precisely calculable because of constituent particle nature
 - \rightarrow reaction rates do not serve as absolute luminosity monitors, i.e. only for optimization
 - \rightarrow absolute luminosity determination complicated task, often duty of experiments

 $e \ p \to \gamma \ e^{\cdot} \ p^{\cdot}$

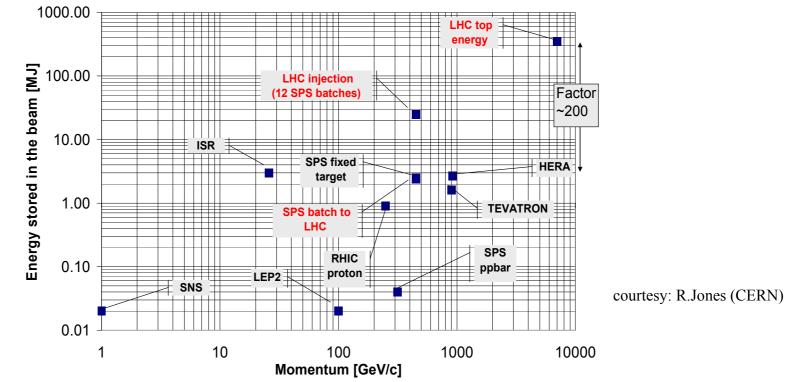

example: ep collider HERA, absolute luminosity determination via

Bremsstrahlung (Bethe-Heitler):

 \rightarrow cross section well known

energy

- > importance: hadron-hadron collider absolute energy determination relatively unimportant
 - \rightarrow constituent nature of hadrons (quarks and gluons) which share beam momentum
 - \rightarrow total energy in reaction only loosely related to beam energies
- measurement: beam momentum via dipole current is sufficient

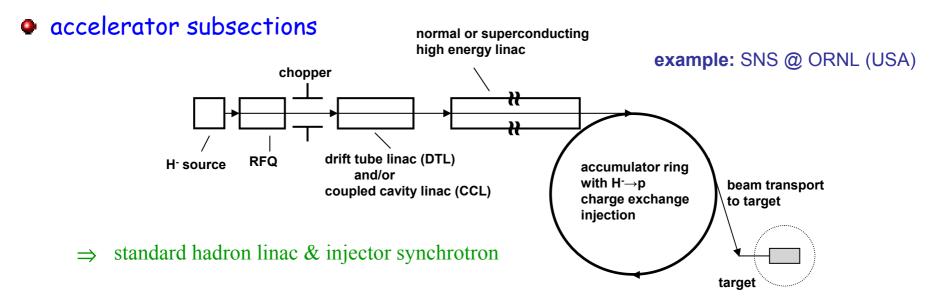


Storage Ring Diagnostics (8)

quench protection / loss monitors

stored beam energy:

> quench level of a cable: HERA @ 820 GeV


 $\Delta T_{c} = 0.8 \text{ K}$ between He bath temperature $T_{b} = 4.4 \text{ K}$ and quench temperature $T_{cs} = 5.2 \text{ K}$!

- beam loss monitors
 - \rightarrow gas ionization chambers, PIN diodes, photomultipliers & scintillators, SE multiplier tubes...

Spallation Neutron Source

• general features

- proton accelerator, production of ~30 neutrons/proton at about 1 GeV beam energy
- pulsed operation allows time resolved experiments
- high beam power in the order of 1 ... 2 MW

- implications on beam diagnostics
 - **handling of high beam power**

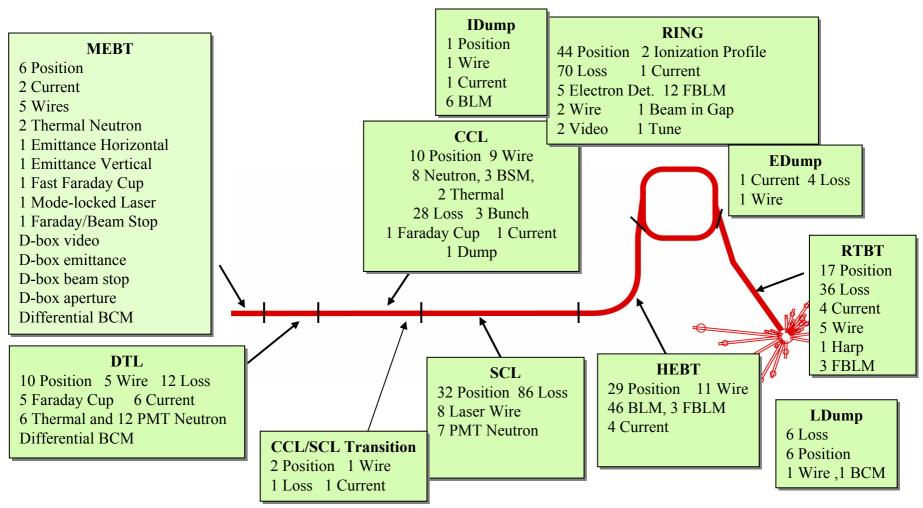
High Power Diagnostics

- achieving high beam power
- systems to help understanding dynamics of intense beams
 - → beam halo measurements, ...
- measuring high power beams
- diagnostic systems that can measure the fundamental beam parameters during full power operation challenging: transverse beam profiles
 - → laser systems for H⁻ beams, ionization profile monitors for p beams, ...

protecting the diagnostics

- protect diagnostic systems that cannot survive high power beams
 - → machine protection interfaces for intercepting devices, ...

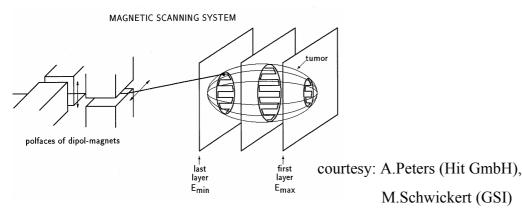
• protecting the facility


- > diagnostics that protect the facility from beam-induced damage or activation
 - → loss monitors, beam-on-target diagnostics, ...

T.Shea (SNS), talk held at EPAC04

SNS Diagnostics

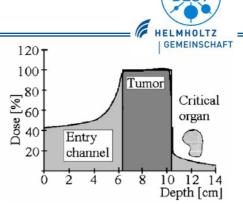
courtesy: T.Shea (SNS)

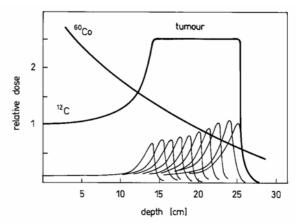

Hadron Therapy Accelerator

hadron therapy

- damage DNA of tumor cells with high-energetic ion beams
- > requirement: constant and high dose profile at tumor

low dose at critical organs

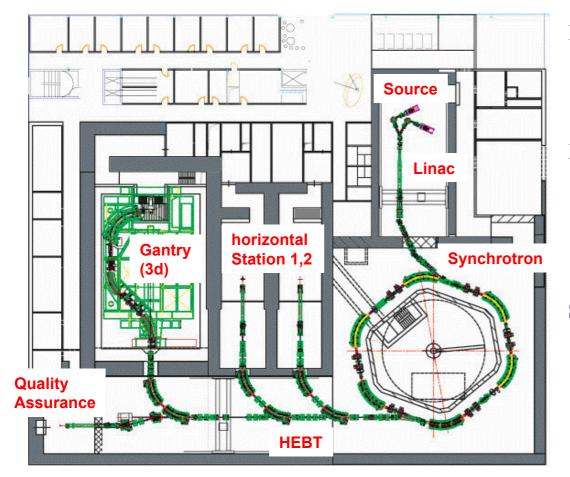

> 3d scanning of beam over tumor region


2d excitation of scanner magnets: varying beam position

• implications on beam diagnostics

- non destuctive diagnostics during patient treatment
- precise determination of **position, size**

P.Bryant, Rev. Sci. Instr. 73 (2002) 688


control of penetration depth (location of Bragg peak) via energy, adjusting beam intensity

energy, intensity

Accelerator Layout

• example: Heidelberger Ionenstrahl-Therapiezentrum (HIT)

courtesy: A.Peters (Hit GmbH), M.Schwickert (GSI)

Ion Source

- ▶ 2 ion sources (p, H₂, C⁴⁺, O⁶⁺)
- ▶ typical 130 µA C⁴⁺ DC-Beam

Linac

- > Four-rod RFQ-structure (400 keV/u)
- → IH-DTL (7 MeV/u)
- → 30µs-Macropulse: 50 µA C⁶⁺

Synchrotron

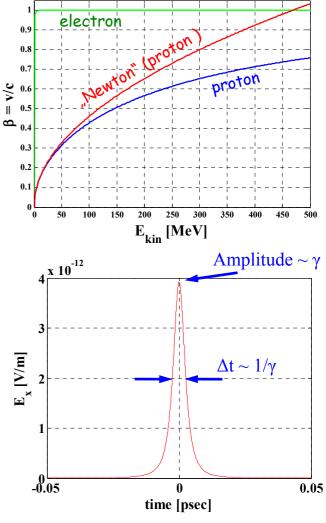
- >64 m Circumference
- Magnetic rigidity: 6.6 Tm
- ▶ E= 48 220 MeV/u (proton)
- > E= 88 430 MeV/u (carbon)
- ▶6×10⁸ Carbon

Reminder: Lepton Properties

- properties of electrons/positrons
 - simple point objects
 - small rest mass

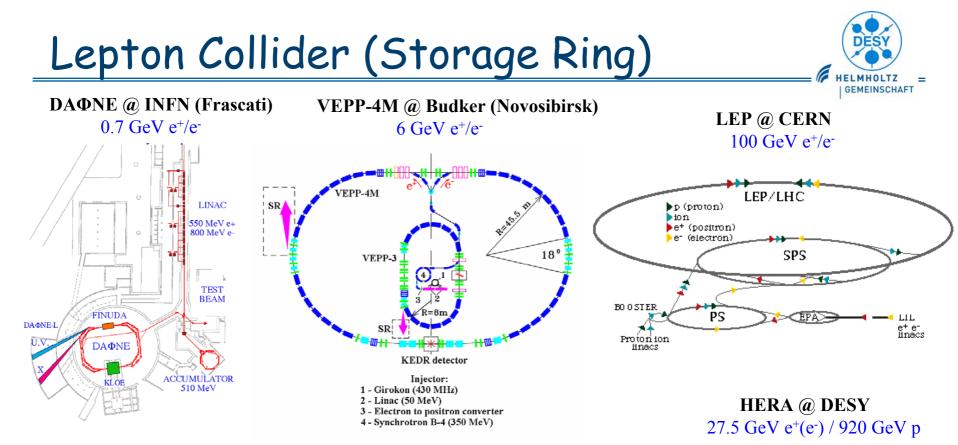
 $m_e c^2 = 0.511 \text{ MeV}$

- consequences
 - > particles are already relativistic at a few MeV
 - typically at first accelerating section
 - particle produce strong electromagnetic field

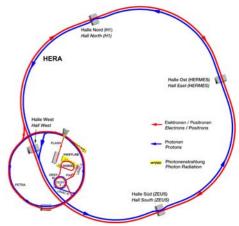

scale factor:

or:
$$\gamma = E / m_e c^2$$

- Iong range of transverse non-propagating fields
- emission of synchrotron radiation (bend motion)


 $\Rightarrow \begin{array}{l} \text{influence on particle dynamics} \\ \text{impact on beam diagnostics} \end{array}$

...discussion in context with different accelerator types



non-propagating transverse el. field

- general comments on lepton colliders (storage rings)
 - standard, normal conducting dipole magnets
 - \rightarrow sufficient to achieve final energies
 - Iong injector chain with different beam properties
 - \rightarrow relaxed requirements, particle dynamics with radiation

CAS 2008 (Dourdan), May 29, 2008

SR Emission in circular Accelerators

• emitted power

$$P_{\gamma} [\text{MW}] = 8.85 \cdot 10^{-2} \frac{E^4 [\text{GeV}^4]}{\rho [\text{m}]} I [\text{A}]$$

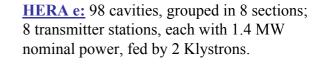
HERA e (I=50 mA, E=27.5 GeV, ρ =550 m): P_{γ} = 4.6 MW

protect accelerator components from direct SR illumination !

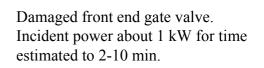
energy loss per turn

Gero Kube, DESY / MDI

 $\Delta E \left[\text{keV} \right] = 88.5 \frac{E^4 \left[\text{GeV}^4 \right]}{\rho[\text{m}]}$


HERA e @ 27.5 GeV: $\Delta E = 92$ MeV

average radiated power restored by RF


cavity provides voltage to accelerate particles back to nominal energy

 \Rightarrow requires typically a large number of cavities

power is real!

Consequences of SR Emission

Iarge number of cavities

- \rightarrow cavity represents high impedance \rightarrow excitation of (multibunch) instabilities
 - \Rightarrow need for feedback systems

• high SR power

- \rightarrow heat load critical \Rightarrow protection of machine and instrumentation, necessity of cooling
- $\bullet\,$ high total cavity voltage V_r for loss compensation & lifetime
 - > rms bunch length

$$\sigma_t = \frac{\alpha_c - 1/\gamma^2}{2\pi f_s} \sigma_\delta \propto 1/\sqrt{V_r}$$

(above transition energy)

 \Rightarrow smaller bunch lengths, i.e. beam spectrum with higher frequencies

• beam emittance

- - \Rightarrow emittance blow-up not critical, relaxed requirements for injector chain

e⁻/e⁺ Injector Complex @ DESY

- Thermionic Gun
 - 150 keV, 3 µsec long pulses @ 50 Hz
- Chopper and Collimator

shortening of long gun pulses (60/20 nsec for e+/e-)

• Prebuncher

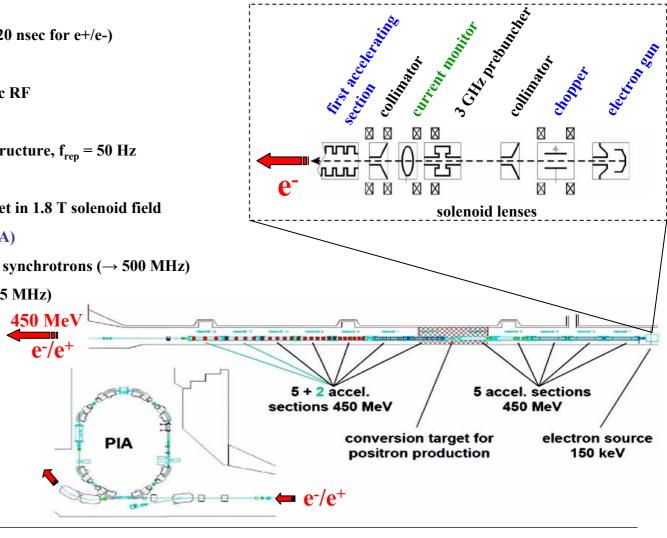
single cell cavity, matching to linac RF

• Linac Sections

3 GHz (S-band) travelling wave structure, $f_{rep} = 50$ Hz

• Converter for e⁺ Production

7 mm (2 rad. length) thick W target in 1.8 T solenoid field

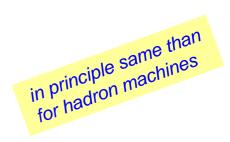

• Positron Intensity Accumulator (PIA)

re-formation of time structure for synchrotrons (\rightarrow 500 MHz)

two RF systems (10.4 MHz and 125 MHz)

3 GHz Linac Section

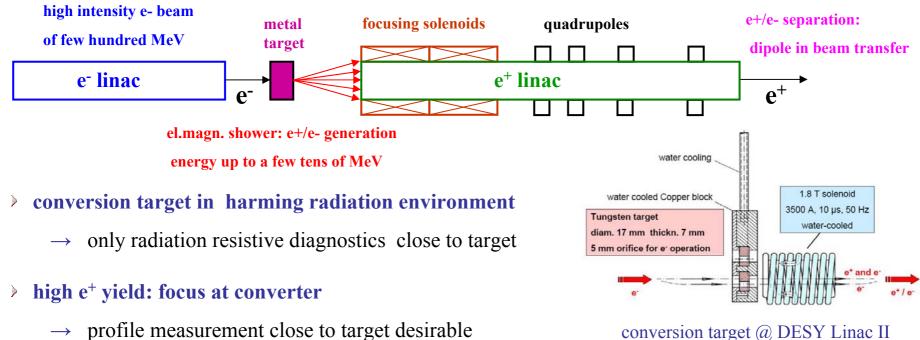
Linac Front-End

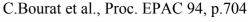

Injector Complex Instrumentation

• key devices for

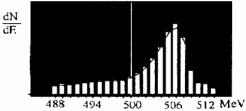
- > adjusting beam transport through injector sections
- tuning the RF system
- indicating operating status
- overview: standard instrumentation and their tasks
- transfer efficiency
 - \rightarrow current transformers
- **beam position for beam steering**
 - \rightarrow screens (low energy deposition)
 - \rightarrow BPMs (sensitivity for long linac bunch trains)
- > beam profiles for beam optics matching
 - → fluorescent/OTR screens (in straight section)
 - \rightarrow synchrotron light (accumulator ring)

- transverse emittance
 - → multi-screen or k-modulation of quads (in straight section)
 - \rightarrow synchrotron light (accumulator ring)
- Iongitudinal plane
 - → magnet spectrometer for energy (-spread)
 (diagnostics beamline)
 - → time structure via RF deflector, wall current monitor, coh. radiation diagnostics




Comment: e⁺ Production

principle of positron production


K.Hübner, Hyperfine Interactions 44 (1988) 167

- -> prome measurement close to target desirable
- \rightarrow secondary emission monitors (no screens because of degradation)
- **)** matching the energy acceptance ($\Delta E/E$) of accumulator ring
 - \rightarrow i) spread from conversion process, ii) microbunch length
 - → precise measurements of energy spread and bunch length

GEMEINSCHAF

CAS 2008 (Dourdan), May 29, 2008

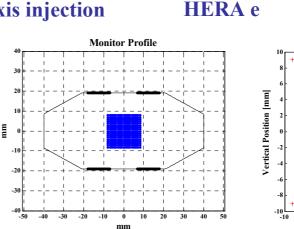
Storage Ring Diagnostics: Remarks

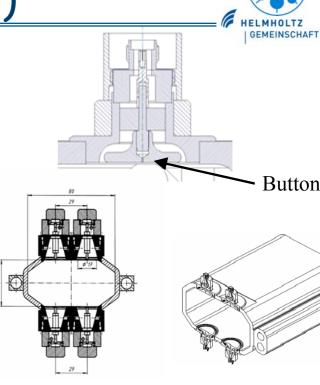
- walk along injector chain to storage ring / collider
 - no fundamental difference in requirements compared to hadron machines
 - no fundamental difference in instrumentation between e-linac and storage ring >
 - \rightarrow direct descripton of needs for storage ring diagnostics
- diagnostics system of storage ring / collider

 - BPMs >
 - tune measurement
 - feedback system >
 - synchrotron light diagnostics
 - energy measurement ۶
 - luminosity monitors Þ
 - beam loss monitors
 - machine protection system Þ

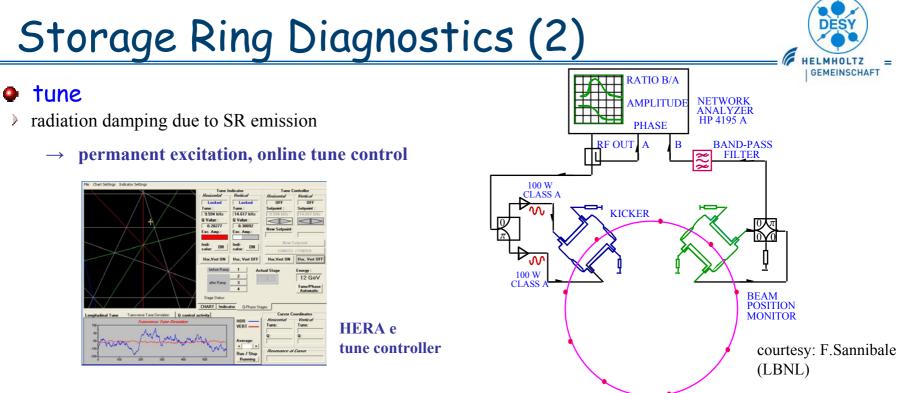
- current monitors (AC and DC) \rightarrow bunch charge, stored dc current orbit
 - working point \rightarrow
 - stabilization \rightarrow
 - beam profile, emittance \rightarrow
 - cms energy for particle production \rightarrow
 - collider key parameter, optimization \rightarrow simple point objects, i.e. absolute luminosity
 - control losses, optimization \rightarrow not only protection, also for machine physics
 - temperature control,... protection of sensitive components (heat load)

Storage Ring Diagnostics (1)

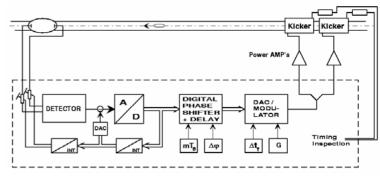

- beam position monitors (BPMs)
 - > short electron bunches $\mathcal{O}(10 100 \text{ psec})$
 - \rightarrow use of **button pickups**
 - synchrotron radiation emission
 - → pickups mounted **out of orbit plane**
 - vacuum chamber profile not rotational-symmetric
 - \rightarrow horizontal emittance » vertical emittance


(SR emission in horizontal plane)

 \rightarrow injection oscillations due to off-axis injection

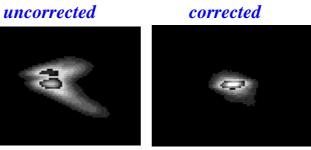

(allows intensity accumulation)

correction of non-linearities in beam position

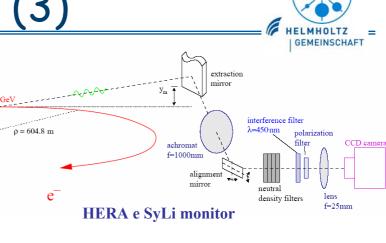


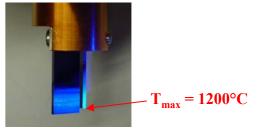
PEP II

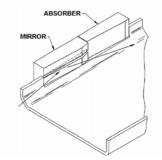
• feedback


- > long-range electromagnetic fields and short bunch lengths (\rightarrow broad beam spectrum)
 - \rightarrow fields act back on beam itself
 - → excitation of **coupled bunch instability**
- feedback system for damping instability:
 - i) detection system to measure beam oscillations
 - ii) signal processing unit to derive correction signal
 - iii) broad band amplifier and beam deflector to act on beam

HERA e transverse feedback


Storage Ring Diagnostics (3)


- transverse profile / emittance
 - imaging with synchrotron radiation (SR)
 - \rightarrow non-destructive profile diagnostics
 - > HERA e beam size: $\sigma_{hor} = 1200 \,\mu m$, $\sigma_{vert} = 250 \,\mu m$
 - \rightarrow resolution with **optical SR** sufficient
 - <u>problem:</u> heat load on extraction mirror (X-ray part of SR)
 - \rightarrow material with low absorption coefficient (Be)
 - \rightarrow cooling of extraction mirror
 - → not sufficient to prevent image distortion...


Photon Factory, LEP: adaptive optics

courtesy: T.Mitsuhashi (KEK)

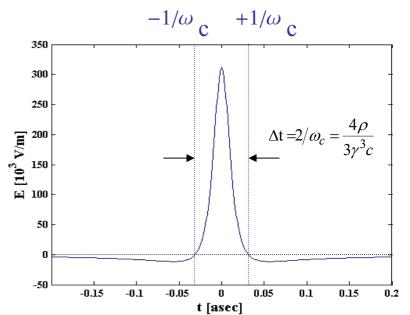
<u>**PEP II:</u>** slotted mirror</u>

A.S.Fisher et al., Proc. EPAC 1996, TUP098L

solutions:

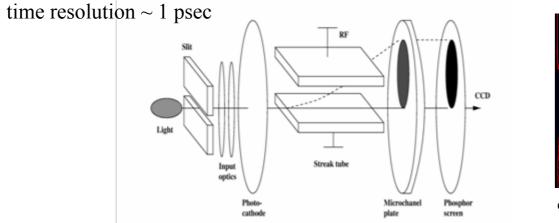
HERA e: observation out of orbit plane

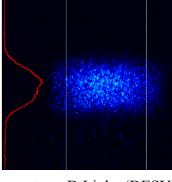
Storage Ring Diagnostics (4)



Iongitudinal profile

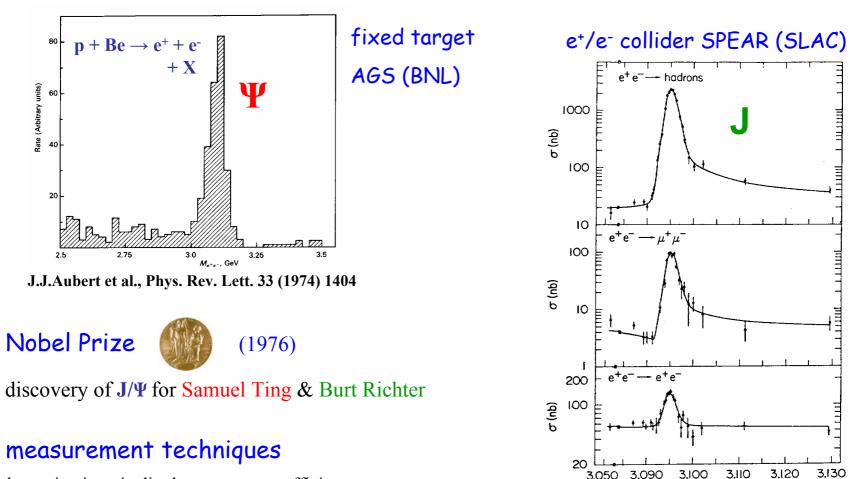
- SR single particle time structure
 - \rightarrow calculation for 6 GeV electron,
 - electric field vector in orbit plane


time structure of SR suitable


 $\Rightarrow \quad \text{to resolve longitudinal profiles} \\ \mathcal{O}(10\text{-}100 \text{ psec})$

streak camera

 \rightarrow

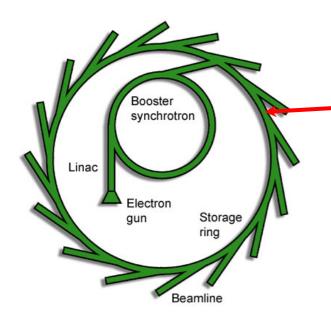


courtesy: D.Lipka (DESY)

Storage Ring Diagnostics (5)

beam energy: e⁺/e⁻ are point objects, i.e. reaction energy directly related to beam energy

- determination via dipole current not sufficient
- > schemes: resonant depolarization or Compton backscattering


J.-E.Augustin et al., Phys. Rev. Lett. 33 (1974) 1406

ENERGY E_{CMS} (GeV)

Storage Ring based Light Sources

storage ring based 3rd generation light source

undulator: radiation source (PETRA III prototype undulator)

SOLEIL 2.75 GeV / **C** = 354 m

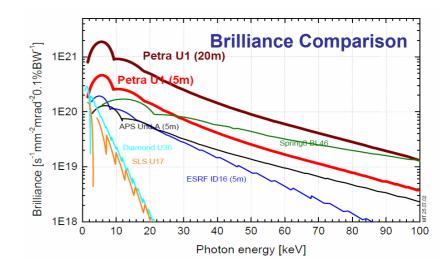
ESRF $6 \text{ GeV} / \mathbf{C} = 844 \text{ m}$

http://www.diamond.ac.uk/AboutDiamond/Diamondstep-by-step/default.htm

• storage ring: energy 1 - 8 GeV, circumfence $\mathcal{O}(100 - 2000 \text{ m})$

- \rightarrow insertion devices integrated part of storage ring (straight sections)
- \rightarrow user experiments at end of beamlines (~50-100m away from source)
- short injector chain
 - \rightarrow standard instrumentation

Light Sources: Remarks


- key parameter: spectral brilliance
 - measure for phase space density of photon flux
 - user requirement: high brightness
 - \rightarrow lot of monochromatic photons on sample
 - connection to machine parameters

$$B \propto \frac{N_{\gamma}}{\sigma_x \sigma_{x'} \sigma_y \sigma_{y'}} \propto \frac{I_{\text{beam}}}{\varepsilon_x \varepsilon_y}$$

- requirements for storage ring and diagnostics
 - i) <u>high beam current</u>
 - ➤ achieve high currents
 - cope with high heat load (stability)

\Rightarrow stability is critical issue

$$B = \frac{\text{Number of photons}}{[\text{sec}][\text{mm}^2][\text{mrad}^2][0.1\% \text{ bandwidth}]}$$

- ii) small beam emittance
- achieve small emittance (task of lattice designer)
- measure small emittance
- preserve emittance (stability)

Light Sources: Stability

- energy stability, suppression of energy widening effects
- cause: (long.) multibunch instabilities
- shift of radiation harmonics from undulator
 - \rightarrow intensity fluctuation, line broadening
- multibunch feedback systems ۶.

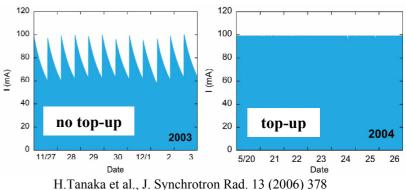
intensity stability 0

change in background conditions and thermal load on beamline and machine components >

A Primer, ed. H.Winick

- \rightarrow position stability!
- transy, multibunch instabilities \rightarrow multibunch feedback \rangle
- operation in top-up mode >
 - \rightarrow loss compensation by refill small amount of
 - charges in short time intervals

vast dynamic range for instruments, starting from injector chain


position stability

- intensity fluctuations, emittance dilution \rightarrow reduction of brilliance Þ
- orbit feedback systems including high resolution e BPMs and photon BPMs in beamlines >

1.0 17 mA, single Normalized photon flux - 152 mÅ, mult 0.8 0.6 0.4 0.2 0.0 Synchrotron Radiation Sources 445 450 440 430 435 425 420 Photon energy (eV)

undulator radiation (3rd harmonic) @ ALS

Example: stored current (1 week) @ Spring8

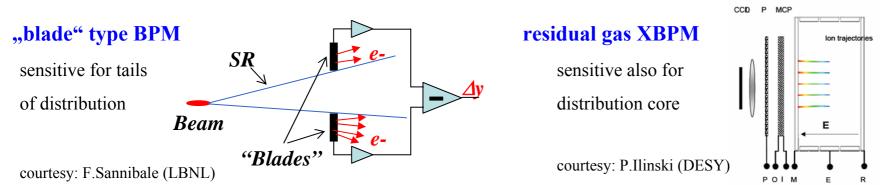
Light Sources: BPMs

high resolution e BPM

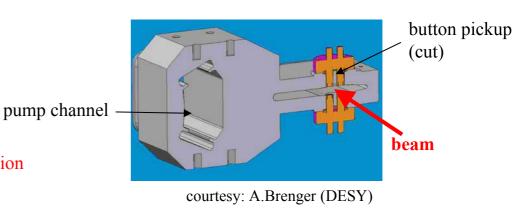
> typical stability tolerance: 20% emittance growth

<u>example</u>: position stability for PETRA III close to insertion devices (ID) $\Delta \sigma_{hor} = 2 \ \mu m, \ \Delta \sigma_{vert} = 0.3 \ \mu m$

BPM between canted IDs (PETRA III @ DESY)


• asymmetric chamber profile

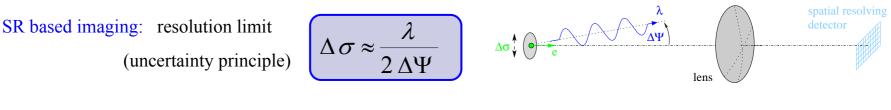
height: 7 mm, width: 83.5 mm


- \rightarrow avoid heat load (SR fan)
- correction of strong non-linearities in beam position

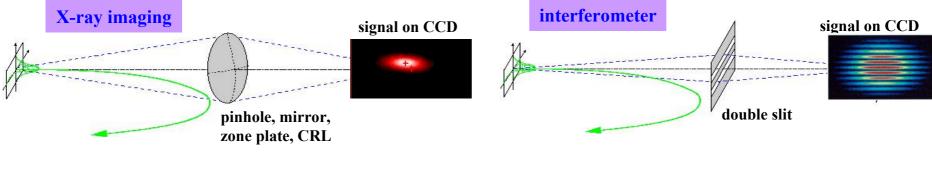
photon BPM

▶ location in user beamlines: two monitors (per plane) \rightarrow correction of position and angle

CAS 2008 (Dourdan), May 29, 2008


 $\frac{\Delta \varepsilon}{\varepsilon} = 2 \frac{\Delta \sigma}{\sigma} \rightarrow 10\% \text{ of the (1\sigma) beam size}$

Light Sources: Emittance Diagnostics



- emittance typical value $\epsilon_x = 1 \pi$ nm rad and 1% emittance coupling
- <u>principle:</u> synchrotron radiation based diagnostics
- <u>example</u>: $\sigma_{\text{hor}} = 40 \,\mu\text{m}, \, \sigma_{\text{vert}} = 20 \,\mu\text{m}$ (PETRA III @ DESY)

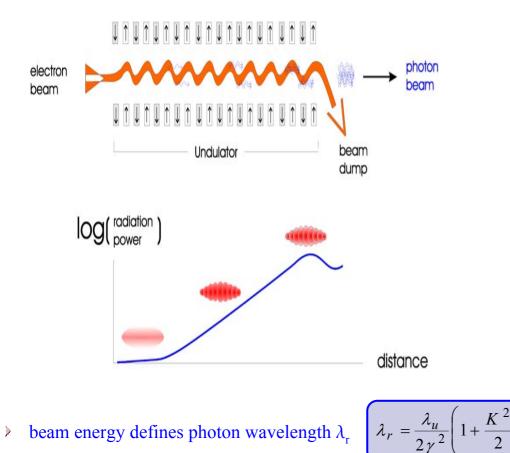
- optical imaging: $\lambda = 500 \text{ nm}$ and $\Delta \Psi \approx 1.7 \,\mu\text{rad} \implies \Delta \sigma_{\text{vert}} = 150 \,\mu\text{m}$
 - ⇒ resolution fully limited by uncertainty principle

widely used schemes for emittance diagnostics

 \Rightarrow dedicated diagnostics beamline

scanning device, 1 interferometer/plane

Gero Kube, DESY / MDI


Free Electron Lasers (FELs)

linac (single pass) based 4th generation light sources

Linac based Self Amplification of Spontaneous Emission (SASE) FELs

 $(\rightarrow$ no matter for diagnostics which FEL type)

Electron bunch modulated with its own synchrotron radiation field

- micro-bunching
- more and more electrons radiate in phase until saturation is reached

• SASE FEL projects

- ▶ FLASH (6 30 nm)
- ▶ European X-FEL (0.1 6 nm)
- ▶ SPARC (500 nm)
- ▶ LCLS (~ 0.15 nm)
- ▶ SCSS (~ 3.6 nm)....
- λ_u : undulator period
- K : undulator parameter (measure for field)

Gero Kube, DESY / MDI

FELs: Requirements (1)

high current density

sufficient energy transfer from electron beam to radiation field

natural scale: number of electrons per wavelength

requires additional bunch compression in order to increase current density

 $N_{e,\lambda} = \frac{I\lambda}{\rho c}$

extremely small bunch lengths O(< 100 fsec)

- good electron beam quality
 - energy spread

 $\frac{\sigma_e}{E} \approx 10^{-4}$

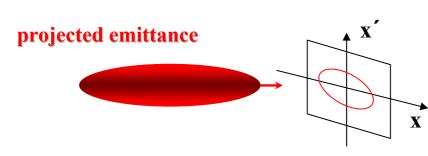
$$\varepsilon \leq \frac{\lambda}{4\pi}, \quad \varepsilon = \varepsilon_n / \beta \gamma$$

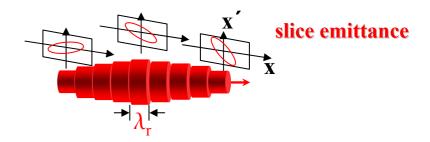
 $(\rightarrow \text{ high energy helps})$

high demands on 6-dimensional phase space

Magnetic chicane Low energy High energy

 $N_{e,\lambda} = 1 \implies I = \begin{cases} 0.5 \,\mu\text{A} & (\lambda = 100 \,\mu\text{m}) \\ 0.5 \,\text{A} & (\lambda = 0.1 \,\text{nm}) \end{cases}$

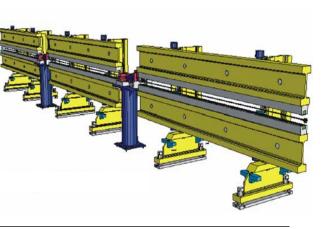

FELs: Requirements (2)


- comment: transverse emittance
 - \triangleright electrons slip back in phase with respect to photons by λ_r each undulator period

 $-2\frac{\Delta E}{2}$

 $\Delta\lambda$

 \succ FEL integrates over slippage length \rightarrow slice emittance of importance


stability

- \blacktriangleright energy stability \rightarrow wavelength stability
- position stability
 - \rightarrow overlap between beam and radiation in undulators

```
example: XFEL @ DESY
```

- length of undulator section: 100-150 m
- BPM position resolution:
 - $1 \mu m$ (single bunch), 100 nm (average over bunch train)
 - \rightarrow requires cavity BPMs

CAS 2008 (Dourdan), May 29, 2008

and arrival time stability

 \rightarrow for experiments

FELs: Comments

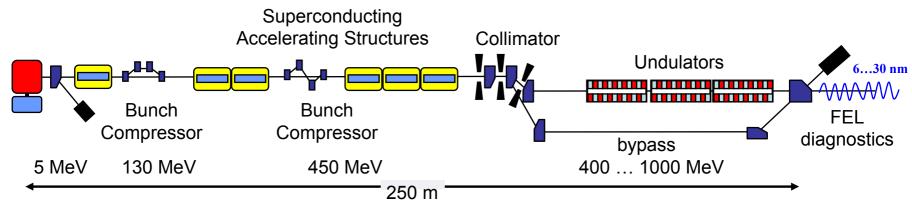
- linac-based FEL
 - ▶ no radiation damping \rightarrow beam quality determined already from the gun
 - \Rightarrow careful diagnostics and control of beam parameters

SASE FEL is not forgiving – instead of reduced brightness, power nearly switches OFF

accelerating structures

 \Rightarrow

> part of SASE FELs (will) use superconducting rf cavities


part of diagnostics (BPMs) in cold vacuum

particle-free environment


```
9 cell, 1.3 GHz Nb TESLA cavity
```

• SASE FEL: FLASH @ DESY

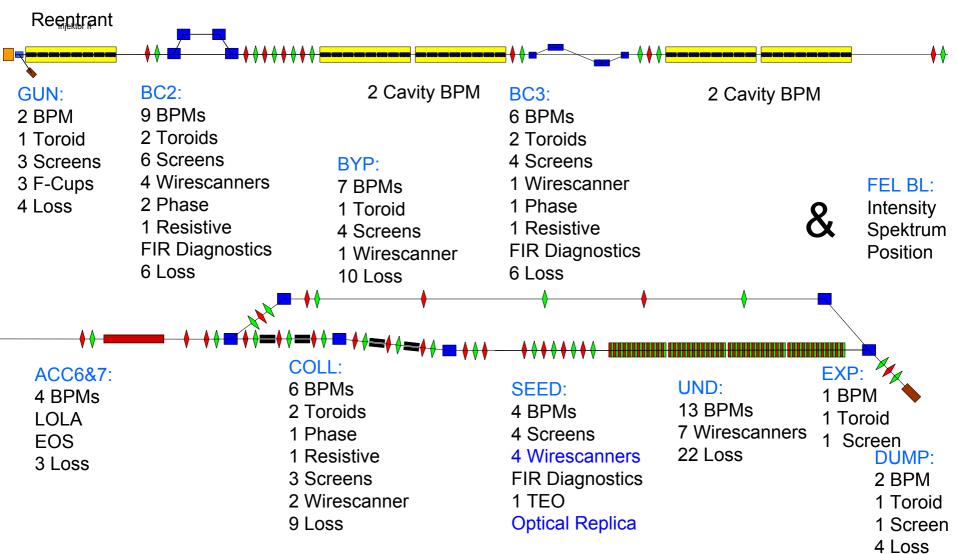
FEL Diagnostics: Overview

standard electron beam diagnostics to operate the linac

instrumentation to measure

- electron beam orbit
- bunch charge
- beam size

beam phase


energy and energy spread

fast protection system to shut-off the beam in case of high losses

- prevent damage on undulator (demagnetization) and vacuum system (leakage)
- diagnostics needed to control and optimize the FEL
 - **beam size / transverse emittance**
 - \rightarrow OTR/wire-scanner stations, resolution < 10 μ m
 - bunch length / longitudinal profile
 - \rightarrow bunch length < 100 fsec, reconstruction of bunch shape
 - slice emittance
 - **bunch compression** \rightarrow online signal for optimization of SASE process
- diagnostics needed for user experiments
 - characterization of radiation pulse (energy, spectral distribution)
 - > synchronisation (required for time-resolved experiments \rightarrow pump-probe)

FEL Diagnostics @ FLASH

courtesy: D. Nölle (DESY)

Gero Kube, DESY / MDI

FEL Diagnostics: Bunch Length/Profile

bunch form factor

 $\left(N+\frac{N(N-1)|F(\lambda)|^2}{2}\right)$

no. of particles per bunch

coherent radiation diagnostics

 $\frac{\mathrm{d}U}{\mathrm{d}\lambda} = \left(\frac{\mathrm{d}U}{\mathrm{d}\lambda}\right)$

single particle spectrum

principle: bunch length/shape dependent emission spectrum of coherent radiation)

with

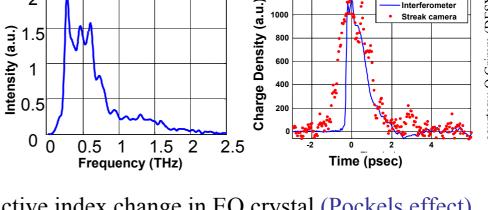
2

spectral decomposition and Fourier transform:

bunch length and shape

source: synchrotron radiation, transition radiation, diffraction radiation, Smith-Purcell radiation,...

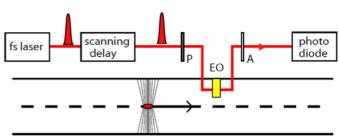
electro optical sampling (EOS)


principle: Coulomb field induces refractive index change in EO crystal (Pockels effect)

 \rightarrow effective polarization rotation proportional to Coulomb field

Coulomb field converted in opt. intensity variation

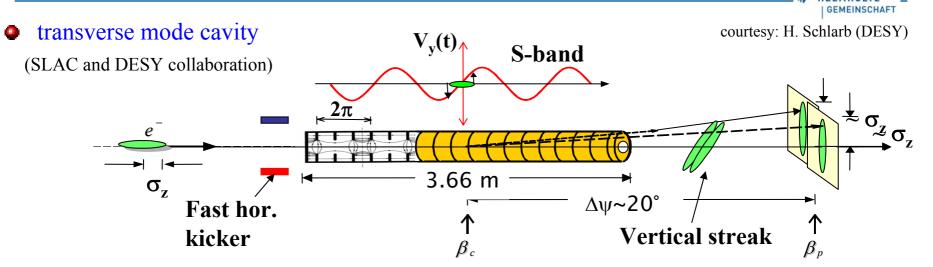
 \rightarrow laser + polarizer (P) + analyzer (A)


example: EOS using variable delay (simple scheme) more sophisticated: temporal, spectral, spatial encoding

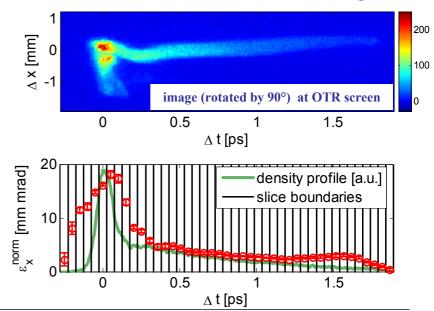
 $F(\lambda) = \int \mathrm{d}z \frac{S(z)}{S(z)} \mathrm{e}^{i\frac{2\pi z}{\lambda}}$

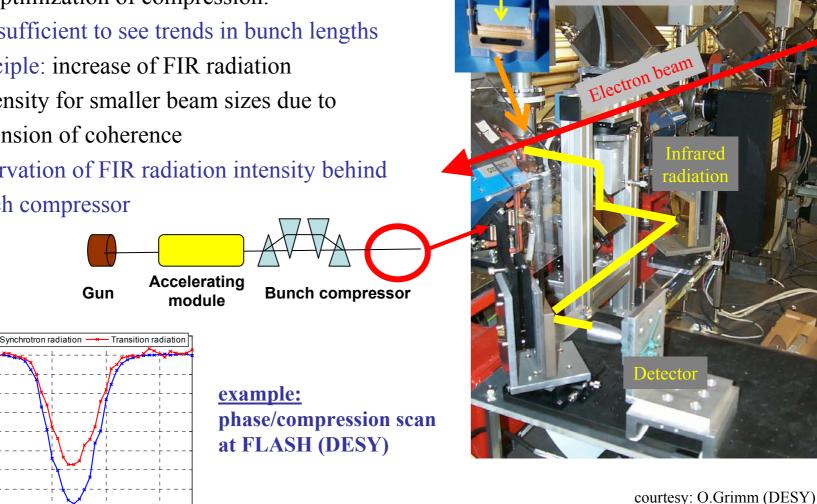
bunch profile

1000


courtesy: B. Steffen (DESY)

Interferometer


Streak camera


FEL Diagnostics: Slice Emittance

- Intra Beam Streak Camera':
 - → vertical deflecting RF structure (2.856 GHz) operated at zero crossing
- 'parasitical' measurement using hor. kicker and off-axis OTR screen
- vertical size of beam at imaging screen
 ⇒ bunch length
- horizontal size at imaging screen
 - \Rightarrow access to slice emittances

FLASH: slice emittance under SASE conditions @ 13.7 nm

for optimization of compression:

bunch compression monitor

- \rightarrow sufficient to see trends in bunch lengths
- principle: increase of FIR radiation intensity for smaller beam sizes due to extension of coherence
- observation of FIR radiation intensity behind bunch compressor

130

Gero Kube, DESY / MDI

120

Phase (deg)

125

115

-0.2

-0.4 -0.6

-0.

-1.4

-1.6

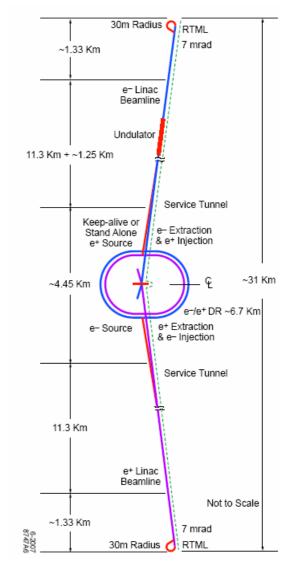
Detector signal (a.u.)

CAS 2008 (Dourdan), May 29, 2008

FEL Diagnostics: Bunch Compression

Transition/Diffraction Radiator

Outlook



- putting it all together...
 - ▹ injector linac, including e⁺ production
 - storage ring with opportunity of radiation damping
 - superconducting linac with stringent requirements for
 6-dimensional phase space
- ...and build a linear collider:

international linear collider

- 2 x 11 km long superconducting linacs, operating at 31.5 MV/m $\rightarrow e^{-}/e^{+}$ collisions at center-of-mass energies of 500 GeV
- circular damping rings for e^- and e^+ , incl. sc. damping wigglers
 - \rightarrow energy at damping rings: 5 GeV
- undulator-based e⁺ source
- single interaction point (IP), crossing angle 14 mrad

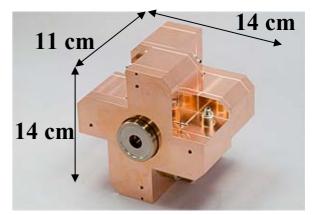
ILC Reference Design Report (2007)

International Linear Collider

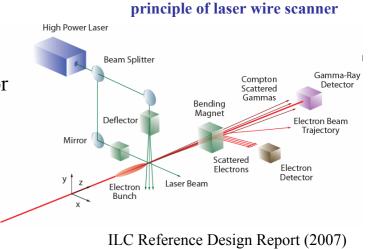
• key parameters (nominal values)

train repetition rate / Hz	5
bunches per train	2625
bunch spacing / nsec	369.2
train length / µsec	~ 970
particles per bunch / x 10 ¹⁰	2
normalized emittance at IP $\gamma \epsilon_{x,y}$ / mm mrad	10 / 0.04
r.m.s. beam size at IP $\sigma_{x,y}$ / nm	639 / 5.7
r.m.s. bunch length σ_z / μ m	300
power per beam at IP / MW	10.5
Luminosity \mathcal{L} 10 ³⁴ / cm ² / sec	2

- → measurement
- \rightarrow stability
- beam size
 - \rightarrow measurement
 - \rightarrow non-invasive


ILC Reference Design Report (2007)

ILC: Diagnostics



- beam position measurements with sub-µm resolution
 - Cavity BPMs for higher resolution applications
 - Iocation in cold and warm sections
 - variety of R&D activities for ILC BPMs at different laboratories
 - single bunch position resolution of ~20 nm achieved at ATF (KEK)
- non-invasive beam profile monitors
 - laser wire scanner
 - scanning a finely focussed laser beam across bunches
 - measure Compton scattered photons in downstream detector
 - photon rate as function of relative laser beam position
 - \rightarrow beam profile
 - optical diffraction radiation (ODR)
 - diffraction of particle Coulomb field at a slit

courtesy: T.Nakamura (Tokio University)

high resolution cavity BPM for ILC final focusing system

ILC: Diagnostics

INSTRUMENT	AREA						
requirements	e^{-}	e^+	DR	RTML	ML	BDS	
(e.g. resolution)	source	source					
Button/stripline BPM	69	400	2×747			120	
resolution (μm)	10-30	10-30	< 0.5			<100	
C-Band Cavity BPM (warm)		109		2×649		262	
resolution (μm)		< 0.1 - 0.5		< 0.1 - 0.5		< 0.1 - 0.5	
S-Band Cavity BPM (warm)						14	
resolution (μm)						< 0.1-0.5	
L-Band Cavity BPM (warm)				2×27		42	
resolution (μm)				<1-5		$<\!\!1-\!5$	
L-Band Cavity BPM (cold)				2×28	2×280		
resolution (μm)				~ 0.5 -2	$\sim 0.5-2$		
Laser-wire IP	8	20	2×1	2×12	2×3	8	
resolution (μm)	< 0.5 - 5	$<\!0.5-5$	< 0.5 - 5	< 0.5 - 5	< 0.5-5	< 0.5 - 5	
Wirescanner	12	8					
Optical Monitors	6	17	2×2	2×8		11	
DMC	3	4		2×2		$2 \pmod{2}$	
resolution $\Delta \mathrm{E} \sim \! 0.1\%$ / $\mathrm{s}_z \sim \! 100 \; \mu \mathrm{m}$							
Beam Current Monitors	7	11	2×1	2×2	2×3	10	
Beam Phase Monitor	4	2		2×3		2	
BLM (PMT/IC)	60/2	400/20	$2 \times 40/4$	$2 \times 75/2$	$2 \times 325/10$	100/10	
Feedback System	5	10	2×2	2×1	2×10	12	

ILC Reference Design Report (2007)