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RR/b

Cavity

Generator

IG

Z

P

C=Q/(Rw0)

Vgap

Beam

IB

L=R/(Qw0)
LC

b: coupling factor

R: Shunt impedance : R-upon-Q

Simplification: single mode

We have used this before 
when explaining the “fast 
feedback”
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Example: KEK photon factory 500 MHz         

- R as good as it gets -

this cavity optimized

pillbox

R/Q: 111 W 107.5 W

Q: 44270 41630

R: 4.9 MW 4.47 MW

Nose cones increase transit time factor,  round outer shape minimizes losses.

nose cone
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Voltage induced by a 
single charge q:

RR/b

Cavity

Beam

C=Q/(Rw0)

V (induced)
IB

L=R/(Qw0)LC
Energy deposited by a 

single charge q:

Impedance seen by the beam
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Vgap

gap voltage

Ploss

Power lost in the 
cavity walls

W

Energy stored 
inside the cavity
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 The beam current “loads” the generator, in the equivalent 
circuit this appears as a resistance in parallel to the shunt 
impedance.

 If the generator is matched to the unloaded cavity, beam 
loading will cause the accelerating voltage to decrease.

 The power absorbed by the beam is                       , the 

power loss                 .

 For high efficiency, beam loading shall be high. 

 The RF to beam efficiency is                             .
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 Resonance frequency

 Transit time factor

field varies while particle is traversing the gap

 Shunt impedance

gap voltage – power relation

 Q factor

 R/Q
independent of losses – only geometry!

 loss factor

Linac definitionCircuit definition
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IB

R3, Q3,w3R2, Q2,w2R1, Q1,w1

......

external dampers

n1 n3n2
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without dampers

with dampers
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electric field (@ 0º) magnetic field (@ 90º)

(only 1/8 shown)
(TM110)

12RF  II24 February, 2009



CERN Accelerator School,  Divonne 2009

For particles moving virtually at v=c, the integrated 
transverse force (kick) can be determined from the 
transverse variation of the integrated longitudinal 
force!

W.K.H. Panofsky, W.A. Wenzel: “Some Considerations Concerning the Transverse Deflection of Charged 

Particles in Radio-Frequency Fields”, RSI 27, 1957]

Pure TE modes: No net transverse force !

Transverse modes are characterized by

• the transverse impedance in w-domain

• the transverse loss factor (kick factor) in t-domain !
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inductive (loop) coupling, low self-inductance
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Example shown:
80 MHz cavity 
PS for LHC.

Color-coded:
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PEP II cavity
476 MHz, single cell,

1 MV gap with 150 kW, 
strong HOM damping,

LEP normal-conducting Cu RF cavities,
350 MHz. 5 cell standing wave + spherical 
cavity for energy storage, 3 MV
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example for 
capacitive 
coupling

cavity

coupling C
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• The R/Q of a single gap cavity is limited to some 100 W.

Now consider to distribute the available power to n

identical cavities: each will receive P/n, thus produce an 

accelerating voltage of              .

The total accelerating voltage thus increased, 

equivalent to a total equivalent shunt impedance of      . 

1 2 3 n

P/n P/nP/n P/n
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• Instead of distributing the power from the amplifier, 
one might as well couple the cavities, such that the 
power automatically distributes, or have a cavity with 
many gaps (e.g. drift tube linac). 

• Coupled cavity accelerating structure (side coupled)

• The phase relation between gaps is important!
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A 3 GHz Side Coupled 
Structure to accelerate 
protons out of cyclotrons 
from 62 MeV to 200 MeV

Medical application:
treatment of tumours.

Prototype of Module 1
built at CERN (2000)

Collaboration CERN/INFN/
Tera Foundation 
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This Picture made it to the title page of CERN Courier vol. 41 No. 1 (Jan./Feb. 2001)
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synchronous

2p

w L/c

speed of light line, 

w = b /c

p

p/2

pp/2 b L0

0

p/2

p

2p/3
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1 cm

30 GHz structure (CLIC)

11.4 GHz structure (NLC)
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Dimensions in mm
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¼ geometry shown

Input coupler

Output coupler

Travelling wave structure
(CTF3 drive beam, 3 GHz)

shown: Re {Poynting vector} 
(power density)
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-4.00
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0.000E+00 0.500 1.00 1.50 2.00 2.50

FRAME:   1 01/06/00 - 17:06:38 VERSION[V4.024] SICA32.DRD

SI: A+3,10,4, B-5,CELL-6,15

 A:  1.700E+01 MM, B:  3.703E+01 MM.

 FOR REF., E.J., JUNE 2000

X COMPONENT OF WAKE POTENTIAL IN V [INDIRECT CALC.]

OP-:4024

#1DGRAPH

ORDINATE: WAKET
COMPONENT: X

FIXED COORDINATES:
DIM...........MESHLINE
 X      11
 Y       1

ABSCISSA: GEOMWAKE
[BASE OF WAKET]

REFERENCE COORDINATE: S
VARY..........MESHLINE
FROM       0
 TO     2994

3 GHz SICA structure: Transverse wake suppression 

s [m]

transverse wake for 3 cells.

offset 10 mm,  2.5 mms

W  [V/pC]t
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“T18”  reached 105 MV/m!
“HDS” – novel fabrication technique
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 Different from DC, at RF the resistance 
is not exactly zero, but just very small. It 
is 

 The maximum accelerating gradient is 
normally limited by the maximum 
possible surface magnetic field (the 
“superheating field”, 180 mT for Nb, 
400 mT for Nb3Tn).

 Maximum acc. gradients are however 
obtained for Nb (ILC, ≈ 40 MV/m).

1.3 GHz
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10.2 MV/ per cavity
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25 -35 MV/m
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All this was replaced by the RFQ …
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Minimum Energy of a DTL: 500 keV (low duty) - 5 MeV (high duty)
At low energy / high current we need strong focalisation
Magnetic focusing (proportional to b) is inefficient at low energy. 
Solution (Kapchinski, 70’s, first realised at LANL):

Electric quadrupole focusing + bunching + acceleration
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The electrode modulation creates a longitudinal field component that creates the
“bunches” and accelerates the beam.
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Typical ranges (commercially available)
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MRF151G
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147 modules

DU1029UK
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RS 1084 CJ (ex Siemens, now Thales),

< 30 MHz, 75 kW

YL1520 (ex Philips, now Richardson),

< 260 MHz, 25 kW

4CX250B

(Eimac/CPI),

< 500 MHz, 600 W

(Anode removed)
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CERN Linac3: 100 MHz, 350 kW

CERN PS: 13-20 MHz, 30 kW 

50 kW Driver: TH345, Final: RS 2054 SK 

Driver: solid state 400 W, Final: RS 1084 CJSC 
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RF in RF out

Cathode
Collector

z

t

velocity

modulation
drift

density

modulation

-V0
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CERN CTF3 (LIL):

3 GHz, 45 MW, 

4.5 ms, 50 Hz, h 45 %

CERN LHC:

400 MHz, 300 kW, 

CW, h 62 %
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BOC „Barrel Open Cavity“

55RF  II24 February, 2009



CERN Accelerator School,  Divonne 2009

Electric field, logarithmic scale

2.99848 GHz,
S11: -12.9 dB

Magnetic field

56RF  II24 February, 2009


