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‘ Small history I

1678 (Romer, Huygens): Speed of light c is finite
(c ~ 3 - 10° m/s)

1687 (Newton): Principles of Relativity

1863 (Maxwell): Electromagnetic theory, light are

waves moving through static ether

1887 (Michelson, Morley): Speed ¢ independent of
direction, end of ether theory

1905 (Einstein): Principles of Special Relativity

1907 (Minkowski): Concepts of Spacetime




Principles of Relativity (Newton)'

Assume a frame at rest (/') and another frame
moving in z-direction ([/”) with constant
velocity v = (v,,0,0)

A A




Principles of Relativity (Newton)'

Assume a frame at rest (/') and another frame
moving in z-direction (F”) with constant

velocity v = (v,,0,0)
» Classical laws (mechanics) are the same in all
frames

» No absolute space possible, but absolute time

» Coordinates of space are transformed
through Galilei transformation



Why transformations 7

To study physical laws in different frames:
> How is a physical process in F’ described

(measurement, observations) in the rest frame F' 7

» Need transformation of coordinates (z,y, z) to
describe (translate) results of measurements and
observations to the moving system (z’,3/, 2/).

> For Newton’s principle of relativity need (alilei

transformation



Galilel transformation I

= x— v,
y =y
2= =z
(' = t)



‘Consequences of (zalilei transformation I

Velocities can be added

» From Galilei transformation, take derivative:

/
T =T — Uyt
r=x—v, => UV =v-—1,

» A car moving with speed v’ in a frame moving
with speed v, we have in rest frame v =9 + v,

» But: if v = 0.75¢c and v, = 0.75c
do we get v =1.5¢ ?



\Problems with Galilel transformation I

Maxwell’s equations are wrong when (Galilei
transformations are applied (because they
predict the speed of light)

> First solution: introduction of ”ether”

» But: speed of light the same in all frames
and all directions (no ”ether”)

» Need other transformations for Maxwell’s
equations

Introduced principles of special relativity



‘Principles of Special Relativity (Einstein) I

A frame moving with constant velocity is called
an ”inertial frame”

All (not only classical) physical laws in related
frames have equivalent forms, in particular:

speed of light c¢c the same in all frames

Cannot distinguish between inertial frames

» In particular, cannot determine absolute
speed of an inertial frame

» No absolute space, no absolute time



‘Coordinates must be transformed differently'

Transformation must keep speed of light constant

Time must be changed by transformation as well as
space coordinates

Transform (x,y,z2), t — (2/,y',2), t

Constant speed of light requires:

w4yt 2 — At =0 = 2 4y 42— =0
(front of a light wave)

> Defines the Lorentz transformation



Lorentz transformation I

33/: x—ut
\/ (1-2%)

y =y

2= =z

p= 2
(1-%)

» Transformation for constant velocity along

X-axI1s



Lorentz transformation I

33/: r—ut :’7 (x—vt)

» Transformation for constant velocity along

X-axI1s



Definitions: relativistic factors I

U

Bfr:
C
1 1

ya-2) -3

» (. relativistic speed: 3. = [0, 1]

» v relativistic factor: v = [1, o]

(unfortunately, you will also see other 3 and v ... !)



\Einstein’s contributions I

/ x—uvt

rT =
VvV (1-2%)
y = Y
2 = 2
t— vz
th = =
(1-25)
T, Y, 2 —  (x,y,z,ct
(z,9,2) (z,y, 2, ct)

> Physical laws unchanged under Lorentz transformations
> Combine dimension of time with 3 dimensions of space

> Simultaneity has no absolute meaning in independent
frames




‘Other important contributors I

33/— x—vt
vV (1-%)

y' =y

2= =z

> Lorentz transformation was known by H. Poincaré

> First thoughts about problem with simultaneity and

spacetime



Consequences of Einstein’s interpretation I

Relativistic phenomena:
» Simultaneity of events in independent frames
» Lorentz contraction

» Time dilatation

Formalism with four-vectors introduced
» Invariant quantities

» Mass - energy relation



‘Simultaneity between moving frames'

> Assume two events in frame ' at positions z; and x5
happen simultaneously at times t; = ts:

t1 — 5! ty — =53
t] = ¢ and 15 = ¢

V-2 Ja-%)

implies that t| #

> Two events simultaneous at positions z; and z5 in F' are

not simultaneous in F’



‘Simultaneity between moving frames'

> System with a light source (x) and detectors (1, 2) and
one observer (A) in this frame, another (B) outside

> System at rest — observation the same in A and B

> What if system with A is moving 7




‘Simultaneity between moving frames'

> For A: both flashes arrive simultaneously in 1,2
> For B: flash arrives first in 1, later in 2

> A simultaneous event in F is not simultaneous in F’

> Why do we care 77




Why care about simultaneity ? I

Simultaneity is not frame independent
This is a key in special relativity

Most paradoxes are explained by that !



Why care about simultaneity ? I

Simultaneity is not frame independent
This is a key in special relativity
Most paradoxes are explained by that !

More important: sequence of events can change !

» For t; < ity we may find (not always !) a frame
where t; > ty (concept of before and after depends
on the observer)

> Requires introduction of ”antiparticles” in

relativistic quantum mechanics

> Physical ”"reason” for antiparticles



‘Consequences: length measurement I

F P
—>
: v
L
— _ —
X 1 2 X
Length of a rod in F’ is ' = z, — =z}, measured

simultaneously at a fixed time t' , what is the length L seen
inF 77



‘Consequences: length measurement I

F F
L!

We have to measure simultaneously the ends of the rod
at a fixed time ¢ in frame F =—»

vy =7v-(x1 —vt) and x5, =7 (13— Vi)

/

U'=azy -2y =7 (v2—21)=7-L
— L=1L/y



\ Lorentz contraction I

In moving frame an object has always the same length
(our principle !)

From stationary frame moving objects appear
contracted by a factor v (Lorentz contraction)

Why do we care ?

Turn the argument around: assume length of a proton

bunch appears always at 0.1 m in laboratory frame (e.g.
in the RF bucket), what is the length in its own

(moving) frame ?
» At 5 GeV (y~5.3) — L’=0.53m
» At 450 GeV (y~ 480) — L’=48.0m



Lorentz transformation - schematic'
‘A

Frame F =

X




Lorentz transformation - schematic'

Frame F




Lorentz transformation - schematic'

Frame F




Lorentz transformation - schematic'




Lorentz transformation - schematic'




Lorentz transformation - schematic'




‘Lorentz contraction - schematic'

Frame F




‘Lorentz contraction - schematic'




\ Lorentz contraction I

For the coffee break and lunch:

Can you ”see” (visually) a Lorentz contraction 77?7




\ Time dilatation I

A clock measures time difference At = t5 — t; in frame F,
measured at fixed position x , what is the time difference
At’ as measured from the moving frame F’ 77

For Lorentz transformation of time in moving frame we

have:
V- V-
ty =(t —6—2) and 1, = (¢ —6—2)
At =t, —t] =~ (to —t1) =7 - At

=> At' = ~yAt



\ Time dilatation I

In moving frame time appears to run slower

Why do we care ?
» 1 have lifetime of 2 us (= 600 m )

> For v > 150, they survive 100 km to reach earth
from upper atmosphere

> They can survive more than 2 us in a u-collider

> Generation of neutrinos from the SPS beams



Of course ALL inertial frames are equivalent'

> Length contraction observed in F’ from F' is the same as
observed in F' from F’

> Time dilatation observed in F’ from F' is the same as
observed in F' from F"

> No contradiction: the same reality can look very
different from different perspectives



\Addition of velocities I

> Galilei: v = v1 + v

> With Lorentz transform we have:

U1 T2 : b1+ B
v = — or equivalently : (=
I+ === L + 5102

for 3 = 0.5 we get:

0.5¢c + 0.5¢ = 0.8c

0.5¢c + 0.5¢ 4+ 0.5¢ = 0.93c

0.5¢ + 0.5¢ + 0.5¢ + 0.5¢ = 0.976c¢

0.5¢c 4+ 0.5¢ + 0.5¢ + 0.5¢ + 0.5¢ = 0.992c



‘ First summary I

Constant speed of light requires Lorentz transformation
No absolute space or time

Speed of light is maximum possible speed

Moving objects appear shorter

Moving clocks seem to go slower



‘Moving clocks go slower'



‘Moving clocks go slower'
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‘Moving clocks go slower'




‘Introducing four-vectors® I

Position four-vector X: X = (ct,x,y,2) = (ct, ¥)
This mathematical setting is called Minkowski space and

Lorentz transformation can be written in matrix form:

(N [0 =00\  [a)

x’ _ = 4 00 ] x

/ 0 0 1 0 y

\/}82 \ 0 0 0 1/ \z)
X' =My o X

*) definition for four-vectors not unique ! (I use PDG 2008)



Introducing four-vectors'

Define an invariant product® like: X oY
X = (x0,%), Y =(yo,y) = XoY=x9-y0— T Yy
For example try X ¢ X:
XoX =ct? — 22 — y* — 22
This product is an invariant, i.e.:
XoX = A2 — 2% — 9y — 22 = XoX = At7 — 2% — y? — 22

Quantities which are invariant have the same value in all
inertial frames

*) definition of product not unique ! (I use PDG 2008)



‘Introducing four-vectors I

It describes a distance in the spacetime between two points
Xy and Xo:  AX = Xy — Xy = (ct2 — ct1, 02 — T1,y2 — Y1, 22 — 21)

As? = AXoAX = AA? — Az? — Ay? — Az?

As? can be positive (timelike) or negative (spacelike)

Special case (time interval x5 = 27 + vA?):

2 A 42 2 2 2 2 A 42 v’ 2 Al o 2 A2

AT — Ax® —Ay" —Az" = cCAT(1—-—) = ¢(— )" = c"Ar
c o

> AT is the time interval measured in the moving frame

> 7 is a fundamental time: proper time 7



‘The meaning of ”proper time” I

AT is the time interval measured in the moving frame

Back to py-decay
> 1 lifetime is ~ 2 us

> 1t decay in ~ 2 us in their frame, i.e. using the ”proper

time”
> 1t decay in =~ - 2 us in the laboratory frame, i.e. earth

> 1+ appear to live longer than 2 us in the laboratory

frame, i.e. earth



‘The meaning of ”proper time” I

How to make neutrinos 77?7

Let pions decay: m — u + v,
» m-mesons have lifetime of 2.6 - 10°% s ( i.e. 7.8 m)

> For 40 GeV m-mesons: v = 288

> In laboratory frame: decay length is 2.25 km
(required length of decay tunnel)



More four-vectors I

Position four-vector X:
X = (ct,x,y,2) = (ct, T)

Velocity four-vector V:

dX dX ' dct) . . . >
= — = — _ —
%4 = v X = ( prAatE a2 2) = y(c, &)

Please note that:
VoV =72 —9%) = c*!

» c is an invariant (of course)



More four-vectors I

Momentum four-vector P:
P =moV = mgy(c,v) = (me, p)

using:

mo (mass of a particle)

m = myg -7 (relativistic mass)

p=m-U=myyV (relativistic 3-momentum)

We can get another invariant: Po P = m3(VoV) = mic?
and the derivatives:

dT dT



More four-vectors I

Momentum four-vector P:
P =moV = mgy(c,v) = (me, p)

using:

mo (mass of a particle)

m = myg -7 (relativistic mass)

p=m-U=myyV (relativistic 3-momentum)

We can get another invariant: Po P = m3(VoV) = mic?
and the derivatives:



Still more four-vectors I

Force four-vector F':

= T~ YatreP) =g )
since:
Voldl = VoF =0 =» L(mc?)—fui=0

fﬁ is rate of change of kinetic energy dT'/dt
after integration:

dT - d(mc?) 5
T p— _ — p— — .
/ = dt / fodt / = dt = mc” + const

T = mc? + const. = mc? — moc?




Still more four-vectors I

Force four-vector F':

since:
Voll = VoF =0 =» L(mc?)—fi=0

fﬁ is rate of change of kinetic energy dT'/dt
after integration:

dT > d(mc?) 5
T =  — = D = = .
/ o dt / fodt / 7 dt = mc® + const

T = mc? + const. = mc? — moc?




‘ Relativistic energy I

Interpretation:

E =mc? =T + myc?
» Total energy E is E = mc?
> Sum of kinetic energy plus rest energy

» Energy of particle at rest is Ey = mc?

E=m-c?=~vymg-c?

using the definition of relativistic mass again: |m = ymg



Still more four-vectors I

Equivalent four-momentum vector:

P = (me,p) =% (E/c,p)

then:

follows:



‘ Relativistic energy I

These units are not very convenient:
m, = 1.672 - 107" Kg

—

—

l

l

myc? =1.505 - 10710 J
myc? = 938 MeV — m, = 938 MeV /c?

myc® - y(7 TeV)=1.123 - 1076 J
myc® - (7 TeV)-1.15- 10 - 2808 = 360 - 10° J

Why did I write = 938 MeV /c? 77



‘ Relativistic energy I

in particle physics: omit ¢ and dump it into the units:

[E] = eV [p] =eV/c [m]=eV/c?

Four-vectors get an easier form:

P = (m,p) = (E,p)

and from PoP = E? —p? = mj follows directly:

B = 4m (= m? ="



‘ Relativistic energy I

E=mc* =~ -moc* = E =ymy

Note:

p=myyv =ymg - Bc => p=ymgy- [

T=mg(y—1)-¢* =» T =ymg— mg
» for large (3: numerical values very similar

/\ careful for low energies (i.e. small j3) ..... !




Interpretation of relativistic energy I

2 is the total energy

For any object, m - c
> Object can be composite, like proton ..
> m is the mass (energy) of the object ”in motion”

> mo is the mass (energy) of the object ”at rest”

For discussion: what is the mass of a photon 7



Relativistic mass I

The mass of a fast moving particle is increasing like:

mo

m = Ymgy = -
(%

2
assume a 75 kg heavy man:

> Rocket at 100 km/s, v = 1.00000001, m = 75.000001 kg
> PS at 26 GeV, v = 27.7, m = 2.08 tons

» LHC at 7 TeV, v = 7642, m = 573.15 tons

» LEP at 100 GeV, v = 196000, m = 14700 tons




Relativistic mass I

> Why do we care ?

mo

m = Ymgy = -
v

C2
> Particles cannot go faster than c !

> What happens when we accelerate ?



Relativistic mass I

When we accelerate:

For v < c:

> E, m, p, v increase ...

For v = c:
> E, m, p increase, but v does not !

> Remember that for later



‘ Relativistic energy I

Since we remember that:

therefore:

v o= 1+
moC

we get for the speed v, i.e. (:



Energy versus velocity I

E (GeV) | v (km/s) v 6]
1 103848.6 1.066 | 0.34640164
26 299597.3 27.72 | 0.99934902
450 299791.82 | 479.74 | 0.99999787
7000 299792.455 | 7462.7 | 0.99999999
o0 299792.458 o0 1.00000000

> Q: which type of particle have I used ?



beta = v/c

1.2

0.8

0.6

0.4

Velocity versus energy (protons)'

Velocity versus energy

T (GeV)

1
15

1
20

1
25




‘Why do we care 77 I

E (GeV) | v (km/s) v 6] T
(LHC)
450 299791.82 | 479.74 | 0.99999787 | 88.92465 us
7000 299792.455 | 7462.7 | 0.99999999 | 88.92446 us

> For identical circumference very small change in

revolution time

> If path for faster particle slightly longer, the faster

particle arrives later !




Four vectors I

Use of four-vectors simplify calculations
significantly

Follow the rules and look for invariants

In particular kinematic relationships, e.g.
» Particle decay

» Particle collisions =



P1

Particle collisions I

P1

» What is the available collision energy ?

P2

P2



\Particle collisions - collider'

Assume identical particles and beam energies, colliding
head-on

P1 P2
¢ > < &

The four momentum vectors are:

Pl = (F,p) P2 = (FE,—p)
The four momentum vector in centre of mass system is:

P*=Pl1+P2=(E+E,p—p) = (2E,0)



\Particle collisions - collider'

The four momentum vector in centre of mass
system is:

P*=Pl+P2=(E+E,p—p) = (2E,0)

The square of the total available energy s in the
centre of mass system is the momentum invariant:

s2 = P* o P* = AE?
s =+VP*o P*=2F

i.e. in a (symmetric) collider the total energy is

twice the beam energy



Particle collisions - fixed target'

P1 P2
& > &

The four momentum vectors are:

Pl1=(E,p)  P2=(mqg,0)
The four momentum vector in centre of mass system is:

P* = Pl1+ P2=(FE+ myg,D)



Particle collisions - fixed target'

With the above it follows:

P*o P* = E? + 2mogE + m — p°

since E? — p* = m? we get:

s* = 2moE +mg + mg

if £ much larger than m, we find:

s =/2mokE



Particle collisions - fixed target'

Homework: try for £1 # E2 and ml #* m?2

Examples:

collision

beam energy

s (collider)

s (fixed target)

pp
pp

et+e—

315 (GeV)
7000 (GeV)
100 (GeV)

630 (GeV)
14000 (GeV)
200 (GeV)

24.3 (GeV)
114.6 (GeV)
0.320 (GeV)




Forces and fields I

Motion of charged particles in electromagnetic fields E, B
determined by Lorentz force

L d B L o
f= (o) = q- (B +7 % B)

or as four-vector:



Field tensor I

Electromagnetic field described by field-tensor F*":

C C C

o _ Lz -B. B,
5% B, 0 -B,
\ % B, B 0 )

—.

derived from four-vector A4, = (¢, A) like:

FHY = §hAY — §Y A



‘Lorentz transformation of fields I

> Field perpendicular to movement transform



‘Lorentz transformation of fields I

vy=1 Y>> 1

» In rest frame purely electrostatic forces

» In moving frame E transformed and B appears



\ Kinematic relations I

We have already seen a few, e.g.:

»T=FE—-Fy=(y—1)E

> Ey = v E? = c?p?
» etc. ...

Very usetful for everyday calculations =»



\ Kinematic relations I

cp T E Y
_ 1 _ 1 _ (Eo0)2 A2
T | Ve ViI-TEr Vi-(3) o
cp = cp VT(2Ey+T) | VE?—EZ2 | Egyy/y2—1
Eo = L T/(y=1) | VE*=cp®| E/y
o
T = cp\/g—;} T E—Ey | Eo(y—1)
V= cp/Eof3 1+ T/ Eqy E/Ey Y




\ Kinematic relations I

cp T E Y
_ 1 _ 1 _ (Eo0)\2 A2
T | Ve ViI-TEr Vi-(3) L
cp = cp VTR2Ey+T) | VE2—E2 | Eoy/y2 -1
Ey = L T/(y—1) V E? — c2p? E/~
o
T = cp\/g—;} T F—Ey | Eo(y—1)
V= cp/ Eof 1+ 7T/Eq E/Ey g




\ Kinematic relations I

» Example: CERN Booster

At injection: T = 50 MeV
- E = 0.988 GeV, p = 0.311 GeV/c
-» ~v = 1.0533, § = 0.314

At extraction: T = 1.4 GeV
- E = 2.338 GeV, p = 2.141 GeV/c
-> v = 2.4925, 3 = 0.916




‘Kinematic relations - logarithmic derivatives'

i dp i a5 _
p 8
s _ ds 1 dp 1 dT 1 _dy
B 3 2 p y(y+1) T (87)* ~
d
T=1 % T h/Oe+DIF | #Y
dl' __ dg 1\d dT d
T=170+1% | A1+3)F i 1) o
d d
T=1 65 | T (1-2)F £l
dy __ 2 dp d dg _1N\dT dry
el | v Mty i B :




‘Kinematic relations - logarithmic derivatives'

i dp ar a5 _ iy
p 8
s _ ds 1 dp 1 dT 1 _dy
B 3 72 p y(y+1) T (87)° v
d
T=1 % T h/Oe+DIF | #Y
dl' __ dg 1\d dT d
T=170+1% | A1+3)F i 1) o
d d
T=| (5’7 s (1-2)TF B
dy _ 2 dg | dp _ dp _ 1\dT dy
oo v2| & o] a by | 4




Summary I

Relativistic effects vital in accelerators:
» Lorentz contraction
» Time dilatation
» Relativistic mass effects

» Modification of electromagnetic field

Find back in later lectures ...



